Admissibility of Π_2 -Inference Rules: interpolation, model completion, and contact algebras

Luca Carai, University of Salerno

Joint work with: Nick Bezhanishvili, Silvio Ghilardi, and Lucia Landi

Logic4Peace, 22 April 2022

Π_2 -rules

Definition

An inference rule ρ is a Π_2 -rule if it is of the form

$$\frac{F(\underline{\phi}/\underline{x},\underline{y}) \to \chi}{G(\underline{\phi}/\underline{x}) \to \chi}$$

where $F(\underline{x}, \underline{y}), G(\underline{x})$ are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

$$\psi = F(\underline{\phi}/\underline{x}, \underline{y}) \rightarrow \chi \text{ and } \theta = G(\underline{\phi}/\underline{x}) \rightarrow \chi,$$

where $\underline{\phi}$ is a tuple of formulas, χ is a formula, and \underline{y} is a tuple of propositional letters not occurring in ϕ and χ .

Definition

An inference rule ρ is a Π_2 -rule if it is of the form

$$\frac{F(\underline{\phi}/\underline{x},\underline{y}) \to \chi}{G(\underline{\phi}/\underline{x}) \to \chi}$$

where $F(\underline{x}, \underline{y}), G(\underline{x})$ are propositional formulas.

We say that θ is obtained from ψ by an application of the rule ρ if

$$\psi = F(\underline{\phi}/\underline{x},\underline{y}) \to \chi \text{ and } \theta = G(\underline{\phi}/\underline{x}) \to \chi,$$

where $\underline{\phi}$ is a tuple of formulas, χ is a formula, and \underline{y} is a tuple of propositional letters not occurring in ϕ and χ .

Let S be a propositional modal system. We say that the rule ρ is admissible in S if $\vdash_{S+\rho} \phi$ implies $\vdash_S \phi$ for each formula ϕ .

First method

Conservative extensions

We say that $\phi(\underline{x}) \wedge \psi(\underline{x}, y)$ is a conservative extension of $\phi(\underline{x})$ in S if

 $\vdash_{\mathcal{S}} \phi(\underline{x}) \land \psi(\underline{x},\underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \phi(\underline{x}) \to \chi(\underline{x})$

for every formula $\chi(\underline{x})$.

We say that $\phi(\underline{x}) \wedge \psi(\underline{x}, y)$ is a conservative extension of $\phi(\underline{x})$ in S if

 $\vdash_{\mathcal{S}} \phi(\underline{x}) \land \psi(\underline{x}, \underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \phi(\underline{x}) \to \chi(\underline{x})$

for every formula $\chi(\underline{x})$.

Theorem

If S has the interpolation property, then a Π_2 -rule ρ is admissible in S iff $G(\underline{x}) \wedge F(\underline{x}, \underline{y})$ is a conservative extension of $G(\underline{x})$ in S.

We say that $\phi(\underline{x}) \land \psi(\underline{x}, \underline{y})$ is a conservative extension of $\phi(\underline{x})$ in S if

 $\vdash_{\mathcal{S}} \phi(\underline{x}) \land \psi(\underline{x}, \underline{y}) \to \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \phi(\underline{x}) \to \chi(\underline{x})$

for every formula $\chi(\underline{x})$.

Theorem

If S has the interpolation property, then a Π_2 -rule ρ is admissible in S iff $G(\underline{x}) \wedge F(\underline{x}, \underline{y})$ is a conservative extension of $G(\underline{x})$ in S.

Therefore, if S has the interpolation property and conservativity is decidable in S, then Π_2 -rules are effectively recognizable in S.

Corollary

The admissibility problem for Π_2 -rules is

- NEXPTIME-complete in K and S5;
- *in* EXPSPACE *and* NEXPTIME-*hard in* S4.

Second method

Uniform interpolants

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\phi_i \leftrightarrow \psi_i) \rightarrow (\Box[\phi_1, \ldots, \phi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of S.

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\phi_i \leftrightarrow \psi_i) \rightarrow (\Box[\phi_1, \ldots, \phi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of \mathcal{S} .

If $\phi(\underline{x}, \underline{y})$ is a formula, its right global uniform pre-interpolant $\forall_{\underline{x}} \phi(\underline{y})$ is a formula such that for every $\psi(y, \underline{z})$ we have that

$$\psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \phi(\underline{x},\underline{y}) \text{ iff } \psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \forall_{\underline{x}} \phi(\underline{y}).$$

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\phi_i \leftrightarrow \psi_i) \rightarrow (\Box[\phi_1, \ldots, \phi_n] \leftrightarrow \Box[\psi_1, \ldots, \psi_n])$$

for every modality \Box of \mathcal{S} .

