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Jipsen-Montagna example

Start with (Z;≤,+, 0) as an ℓ-group.

Take Z× Z and another copy of Z;
extend the natural order on Z× Z and Z
by putting Z× Z on top of Z.
Truncate to the interval [0, ⟨0, 0⟩].
Products in the top part are as in Z× Z.
All other products are defined by

⟨x , y⟩ · i = max{x + i , 0}
i · ⟨x , y⟩ = max{y + i , 0}

i · j = 0

⟨0, 0⟩

0
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Example generalised

The algebra you get is in fact a pseudo
BL-algebra, a model of a noncommutative
version of fuzzy logic.

Can also be described as follows:

Take a two element semigroup {a, b}
satisfying a2 = a and uv = b for all
other products.
Graft Z× Z into a by and Z into b.
Fix a set of maps λ and ρ between the
sets of coordinates, say I [a] = {0, 1} and
I [b] = {0}, telling us which coordinate
to take for which product.

Generalises to an arbitrary power of an
ℓ-group upstairs, and another one
downstairs.

⟨0, 0⟩

0
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Example formalised

Then ⟨x , y⟩ · i can be presented as

(⟨x , y⟩, a) · (i , b) =
(
(⟨x , y⟩ ◦ λ[a, b]) · (i ◦ ρ[a, b]), ab

)
where

λ[a, b] : I [ab] → I [a] is given by
λ[a, b](0) = 0,

ρ[a, b] : I [ab] → I [b] is given by
ρ[a, b](0) = 0,

Calculating the product yields(
(⟨x , y⟩◦λ[a, b])·(i◦ρ[a, b]), ab

)
= (x+i , ab)

which is precisely what we want.

λ[b, a] : I [ba] → I [b] is the identity, of
course.

⟨0, 0⟩

0
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Another example: wreath product

Now take Z× Z on top of a copy of
Z× Z; extend the natural order on Z× Z
and Z by putting Z× Z on top of Z.
Truncate appropriately.

Set the products between the top and the
bottom parts to be

⟨a, b⟩ · ⟨i , j⟩ = max{⟨a+ j , b + i⟩, ⟨0, 0⟩}
⟨i , j⟩ · ⟨a, b⟩ = max{⟨a+ i , b + j⟩, ⟨0, 0⟩}

The algebra obtained here is isomorphic
to a truncation of a subgroup of the
antilexicographically ordered wreath
product Z ≀ Z.

⟨0, 0⟩

⟨0, 0⟩
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λρ-product: intuitions

Forget all structure except multiplication.

Take some magma S.

Let (I [s])s∈S be a system of sets indexed by the elements of S
(sets of coordinates, one for each s ∈ S).

Take a system of maps between the sets of coordinates.
λ = (λ[a, b] : I [ab] → I [a])(a,b)∈S×S and
ρ = (ρ[a, b] : I [ab] → I [a])(a,b)∈S×S .

Next, take any magma H, and graft H I [s] into each s ∈ S .

Define product on
⊎

s∈S H
I [s] as we saw in the example:

(⟨x , y⟩, a) · (i , b) =
(
(⟨x , y⟩ ◦ λ[a, b]) · (i ◦ ρ[a, b]), ab

)
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λρ-product: formal definition

Definition

Let S be a magma and let

S =
(
⟨λ[a, b], ρ[a, b]⟩ : I [ab] → I [a]× I [b]

)
(a,b)∈S2

be a system of sets and maps indexed by the elements of S2. Let
H be a magma. We define a groupoid H[S] = (H [S]; ⋆), by putting

H [S] =
⊎

a∈S H
I [a] = {(x , a) : a ∈ S , x ∈ H I [a]}, and

(x , a) ⋆ (y , b) =
(
(x ◦ λ[a, b]) · (y ◦ ρ[a, b]), ab

)
.

where · is the product in H and the product in S is written as
concatenation.

We call H[S] a λρ-product.
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Semigroups

If S and H are semigroups, one may want H[S] to be a semigroup,
too.

Definition

Let S be a semigroup, and let

S =
(
⟨λ[a, b], ρ[a, b]⟩ : I [ab] → I [a]× I [b]

)
(a,b)∈S2

be a system of sets and maps satisfying the following conditions

(α) λ[a, b] ◦ λ[ab, c] = λ[a, bc]

(β) ρ[b, c] ◦ ρ[a, bc] = ρ[ab, c]

(γ) ρ[a, b] ◦ λ[ab, c] = λ[b, c] ◦ ρ[a, bc]
Then we call S a λρ-system.
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Diagram for associativity

The conditions α, β and γ amount to the commutativity of this
diagram.

I [abc]I [a] I [c]

I [ab] I [bc]

I [b]

λ[a, bc] ρ[ab, c]

λ[ab, c] ρ[a, bc]

λ[a, b]

ρ[a, b]

ρ[b, c]

λ[b, c]
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λρ-product: associativity

Theorem

Let S be a magma and let

S =
(
⟨λ[a, b], ρ[a, b]⟩ : I [ab] → I [a]× I [b]

)
(a,b)∈S2

be a system of sets and maps indexed by the elements of S2.
Then, the following are equivalent.

1 H[S] is a semigroup, for any semigroup H.

2 S is a semigroup and(
⟨λ[a, b], ρ[a, b]⟩ : I [ab] → I [a]× I [b]

)
(a,b)∈S2 is a λρ-system

over S (i.e., satisfies α, β and γ).

