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Π2-rules



Definition

An inference rule ρ is a Π2-rule if it is of the form

F (φ/x , y)→ χ

G (φ/x)→ χ

where F (x , y),G (x) are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

ψ = F (φ/x , y)→ χ and θ = G (φ/x)→ χ,

where φ is a tuple of formulas, χ is a formula, and y is a tuple of
propositional letters not occurring in φ and χ.

Let S be a propositional modal system. We say that the rule ρ is
admissible in S if `S+ρ φ implies `S φ for each formula φ.



Definition

An inference rule ρ is a Π2-rule if it is of the form

F (φ/x , y)→ χ

G (φ/x)→ χ

where F (x , y),G (x) are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

ψ = F (φ/x , y)→ χ and θ = G (φ/x)→ χ,

where φ is a tuple of formulas, χ is a formula, and y is a tuple of
propositional letters not occurring in φ and χ.

Let S be a propositional modal system. We say that the rule ρ is
admissible in S if `S+ρ φ implies `S φ for each formula φ.



First method

Conservative extensions



We say that φ(x) ∧ ψ(x , y) is a conservative extension of φ(x) in S if

`S φ(x) ∧ ψ(x , y)→ χ(x) implies `S φ(x)→ χ(x)

for every formula χ(x).

Theorem

If S has the interpolation property, then a Π2-rule ρ is admissible in S iff
G (x) ∧ F (x , y) is a conservative extension of G (x) in S.

Therefore, if S has the interpolation property and conservativity is
decidable in S, then Π2-rules are effectively recognizable in S.

Corollary

The admissibility problem for Π2-rules is

NexpTime-complete in K and S5;

in ExpSpace and NexpTime-hard in S4.
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Second method

Uniform interpolants



An S5-modality [∀] is called a universal modality if

`S
n∧

i=1

[∀](φi ↔ ψi )→ (�[φ1, . . . , φn]↔ �[ψ1, . . . , ψn])

for every modality � of S.

If φ(x , y) is a formula, its right global uniform pre-interpolant ∀xφ(y) is a
formula such that for every ψ(y , z) we have that

ψ(y , z) `S φ(x , y) iff ψ(y , z) `S ∀xφ(y).

Theorem

Suppose that S has uniform global pre-interpolants and a universal
modality [∀]. Then a Π2-rule ρ is admissible in S iff

`S [∀]∀y (F (x , y)→ z)→ (G (x)→ z).



An S5-modality [∀] is called a universal modality if

`S
n∧

i=1

[∀](φi ↔ ψi )→ (�[φ1, . . . , φn]↔ �[ψ1, . . . , ψn])

for every modality � of S.

If φ(x , y) is a formula, its right global uniform pre-interpolant ∀xφ(y) is a
formula such that for every ψ(y , z) we have that

ψ(y , z) `S φ(x , y) iff ψ(y , z) `S ∀xφ(y).

Theorem

Suppose that S has uniform global pre-interpolants and a universal
modality [∀]. Then a Π2-rule ρ is admissible in S iff

`S [∀]∀y (F (x , y)→ z)→ (G (x)→ z).



An S5-modality [∀] is called a universal modality if

`S
n∧

i=1

[∀](φi ↔ ψi )→ (�[φ1, . . . , φn]↔ �[ψ1, . . . , ψn])

for every modality � of S.

If φ(x , y) is a formula, its right global uniform pre-interpolant ∀xφ(y) is a
formula such that for every ψ(y , z) we have that

ψ(y , z) `S φ(x , y) iff ψ(y , z) `S ∀xφ(y).

Theorem

Suppose that S has uniform global pre-interpolants and a universal
modality [∀]. Then a Π2-rule ρ is admissible in S iff

`S [∀]∀y (F (x , y)→ z)→ (G (x)→ z).



Third method

Simple algebras and model completions



To a Π2-rule we associate the first-order formula

Π(ρ) := ∀x , z
(
G (x) � z ⇒ ∃y : F (x , y) � z

)
.

