Preservation properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\lambda \rho$ -products

Michal Botur¹ Tomasz Kowalski²

¹Department of Algebra, Palacký University, Olomouc

²Department of Logic, Jagiellonian University, Kraków

23 April 2022

 $\lambda \rho$ -product

Preservation properties

Conclusions

Jipsen-Montagna example

- Start with ($\mathbb{Z}; \leq, +, 0$) as an ℓ -group.
- Take $\mathbb{Z} \times \mathbb{Z}$ and another copy of \mathbb{Z} ; extend the natural order on $\mathbb{Z} \times \mathbb{Z}$ and \mathbb{Z} by putting $\mathbb{Z} \times \mathbb{Z}$ on top of \mathbb{Z} .
- Truncate to the interval $[0, \langle 0, 0 \rangle]$.
- Products in the top part are as in $\mathbb{Z} \times \mathbb{Z}$.
- All other products are defined by

$$\langle x, y \rangle \cdot i = \max\{x + i, 0\}$$

 $i \cdot \langle x, y \rangle = \max\{y + i, 0\}$
 $i \cdot j = 0$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Motivation 0●00

 $\lambda \rho$ -product

Preservation properties

Conclusions

Example generalised

• The algebra you get is in fact a pseudo BL-algebra, a model of a noncommutative version of fuzzy logic.

イロト 不得 トイヨト イヨト

э.

λ*ρ*-product 00000000 Preservation properties

Conclusions

Example generalised

- The algebra you get is in fact a pseudo BL-algebra, a model of a noncommutative version of fuzzy logic.
- Can also be described as follows:
 - Take a two element semigroup {a, b} satisfying a² = a and uv = b for all other products.
 - Graft $\mathbb{Z} \times \mathbb{Z}$ into *a* by and \mathbb{Z} into *b*.
 - Fix a set of maps λ and ρ between the sets of coordinates, say *I*[*a*] = {0,1} and *I*[*b*] = {0}, telling us which coordinate to take for which product.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

 $\lambda
ho$ -product

Preservation properties

Conclusions

Example generalised

- The algebra you get is in fact a pseudo BL-algebra, a model of a noncommutative version of fuzzy logic.
- Can also be described as follows:
 - Take a two element semigroup {a, b} satisfying a² = a and uv = b for all other products.
 - Graft $\mathbb{Z} \times \mathbb{Z}$ into *a* by and \mathbb{Z} into *b*.
 - Fix a set of maps λ and ρ between the sets of coordinates, say *I*[*a*] = {0,1} and *I*[*b*] = {0}, telling us which coordinate to take for which product.
- Generalises to an arbitrary power of an *l*-group upstairs, and another one downstairs.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

 $\lambda \rho$ -product

Preservation properties

Conclusions 000

Example formalised

Then $\langle x, y \rangle \cdot i$ can be presented as

 $(\langle x, y \rangle, a) \cdot (i, b) = ((\langle x, y \rangle \circ \lambda[a, b]) \cdot (i \circ \rho[a, b]), ab)$

where

- $\lambda[a, b] \colon I[ab] \to I[a]$ is given by $\lambda[a, b](0) = 0$,
- $\rho[a, b] \colon I[ab] \to I[b]$ is given by $\rho[a, b](0) = 0$,
- Calculating the product yields

 $((\langle x, y \rangle \circ \lambda[a, b]) \cdot (i \circ \rho[a, b]), ab) = (x+i, ab)$

which is precisely what we want.

λ[b, a]: I[ba] → I[b] is the identity, of course.

Conclusions

Another example: wreath product

- Now take Z × Z on top of a copy of Z × Z; extend the natural order on Z × Z and Z by putting Z × Z on top of Z.
- Truncate appropriately.
- Set the products between the top and the bottom parts to be

 The algebra obtained here is isomorphic to a truncation of a subgroup of the antilexicographically ordered wreath product Z ≀ Z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\lambda \rho$ -product: intuitions

- Forget all structure except multiplication.
- Take some magma S.
- Let (I[s])_{s∈S} be a system of sets indexed by the elements of S (sets of coordinates, one for each s ∈ S).
- Take a system of maps between the sets of coordinates.
 λ = (λ[a, b]: I[ab] → I[a])_{(a,b)∈S×S} and
 ρ = (ρ[a, b]: I[ab] → I[a])_{(a,b)∈S×S}.
- Next, take any magma **H**, and graft $H^{I[s]}$ into each $s \in S$.
- Define product on $\biguplus_{s \in S} \mathbf{H}^{I[s]}$ as we saw in the example:

$$(\langle x, y \rangle, a) \cdot (i, b) = ((\langle x, y \rangle \circ \lambda[a, b]) \cdot (i \circ \rho[a, b]), ab)$$

