Tractable depth-bounded approximations to First-Degree Entailment (**FDE**)

Marcello D'Agostino and Alejandro Solares-Rojas

Department of Philosophy, University of Milan

Logic4Peace April 22 & 23, 2022

Plan for the talk

Introduction

- Motivation
- The "depth-bounded" approach
- First-Degree Entailment (FDE)

2 Depth-bounded FDE

- Applying the "depth-bounded" approach
- 0-depth consequence
- *k*-depth consequence

Final remarks

- Many interesting propositional logics are likely to be **intractable**.
 - **CPL** and **FDE** are co-NP complete.
 - IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
 - Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli & Schaerf, Finger & Wasserman, Massacci, Stâlmarck, Crawford & Etherington, Lakemeyer & Levesque).

- Many interesting propositional logics are likely to be **intractable**.
 - CPL and FDE are co-NP complete.
 - IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
 - Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli & Schaerf, Finger & Wasserman, Massacci, Stâlmarck, Crawford & Etherington, Lakemeyer & Levesque).

- Many interesting propositional logics are likely to be **intractable**.
 - CPL and FDE are co-NP complete.
 - IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
 - Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli & Schaerf, Finger & Wasserman, Massacci, Stâlmarck, Crawford & Etherington, Lakemeyer & Levesque).

- Many interesting propositional logics are likely to be **intractable**.
 - CPL and FDE are co-NP complete.
 - IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
 - Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli & Schaerf, Finger & Wasserman, Massacci, Stålmarck, Crawford & Etherington, Lakemeyer & Levesque).

- Many interesting propositional logics are likely to be **intractable**.
 - CPL and FDE are co-NP complete.
 - IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
 - Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli & Schaerf, Finger & Wasserman, Massacci, Stålmarck, Crawford & Etherington, Lakemeyer & Levesque).

Introduction Motivation Depth-bounded FDE Final remarks First-Degree Entailment (FDE)

- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between **actual** and **virtual** information.
- Admits of a 3-valued non-deterministic semantics (see Avron & Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of **tractable** approximations to **CPL**, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is **bounded** by their limited capability of manipulating virtual information.

• A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).

• Based on the distinction between **actual** and **virtual** information.

- Admits of a 3-valued non-deterministic semantics (see Avron & Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of **tractable** approximations to **CPL**, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is **bounded** by their limited capability of manipulating virtual information.

- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between **actual** and **virtual** information.
- Admits of a 3-valued non-deterministic semantics (see Avron & Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of **tractable** approximations to **CPL**, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is **bounded** by their limited capability of manipulating virtual information.

- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between **actual** and **virtual** information.
- Admits of a 3-valued non-deterministic semantics (see Avron & Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of **tractable** approximations to **CPL**, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is **bounded** by their limited capability of manipulating virtual information.

- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between **actual** and **virtual** information.
- Admits of a 3-valued non-deterministic semantics (see Avron & Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of **tractable** approximations to **CPL**, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is **bounded** by their limited capability of manipulating virtual information.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that p is true by some source, without being told that p is false by any source;
 - **f**: it's told that *p* is false but never told that *p* is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of *p*.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that p is true by some source, without being told that p is false by any source;
 - f: it's told that p is false but never told that p is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of *p*.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that *p* is true by some source, without being told that *p* is false by any source;
 - **f**: it's told that *p* is false but never told that *p* is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of *p*.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that *p* is true by some source, without being told that *p* is false by any source;
 - **f**: it's told that *p* is false but never told that *p* is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of *p*.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that *p* is true by some source, without being told that *p* is false by any source;
 - **f**: it's told that *p* is false but never told that *p* is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of *p*.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

- Put forward as the logic in which "a computer **should** think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom *p* can belong to the present state of information of a computer's database, in turn fed by a set of sources:
 - t: the computer is told that *p* is true by some source, without being told that *p* is false by any source;
 - **f**: it's told that *p* is false but never told that *p* is true;
 - b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
 - **n**: it's told nothing about the value of p.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

Truth-tables and consequence

Ñ	t	f	b	n		$\widetilde{\wedge}$	t	f	b	n	$\widetilde{\neg}$	
t	t	t	t	t	-	t	t	f	b	n	t	f
f	t	f	b	n		f	f	f	f	f	f	t
b	t	b	b	t		b	b	f	b	f	b	b
n	t	n	t	n		n	n	f	f	n	n	n

Definition

A 4-valuation is a function $v : F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition

 $\Gamma \vDash_{\mathsf{FDE}} A$ iff for every 4-valuation v, if $v(B) \in \{\mathbf{t}, \mathbf{b}\}$ for all $B \in \Gamma$, then $v(A) \in \{\mathbf{t}, \mathbf{b}\}$.