Theorem

Suppose that S has a universal modality. A Π2-rule ρ is admissible in S iff
for each simple S-algebra B there is a simple S-algebra C such that B is a
subalgebra of C and C |= Π(ρ).

In the presence of a universal modality, an S-algebra is simple iff

[∀]x =

{
1 if x = 1,

0 otherwise.

Moreover, S-algebras form a discriminator variety. Therefore, the variety
of S-algebras is generated by the simple S-algebras.
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The model completion of a universal first-order theory T , if it exists, is the
theory of the existentially closed models of T .

Let T be a universal theory in a finite language. If T is locally finite and
has the amalgamation property, then it admits a model completion.

Theorem

Suppose that S has a universal modality and let TS be the first-order
theory of the simple S-algebras. If TS has a model completion T ?

S , then a
Π2-rule ρ is admissible in S iff T ?

S |= Π(ρ) where

Π(ρ) := ∀x , z
(
G (x) � z ⇒ ∃y : F (x , y) � z

)
.
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The symmetric strict implication calculus
and contact algebras



Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

The symmetric strict implication calculus S2IC is given by the axioms

(A0) [∀]φ↔ (> φ),
(A1) (⊥ φ) ∧ (φ >),
(A2) [(φ ∨ ψ) χ]↔ [(φ χ) ∧ (ψ  χ)],
(A3) [φ (ψ ∧ χ)]↔ [(φ ψ) ∧ (φ χ)],
(A4) (φ ψ)→ (φ→ ψ),
(A5) (φ ψ)↔ (¬ψ  ¬φ),
(A8) [∀]φ→ [∀][∀]φ,
(A9) ¬[∀]φ→ [∀]¬[∀]φ,
(A10) (φ ψ)↔ [∀](φ ψ),
(A11) [∀]φ→ (¬[∀]φ ⊥),

and modus ponens (for →) and necessitation (for [∀]).



An open subset A of a topological space is called regular open if
A = int(cl(A)).

Let v be a valuation into a topological space X that maps each
propositional variable to a regular open of X . We can extend each
valuation on all formulas as follows

v(⊥) = ∅
v(>) = X

v(φ ∧ ψ) = v(φ) ∩ v(ψ)

v(φ ∨ ψ) = int(cl(v(φ) ∪ v(ψ)))

v(¬φ) = int(X \ v(φ))

v(φ ψ) =

{
X if cl(v(φ)) ⊆ v(ψ),

∅ otherwise.

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

`S2IC φ iff v(φ) = X for every compact Hausdorff space X and v.
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The algebras associated with S2IC are called strict implication algebras.

When a strict implication algebra is simple,  becomes a characteristic
function of a binary relation. They correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation ≺
satisfying the axioms:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c ;
(S3) a, b ≺ c implies a ∨ b ≺ c ;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.
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Theorem

The model completion Con? of the theory of contact algebras is finitely
axiomatizable.



Theorem

The model completion Con? of the theory of contact algebras is finitely
axiomatizable.

An axiomatization is given by the following three sentences.

∀a, b1, b2 (a 6= 0 & (b1 ∨ b2) ∧ a = 0 & a ≺ a ∨ b1 ∨ b2 ⇒
∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 6= 0 & a2 6= 0 & a1 ≺ a1 ∨ b1

& a2 ≺ a2 ∨ b2))

∀a, b (a ∧ b = 0 & a 6≺ ¬b ⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0

& a1 6≺ ¬b & a2 6≺ ¬b & a1 ≺ ¬a2))

∀a (a 6= 0⇒ ∃a1, a2 (a1 ∨ a2 = a & a1 ∧ a2 = 0 & a1 ≺ a & a1 6≺ a1))
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The following Π2-rule

(p  p) ∧ (φ p) ∧ (p  ψ)→ χ

(φ ψ)→ χ

corresponds to the zero-dimensionality of the space.

Using the axiomatization of Con? it is easy to show that it is admissible in
S2IC.

Therefore, S2IC is complete wrt Stone spaces.

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema
(2019))

`S2IC φ iff v(φ) = X for every Stone space X and v.
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We stand with Ukraine!
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