$\lambda \rho$ -product: formal definition

Definition

Let ${\boldsymbol{\mathsf{S}}}$ be a magma and let

$$\mathcal{S} = ig(\langle \lambda[\mathsf{a}, \mathsf{b}], \rho[\mathsf{a}, \mathsf{b}]
angle \colon \mathsf{I}[\mathsf{a}\mathsf{b}] o \mathsf{I}[\mathsf{a}] imes \mathsf{I}[\mathsf{b}] ig)_{(\mathsf{a}, \mathsf{b}) \in \mathcal{S}^2}$$

be a system of sets and maps indexed by the elements of S^2 . Let **H** be a magma. We define a groupoid $\mathbf{H}^{[S]} = (H^{[S]}; \star)$, by putting

•
$$H^{[S]} = \biguplus_{a \in S} H^{I[a]} = \{(x, a) \colon a \in S, \ x \in H^{I[a]}\}$$
, and

•
$$(x,a) \star (y,b) = ((x \circ \lambda[a,b]) \cdot (y \circ \rho[a,b]), ab).$$

where \cdot is the product in $\boldsymbol{\mathsf{H}}$ and the product in $\boldsymbol{\mathsf{S}}$ is written as concatenation.

We call $\mathbf{H}^{[S]}$ a $\lambda \rho$ -product.

Semigroups

If **S** and **H** are semigroups, one may want $\mathbf{H}^{[S]}$ to be a semigroup, too.

Definition

Let ${\boldsymbol{\mathsf{S}}}$ be a semigroup, and let

$$\mathcal{S} = ig(\langle \lambda[\mathsf{a}, \mathsf{b}],
ho[\mathsf{a}, \mathsf{b}]
angle \colon \mathsf{I}[\mathsf{a}\mathsf{b}] o \mathsf{I}[\mathsf{a}] imes \mathsf{I}[\mathsf{b}] ig)_{(\mathsf{a}, \mathsf{b}) \in \mathcal{S}^2}$$

be a system of sets and maps satisfying the following conditions (α) $\lambda[a, b] \circ \lambda[ab, c] = \lambda[a, bc]$ (β) $\rho[b, c] \circ \rho[a, bc] = \rho[ab, c]$ (γ) $\rho[a, b] \circ \lambda[ab, c] = \lambda[b, c] \circ \rho[a, bc]$ Then we call $S \ a \ \lambda \rho$ -system. $\lambda \rho$ -product

Preservation properties

イロト 不得 トイヨト イヨト

3

Conclusions

Diagram for associativity

The conditions $\alpha,\,\beta$ and γ amount to the commutativity of this diagram.

$\lambda \rho$ -product: associativity

Theorem

Let **S** be a magma and let

$$\mathcal{S} = \left(\langle \lambda[a, b], \rho[a, b] \rangle \colon I[ab] \to I[a] imes I[b] \right)_{(a, b) \in S^2}$$

be a system of sets and maps indexed by the elements of S^2 . Then, the following are equivalent.

1 $\mathbf{H}^{[S]}$ is a semigroup, for any semigroup \mathbf{H} .

- S is a semigroup and (⟨λ[a, b], ρ[a, b]⟩: I[ab] → I[a] × I[b])_{(a,b)∈S²} is a λρ-system over S (i.e., satisfies α, β and γ).
- S is a semigroup and there exists a nontrivial semigroup H such that H^[S] is a semigroup.

Flip-flop monoid can be decomposed: an example

Let $\mathbf{2} = (\{0,1\}, \lor)$ be the two-element join-semilattice, and let \mathcal{Z} be the $\lambda \rho$ -system over $\mathbf{2}$, defined by putting

1
$$I[0] = \{0\}, I[1] = \{0, 1\},$$

$$\ \, {\bf @} \ \, \lambda[1,0]=\rho[0,1]=\lambda[1,1]=\textit{id}_{I[1]} \ \, \text{and} \ \, \rho[1,1]=\overline{0}.$$

This defines a unique $\lambda \rho$ -system, since the remaining maps all have range $\{0\}$. It is easy to show that the semigroup $\mathbb{Z}_2^{[\mathcal{Z}]}$ is the following:

*	0	1	00	11	01	10
0	0	1	00	11	01	10
1	1	0	11	00	10	01
00	00	11	00	11	00	11
11	11	00	11	00	11	00
01	01	10	01	10	01	10
10	10	01	10	01	10	01

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Flip-flop monoid can be decomposed: an example

$$\mathbb{Z}_2^{[\mathcal{Z}]}$$
 is the following:

*	0	1	00	11	01	10
0	0	1	00	11	01	10
1	1	0	11	00	10	01
00	00	11	00	11	00	11
11	11	00	11	00	11	00
01	01	10	01	10	01	10
10	10	01	10	01	10	01

Partitioning the universe into $\{0,1\}$, $\{00,11\}$ and $\{01,10\}$ we obtain a congruence θ , such that $\mathbb{Z}_2^{[\mathcal{Z}]}/\theta$ is isomorphic to the left flip-flop monoid L_2^1 .