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

Truth-tables and consequence

Definition

A 4-valuation is a function $v : F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition

 $\[Gamma \in \mathsf{FDE} A \]$ iff for every **4**-valuation v, if $v(B) \in \{\mathbf{t}, \mathbf{b}\}\]$ for all $B \in \Gamma$, then $v(A) \in \{\mathbf{t}, \mathbf{b}\}.$

Motivation The "depth-bounded" approach First-Degree Entailment (FDE)

Truth-tables and consequence

Definition

A 4-valuation is a function $v : F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition

$$\label{eq:FDE} \begin{split} &\Gamma \vDash_{\mathsf{FDE}} A \text{ iff for every 4-valuation } v, \text{ if } v(B) \in \{\mathbf{t}, \mathbf{b}\} \text{ for all } B \in \Gamma, \text{ then } v(A) \in \{\mathbf{t}, \mathbf{b}\}. \end{split}$$

- Despite its informational flavour, **FDE** is co-NP complete (see Urquhart, 1990; Arieli & Denecker, 2003), and so an idealized model of how an agent **can** think.
- Except for **b**, the standard values cannot be taken as **stable** without assuming complete information about the set of sources:
 - **b**: there is at least a source assenting to *p* and at least a source dissenting from *p*;
 - t, f and n: there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE

- Despite its informational flavour, **FDE** is co-NP complete (see Urquhart, 1990; Arieli & Denecker, 2003), and so an idealized model of how an agent **can** think.
- Except for **b**, the standard values cannot be taken as **stable** without assuming complete information about the set of sources:
 - **b**: there is at least a source assenting to *p* and at least a source dissenting from *p*;
 - t, f and n: there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE

- Despite its informational flavour, **FDE** is co-NP complete (see Urquhart, 1990; Arieli & Denecker, 2003), and so an idealized model of how an agent **can** think.
- Except for **b**, the standard values cannot be taken as **stable** without assuming complete information about the set of sources:
 - **b**: there is at least a source assenting to *p* and at least a source dissenting from *p*;
 - t, f and n: there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE

- Despite its informational flavour, **FDE** is co-NP complete (see Urquhart, 1990; Arieli & Denecker, 2003), and so an idealized model of how an agent **can** think.
- Except for **b**, the standard values cannot be taken as **stable** without assuming complete information about the set of sources:
 - **b**: there is at least a source assenting to *p* and at least a source dissenting from *p*;
 - t, f and n: there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE

- Despite its informational flavour, **FDE** is co-NP complete (see Urquhart, 1990; Arieli & Denecker, 2003), and so an idealized model of how an agent **can** think.
- Except for **b**, the standard values cannot be taken as **stable** without assuming complete information about the set of sources:
 - **b**: there is at least a source assenting to *p* and at least a source dissenting from *p*;
 - t, f and n: there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE.

Introduction Applying the "o Depth-bounded FDE 0-depth conseq Final remarks k-depth conseq

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}};$
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in \{\mathbf{t}, \mathbf{n}\}$;
 - F^*A : x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

Introduction Applying the "de Depth-bounded FDE 0-depth conseque Final remarks k-depth conseque

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

Strategy

• Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:

• T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}};$

- F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
- T^{*} A: x holds that A is non-false, $v(A) \in \{\mathbf{t}, \mathbf{n}\}$;
- F^*A : x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}}$;
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in \{\mathbf{t}, \mathbf{n}\}$;
 - $F^* A$: x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}}$;
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in {\mathbf{t}, \mathbf{n}};$
 - F^*A : x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}}$;
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in {\mathbf{t}, \mathbf{n}};$
 - F^*A : x holds that A is at least false, $v(A) \in {\mathbf{f}, \mathbf{b}}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}}$;
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in {\mathbf{t}, \mathbf{n}};$
 - F^*A : x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to **signed** formulae, where the signs express **imprecise** values associated with two distinct bipartitions of the set of standard values:
 - T A: x holds that A is at least true, $v(A) \in {\mathbf{t}, \mathbf{b}}$;
 - F A: x holds that A is non-true, $v(A) \in {\mathbf{f}, \mathbf{n}};$
 - T^{*} A: x holds that A is non-false, $v(A) \in {\mathbf{t}, \mathbf{n}};$
 - F^*A : x holds that A is at least false, $v(A) \in \{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko & Wansing, 2005).
- T A and F* A express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and F A.