If $\phi(\underline{x}, \underline{y})$ is a formula, its right global uniform pre-interpolant $\forall_{\underline{x}} \phi(\underline{y})$ is a formula such that for every $\psi(y, \underline{z})$ we have that

$$\psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \phi(\underline{x},\underline{y}) \text{ iff } \psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \forall_{\underline{x}} \phi(\underline{y}).$$

Theorem

Suppose that S has uniform global pre-interpolants and a universal modality [\forall]. Then a Π_2 -rule ρ is admissible in S iff

$$\vdash_{\mathcal{S}} [\forall] \forall_{\underline{y}} (F(\underline{x}, \underline{y}) \to z) \to (G(\underline{x}) \to z).$$

Third method

Simple algebras and model completions

To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$. To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an $\mathcal S\text{-algebra}$ is simple iff

$$[\forall]x = \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise} \end{cases}$$

To a $\Pi_2\text{-rule}$ we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an $\mathcal{S}\text{-algebra}$ is simple iff

$$[\forall] x = \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise} \end{cases}$$

Moreover, S-algebras form a discriminator variety. Therefore, the variety of S-algebras is generated by the simple S-algebras.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

Theorem

Suppose that S has a universal modality and let T_S be the first-order theory of the simple S-algebras. If T_S has a model completion T_S^* , then a Π_2 -rule ρ is admissible in S iff $T_S^* \models \Pi(\rho)$ where

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

The symmetric strict implication calculus and contact algebras

Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

The symmetric strict implication calculus S²IC is given by the axioms

$$\begin{array}{ll} (A0) \ [\forall]\phi \leftrightarrow (\top \rightsquigarrow \phi), \\ (A1) \ (\bot \rightsquigarrow \phi) \land (\phi \rightsquigarrow \top), \\ (A2) \ [(\phi \lor \psi) \rightsquigarrow \chi] \leftrightarrow [(\phi \rightsquigarrow \chi) \land (\psi \rightsquigarrow \chi)], \\ (A3) \ [\phi \rightsquigarrow (\psi \land \chi)] \leftrightarrow [(\phi \rightsquigarrow \psi) \land (\phi \rightsquigarrow \chi)], \\ (A4) \ (\phi \rightsquigarrow \psi) \rightarrow (\phi \rightarrow \psi), \\ (A5) \ (\phi \rightsquigarrow \psi) \leftrightarrow (\neg \psi \rightsquigarrow \neg \phi), \\ (A5) \ [\forall]\phi \rightarrow [\forall] [\forall]\phi, \\ (A9) \ \neg [\forall]\phi \rightarrow [\forall] [\forall]\phi, \\ (A10) \ (\phi \rightsquigarrow \psi) \leftrightarrow [\forall](\phi \rightsquigarrow \psi), \\ (A11) \ [\forall]\phi \rightarrow (\neg [\forall]\phi \rightsquigarrow \bot), \end{array}$$

and modus ponens (for \rightarrow) and necessitation (for [\forall]).

An open subset A of a topological space is called regular open if A = int(cl(A)).

An open subset A of a topological space is called regular open if A = int(cl(A)).

Let v be a valuation into a topological space X that maps each propositional variable to a regular open of X. We can extend each valuation on all formulas as follows

$$\begin{aligned} \mathbf{v}(\bot) &= \varnothing \\ \mathbf{v}(\top) &= X \\ \mathbf{v}(\phi \land \psi) &= \mathbf{v}(\phi) \cap \mathbf{v}(\psi) \\ \mathbf{v}(\phi \lor \psi) &= \operatorname{int}(\operatorname{cl}(\mathbf{v}(\phi) \cup \mathbf{v}(\psi))) \\ \mathbf{v}(\neg \phi) &= \operatorname{int}(X \setminus \mathbf{v}(\phi)) \\ \mathbf{v}(\phi \rightsquigarrow \psi) &= \begin{cases} X & \text{if } \operatorname{cl}(\mathbf{v}(\phi)) \subseteq \mathbf{v}(\psi), \\ \varnothing & \text{otherwise.} \end{cases} \end{aligned}$$

An open subset A of a topological space is called regular open if A = int(cl(A)).

Let v be a valuation into a topological space X that maps each propositional variable to a regular open of X. We can extend each valuation on all formulas as follows

$$\begin{aligned} \mathbf{v}(\bot) &= \varnothing \\ \mathbf{v}(\top) &= X \\ \mathbf{v}(\phi \land \psi) &= \mathbf{v}(\phi) \cap \mathbf{v}(\psi) \\ \mathbf{v}(\phi \lor \psi) &= \operatorname{int}(\operatorname{cl}(\mathbf{v}(\phi) \cup \mathbf{v}(\psi))) \\ \mathbf{v}(\neg \phi) &= \operatorname{int}(X \setminus \mathbf{v}(\phi)) \\ \mathbf{v}(\phi \rightsquigarrow \psi) &= \begin{cases} X & \text{if } \operatorname{cl}(\mathbf{v}(\phi)) \subseteq \mathbf{v}(\psi), \\ \varnothing & \text{otherwise.} \end{cases} \end{aligned}$$

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

 $\vdash_{S^{2}IC} \phi$ iff $v(\phi) = X$ for every compact Hausdorff space X and v.