Two-sided wreath product

Theorem

Let $(X, \backslash, /, S)$ consist of a set X together with a two-sided action of a semigroup S on X. Then the system of maps

 $\mathcal{S}(X, \mathbf{S}, X) = \big(\langle \lambda[a, b], \rho[a, b] \rangle \colon I[ab] \to I[a] \times I[b] \big),$

where I[s] = X for any $s \in S$, and

•
$$\lambda[a, b] = b \setminus b$$
 for any $a, b \in S$,

2 $\rho[a,b] = /a$ for all $a, b \in S$.

is a $\lambda \rho$ -system over **S**. Moreover, for any semigroup **H**, the $\lambda \rho$ -product $\mathbf{H}^{[\mathcal{S}(X,\mathbf{S},X)]}$ is isomorphic to the two-sided wreath product of **H** by **S**.

• Particular cases: one-sided wreath product, block product.

Preservation: monoids

Definition

Let *P* be a property of semigroups, and let $S = (\mathbf{I}, \lambda, \rho)$ be a $\lambda \rho$ -system over **S**. We say that *S* preserves *P*, if

 $\forall \mathbf{H} \colon P(\mathbf{H}) \Rightarrow P(\mathbf{H}^{[\mathcal{S}]}).$

Theorem

Let $S = (\mathbf{I}, \boldsymbol{\lambda}, \boldsymbol{\rho})$ be a $\lambda \rho$ -system over **S**. The following are equivalent:

- **1** S is unit-preserving,
- **2** S is a monoid (with unit element 1) and the maps $\lambda[a, 1]$ and $\rho[1, a]$ are the identity maps on I[a], for each $a \in S$,
- S is a monoid and there exists a nontrivial monoid H such that H^[S] is a monoid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Preservation: equations and quasiequations

Theorem template

Let S be a $\lambda \rho$ -system over **S**. The following are equivalent:

- S preserves foo.
- **2** S satisfies foo, and the maps $\lambda[a, b]$ and $\rho[b, a]$ satisfy foobar.
- S satisfies foo and there exists some specific H satisfying foo such that H^[S] satisfies foo.

We know, for example, that foo can be:

- cancellativity (foobar: $\lambda[a, b]$ and $\rho[a, b]$ are surjective)
- idempotency (foobar: $\lambda[a, a] = \rho[a, a] = id$)
- commutativity (foobar: $\lambda[a, b] = \rho[b, a]$)
- medial identity: *xyzu* = *xzyu*
- left zero identity: xy = x

Preservation: groups

Theorem

Let S be a $\lambda \rho$ -system over **S**. The following are equivalent:

- S preserves groups.
- S is a group, the maps λ[a, b] and ρ[b, a] are bijective, for all (a, b) ∈ S², and for b = 1 they are identity maps.
- S is a group and there exists a nontrivial group H such that H^[S] is a group.
 - This is just like the template, but for groups we can get more.

Groups: bonus

Theorem

Let $S = (\mathbf{I}, \boldsymbol{\lambda}, \boldsymbol{\rho})$ be a $\lambda \rho$ -system over a semigroup **G**. Then, the following are equivalent:

- **1** S is group-preserving,
- **2 G** is a group and S is unital,
- **3 G** is a group and $(\mathbf{G}, S) \cong (\mathbf{G}, S(X, \mathbf{G}))$ with **G** acting on some set *X*.
- **G** is a group and $\mathbf{G}^{[S]}$ is isomorphic to a wreath product.
 - It shows that $\lambda \rho$ -product is a reasonable generalisation of wreath product.

Semigroups: bonus

Recall:

Krohn-Rhodes Theorem

Every finite semigroup is a homomorphic image of a subsemigroup of an iterated wreath product of finite simple groups and the flip-flop monoid.

Semigroups: bonus

Recall:

Krohn-Rhodes Theorem

Every finite semigroup is a homomorphic image of a subsemigroup of an iterated wreath product of finite simple groups and the flip-flop monoid.

Since the flip-flop monoid can be decomposed as a $\lambda \rho$ -product $\mathbb{Z}_2^{[\mathcal{Z}]}$ whose factors are \mathbb{Z}_2 and the two-element semilattice, we get:

Corollary

Every finite semigroup is a homomorphic image of a subsemigroup of an iterated $\lambda \rho$ -product whose factors are finite simple groups and a two-element semilattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What next?

- Some categorical properties of $\lambda \rho$ -products.
 - M. Botur, TK, "Beyond wreath and block", *Semigroup Forum*, forthcoming.
- More categorical properties, and some systematic handle on the preservation properties.
 - M. Botur, D. Lachman, TK, work very much in progress.
- Representations for some classes (varieties) of semigroups.
 - M. Botur, "On semigroup constructions induced by commuting retractions on a set", *Algebra Universalis* 82 (2021).
- Representations for other classes of semigroups.
- Applications for "algebras of logic".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What next?

- Some categorical properties of $\lambda \rho$ -products.
 - M. Botur, TK, "Beyond wreath and block", *Semigroup Forum*, forthcoming.
- More categorical properties, and some systematic handle on the preservation properties.
 - M. Botur, D. Lachman, TK, work very much in progress.
- Representations for some classes (varieties) of semigroups.
 - M. Botur, "On semigroup constructions induced by commuting retractions on a set", *Algebra Universalis* 82 (2021).
- Representations for other classes of semigroups.
- Applications for "algebras of logic".

Thank you!