- No reason to assume that an agent is "told" about the values of **atoms only**.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely **undefined** when the agent's information is insufficient to even establish any of the imprecise values.

- No reason to assume that an agent is "told" about the values of **atoms only**.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely **undefined** when the agent's information is insufficient to even establish any of the imprecise values.

- No reason to assume that an agent is "told" about the values of **atoms only**.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely **undefined** when the agent's information is insufficient to even establish any of the imprecise values.

- No reason to assume that an agent is "told" about the values of **atoms only**.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely **undefined** when the agent's information is insufficient to even establish any of the imprecise values.

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

Linear introduction rules

FA	F <i>B</i>	F^*A	F* <i>B</i>
$FA \wedge B$	$FA \wedge B$	$F^*A \wedge B$	$F^*A \wedge B$
TA		$\frac{T^* A}{T^* A \lor P}$	
TAVD	IAVD	IAVD	IAVD
ТА	FA	T* <i>A</i>	F^*A
ТB	F <i>B</i>	T* <i>B</i>	F* <i>B</i>
$TA \wedge B$	$FA \lor B$	$T^* A \wedge B$	$F^* A \lor B$
ΤΑ	F <i>A</i>	T* A	F* <i>A</i>
$F^* \neg A$	$T^* \neg A$	$F \neg A$	$T \neg A$

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

Linear elimination rules

$ FA \land B \\ TA \\ FB $		$ \begin{array}{c} F^* A \land B \\ \underline{T^* A} \\ \overline{F^* B} \end{array} $	
$\frac{T A \wedge B}{T A}$	$ \begin{array}{c} T A \land B \\ \hline T B \end{array} $	$\frac{T^* A \wedge B}{T^* A}$	$\frac{T^* A \wedge B}{T^* B}$
$\begin{array}{c} T A \lor B \\ F A \\ \hline T B \end{array}$	$ \begin{array}{c} T A \lor B \\ F B \\ T A \end{array} $	$\frac{T^* A \lor B}{F^* A}$	$ \begin{array}{c} T^* A \lor B \\ F^* B \\ \hline T^* A \end{array} $
$\frac{F A \lor B}{F A}$	$\frac{F A \lor B}{F B}$	$\frac{F^* A \lor B}{F^* A}$	$\frac{F^* A \lor B}{F^* B}$
$\frac{T \neg A}{F^* A}$	$\frac{F\neg A}{T^*A}$		$\frac{F^* \neg A}{T A}$

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

$$T \neg (A \lor B)^{@}$$

$$T \neg C^{@}$$

$$F^* A \lor B$$

$$F^* A$$

$$F^* C$$

$$F^* A \lor C$$

$$T \neg (A \lor C)$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a Tarskian logic.
- This consequence relation can be decided in time $O(n^2)$.

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

$$T \neg (A \lor B)^{@}$$

$$T \neg C^{@}$$

$$F^* A \lor B$$

$$F^* A$$

$$F^* C$$

$$F^* A \lor C$$

$$T \neg (A \lor C)$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a **Tarskian** logic.
- This consequence relation can be decided in time $O(n^2)$.

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

$$T \neg (A \lor B)^{@}$$

$$T \neg C^{@}$$

$$F^* A \lor B$$

$$F^* A$$

$$F^* C$$

$$F^* A \lor C$$

$$T \neg (A \lor C)$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a **Tarskian** logic.
- This consequence relation can be decided in time $O(n^2)$.

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

$$T \neg (A \lor B)^{@}$$

$$T \neg C^{@}$$

$$F^* A \lor B$$

$$F^* A$$

$$F^* C$$

$$F^* A \lor C$$

$$T \neg (A \lor C)$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a **Tarskian** logic.
- This consequence relation can be decided in time $O(n^2)$.

$$PB: \quad TA \mid FA \qquad PB^*: \quad T^*A \mid F^*A$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "**virtual**".
- The more virtual information needs to be invoked via *PB* or *PB*^{*}, the harder the inference is.
- The nested applications of *PB* and *PB*^{*} provide a sensible measure of inferential **depth**.

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "**virtual**".
- The more virtual information needs to be invoked via *PB* or *PB*^{*}, the harder the inference is.
- The nested applications of *PB* and *PB*^{*} provide a sensible measure of inferential **depth**.