3 S is a semigroup and there exists a nontrivial semigroup H
such that H[S] is a semigroup.
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Flip-flop monoid can be decomposed: an example

Let 2 = ({0, 1},∨) be the two-element join-semilattice, and let Z
be the λρ-system over 2, defined by putting

1 I [0] = {0}, I [1] = {0, 1},
2 λ[1, 0] = ρ[0, 1] = λ[1, 1] = idI [1] and ρ[1, 1] = 0.

This defines a unique λρ-system, since the remaining maps all have

range {0}. It is easy to show that the semigroup Z[Z]
2 is the

following:
⋆ 0 1 00 11 01 10

0 0 1 00 11 01 10
1 1 0 11 00 10 01
00 00 11 00 11 00 11
11 11 00 11 00 11 00
01 01 10 01 10 01 10
10 10 01 10 01 10 01
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Flip-flop monoid can be decomposed: an example

Z[Z]
2 is the following:

⋆ 0 1 00 11 01 10

0 0 1 00 11 01 10
1 1 0 11 00 10 01

00 00 11 00 11 00 11
11 11 00 11 00 11 00

01 01 10 01 10 01 10
10 10 01 10 01 10 01

Partitioning the universe into {0, 1}, {00, 11} and {01, 10} we

obtain a congruence θ, such that Z[Z]
2 /θ is isomorphic to the left

flip-flop monoid L12.



Motivation λρ-product Preservation properties Conclusions

Two-sided wreath product

Theorem

Let (X , \, /,S) consist of a set X together with a two-sided action
of a semigroup S on X . Then the system of maps

S(X ,S,X ) =
(
⟨λ[a, b], ρ[a, b]⟩ : I [ab] → I [a]× I [b]

)
,

where I [s] = X for any s ∈ S , and

1 λ[a, b] = b \ for any a, b ∈ S ,

2 ρ[a, b] = / a for all a, b ∈ S .

is a λρ-system over S. Moreover, for any semigroup H, the
λρ-product H[S(X ,S,X )] is isomorphic to the two-sided wreath
product of H by S.

Particular cases: one-sided wreath product, block product.
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Preservation: monoids

Definition

Let P be a property of semigroups, and let S = (I,λ,ρ) be a
λρ-system over S. We say that S preserves P, if

∀H : P(H) ⇒ P(H[S]).

Theorem

Let S = (I,λ,ρ) be a λρ-system over S. The following are
equivalent:

1 S is unit-preserving,

2 S is a monoid (with unit element 1) and the maps λ[a, 1] and
ρ[1, a] are the identity maps on I [a], for each a ∈ S ,

3 S is a monoid and there exists a nontrivial monoid H such
that H[S] is a monoid.



Motivation λρ-product Preservation properties Conclusions

Preservation: equations and quasiequations

Theorem template

Let S be a λρ-system over S. The following are equivalent:

1 S preserves foo.

2 S satisfies foo, and the maps λ[a, b] and ρ[b, a] satisfy foobar.

3 S satisfies foo and there exists some specific H satisfying foo
such that H[S] satisfies foo.

We know, for example, that foo can be:

cancellativity (foobar: λ[a, b] and ρ[a, b] are surjective)

idempotency (foobar: λ[a, a] = ρ[a, a] = id)

commutativity (foobar: λ[a, b] = ρ[b, a])

medial identity: xyzu = xzyu

left zero identity: xy = x
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Preservation: groups

Theorem

Let S be a λρ-system over S. The following are equivalent:

1 S preserves groups.

2 S is a group, the maps λ[a, b] and ρ[b, a] are bijective, for all
(a, b) ∈ S2, and for b = 1 they are identity maps.

3 S is a group and there exists a nontrivial group H such that
H[S] is a group.

This is just like the template, but for groups we can get more.
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Groups: bonus

Theorem

Let S = (I,λ,ρ) be a λρ-system over a semigroup G. Then, the
following are equivalent:

1 S is group-preserving,

2 G is a group and S is unital,

3 G is a group and (G,S) ∼= (G,S(X ,G)) with G acting on
some set X .

4 G is a group and G[S] is isomorphic to a wreath product.

It shows that λρ-product is a reasonable generalisation of
wreath product.
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Semigroups: bonus

Recall:

Krohn-Rhodes Theorem

Every finite semigroup is a homomorphic image of a subsemigroup
of an iterated wreath product of finite simple groups and the
flip-flop monoid.

Since the flip-flop monoid can be decomposed as a λρ-product

Z[Z]
2 whose factors are Z2 and the two-element semilattice, we get:

Corollary

Every finite semigroup is a homomorphic image of a subsemigroup
of an iterated λρ-product whose factors are finite simple groups
and a two-element semilattice.
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What next?

Some categorical properties of λρ-products.

M. Botur, TK, “Beyond wreath and block”, Semigroup Forum,
forthcoming.

More categorical properties, and some systematic handle on
the preservation properties.

M. Botur, D. Lachman, TK, work very much in progress.

Representations for some classes (varieties) of semigroups.

M. Botur, “On semigroup constructions induced by commuting
retractions on a set”, Algebra Universalis 82 (2021).

Representations for other classes of semigroups.

Applications for “algebras of logic”.

Thank you!
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