The algebras associated with S^2IC are called strict implication algebras.

When a strict implication algebra is simple, \rightsquigarrow becomes a characteristic function of a binary relation. They correspond exactly to contact algebras.

The algebras associated with S^2IC are called strict implication algebras.

When a strict implication algebra is simple, \rightsquigarrow becomes a characteristic function of a binary relation. They correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation \prec satisfying the axioms:

```
(S1) 0 \prec 0 and 1 \prec 1;

(S2) a \prec b, c implies a \prec b \land c;

(S3) a, b \prec c implies a \lor b \prec c;

(S4) a \leq b \prec c \leq d implies a \prec d;

(S5) a \prec b implies a \leq b;

(S6) a \prec b implies \neg b \prec \neg a.
```

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

$$\begin{array}{l} \forall a, b_1, b_2 \; (a \neq 0 \; \& \; (b_1 \lor b_2) \land a = 0 \; \& \; a \prec a \lor b_1 \lor b_2 \Rightarrow \\ \exists a_1, a_2 \; (a_1 \lor a_2 = a \; \& \; a_1 \land a_2 = 0 \; \& \; a_1 \neq 0 \; \& \; a_2 \neq 0 \; \& \; a_1 \prec a_1 \lor b_1 \\ \& \; a_2 \prec a_2 \lor b_2)) \end{array}$$

$$\begin{array}{l} \forall a, b \; (a \wedge b = 0 \And a \not\prec \neg b \Rightarrow \exists a_1, a_2 \; (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \\ \& \; a_1 \not\prec \neg b \And a_2 \not\prec \neg b \And a_1 \prec \neg a_2)) \end{array}$$

 $\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \And a_1 \prec a \And a_1 \not\prec a_1))$

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

$$\begin{array}{l} \forall \mathsf{a}, \mathsf{b}_1, \mathsf{b}_2 \ (\mathsf{a} \neq 0 \ \& \ (\mathsf{b}_1 \lor \mathsf{b}_2) \land \mathsf{a} = 0 \ \& \ \mathsf{a} \prec \mathsf{a} \lor \mathsf{b}_1 \lor \mathsf{b}_2 \Rightarrow \\ \exists \mathsf{a}_1, \mathsf{a}_2 \ (\mathsf{a}_1 \lor \mathsf{a}_2 = \mathsf{a} \ \& \ \mathsf{a}_1 \land \mathsf{a}_2 = 0 \ \& \ \mathsf{a}_1 \neq 0 \ \& \ \mathsf{a}_2 \neq 0 \ \& \ \mathsf{a}_1 \prec \mathsf{a}_1 \lor \mathsf{b}_1 \\ \& \ \mathsf{a}_2 \prec \mathsf{a}_2 \lor \mathsf{b}_2)) \end{array}$$

$$\forall a, b \ (a \land b = 0 \& a \not\prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \\ \& a_1 \not\prec \neg b \& a_2 \not\prec \neg b \& a_1 \prec \neg a_2))$$

 $\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \And a_1 \land a_2 = 0 \And a_1 \prec a \And a_1 \not\prec a_1))$

The model completion Con^{*} of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

 $\forall a, b_1, b_2 \ (a \neq 0 \& (b_1 \lor b_2) \land a = 0 \& a \prec a \lor b_1 \lor b_2 \Rightarrow \\ \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \neq 0 \& a_2 \neq 0 \& a_1 \prec a_1 \lor b_1 \\ \& a_2 \prec a_2 \lor b_2))$

 $\forall a, b (a \land b = 0 \& a \not\prec \neg b \Rightarrow \exists a_1, a_2 (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \\ \& a_1 \not\prec \neg b \& a_2 \not\prec \neg b \& a_1 \prec \neg a_2))$

 $\forall a (a \neq 0 \Rightarrow \exists a_1, a_2 (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \prec a \& a_1 \not\prec a_1))$

The following Π_2 -rule

$$\frac{(p \rightsquigarrow p) \land (\phi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \rightarrow \chi}{(\phi \rightsquigarrow \psi) \rightarrow \chi}$$

corresponds to the zero-dimensionality of the space.

The following Π_2 -rule

$$\frac{(p \rightsquigarrow p) \land (\phi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\phi \rightsquigarrow \psi) \to \chi}$$

corresponds to the zero-dimensionality of the space.

Using the axiomatization of Con^\star it is easy to show that it is admissible in $\mathsf{S}^2\mathsf{IC}.$

The following Π_2 -rule

$$(p \rightsquigarrow p) \land (\phi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi (\phi \rightsquigarrow \psi) \to \chi$$

corresponds to the zero-dimensionality of the space.

Using the axiomatization of Con^\star it is easy to show that it is admissible in $\mathsf{S}^2\mathsf{IC}.$

Therefore, S^2IC is complete wrt Stone spaces.

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

 $\vdash_{S^2 IC} \phi$ iff $v(\phi) = X$ for every Stone space X and v.

THANK YOU!

THANK YOU!

We stand with Ukraine!