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "**virtual**".
- The more virtual information needs to be invoked via *PB* or *PB*^{*}, the harder the inference is.
- The nested applications of *PB* and *PB*^{*} provide a sensible measure of inferential **depth**.

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "**virtual**".
- The more virtual information needs to be invoked via *PB* or *PB*^{*}, the harder the inference is.
- The nested applications of *PB* and *PB*^{*} provide a sensible measure of inferential **depth**.

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "**virtual**".
- The more virtual information needs to be invoked via *PB* or *PB*^{*}, the harder the inference is.
- The nested applications of *PB* and *PB*^{*} provide a sensible measure of inferential **depth**.

Applying the "depth-bounded" approach 0-depth consequence *k*-depth consequence

Intelim trees

Final remarks k-depth consequence

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of *PB* and *PB*^{*} that are allowed.
- Each k-depth consequence relation, $k \ge 0$, can be decided in time $O(n^{k+2})$.
- Admits of a 5-valued non-deterministic semantics (see Avron & Zamansky, 2011): takes the **signs as imprecise values**, and adds a fifth value standing for the case where the value of a formula is completely **undefined** in that the information is insufficient to even establish any of the imprecise values.

Tractability and non-deterministic semantics

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of *PB* and *PB*^{*} that are allowed.
- Each k-depth consequence relation, $k \ge 0$, can be decided in time $O(n^{k+2})$.
- Admits of a 5-valued non-deterministic semantics (see Avron & Zamansky, 2011): takes the **signs as imprecise values**, and adds a fifth value standing for the case where the value of a formula is completely **undefined** in that the information is insufficient to even establish any of the imprecise values.

Tractability and non-deterministic semantics

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of *PB* and *PB*^{*} that are allowed.
- Each k-depth consequence relation, $k \ge 0$, can be decided in time $O(n^{k+2})$.
- Admits of a 5-valued non-deterministic semantics (see Avron & Zamansky, 2011): takes the **signs as imprecise values**, and adds a fifth value standing for the case where the value of a formula is completely **undefined** in that the information is insufficient to even establish any of the imprecise values.

• The method easily extends to LP and K_3 .

- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos & Volpe, 2015).

- The method easily extends to LP and K_3 .
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos & Volpe, 2015).

- The method easily extends to LP and K_3 .
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos & Volpe, 2015).

- The method easily extends to LP and K_3 .
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos & Volpe, 2015).

References

Arieli, O., & Denecker, M. (2003). Reducing preferential paraconsistent reasoning to classical entailment. *Journal of Logic and Computation*, 13(4): 557-580.

Avron, A. (2003) Tableaux with four signs as a unified framework. In TABLEAUX 2003, volume 2796 of Lecture Notes in Computer Science, Springer, 4-16.

Avron, A. & Zamansky, A. (2011). Non-deterministic semantics for logical systems. In Handbook of philosophical logic, Springer, 227–304.

Belnap, N. (1977). How a computer should think. In *Contemporary Aspects of Philosophy*, Oriel Press, 30–55.

Blasio, C. (2015). Up the hill: on the notion of information in logics based on the four-valued bilattice. LSFA 2015 GeTFun 3.0 FILOMENA 2 LFIs 15 TRS Reasoning School, 99.

Blasio, C. (2017). Revisitando a logica de Dunn-Belnap. Manuscrito, 40, 99-126.

Carnielli, W. (1987). Systematization of finite many-valued logics through the method of tableaux. *The Journal of Symbolic Logic*, 52(2):473–493.

Caleiro, C., Marcos, J. and Volpe, M. (2015). Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics. *Theoretical Computer Science*, 603:84–110.

D'Agostino, M. (1990). Investigations into the Complexity of some Propositional Calculi. Oxford University. Computing Laboratory. Programming Research Group.

References

D'Agostino, M. and Floridi, L. (2009). The enduring scandal of deduction, Synthese, 167(2):271-315.

D'Agostino, Finger & Gabbay, D. (2013). Semantics and proof-theory of depth bounded boolean logics, *Theoretical Computer Science*, 480:43–68.

D'Agostino, M. (2015). An informational view of classical logic, *Theoretical Computer Science*, 606:79–97.

Dunn, J. (1976). Intuitive semantics for first-degree entailments and 'coupled trees'. *Philosophical studies*, 29(3), 149–168.

Fitting, M. (1991). Bilattices and the semantics of logic programming. The Journal of Logic Programming, 11(2), 91–116.

Fitting, M. (1994). Kleene's three valued logics and their children. *Fundamenta informaticae*, 20(1, 2, 3), 113–131.

Hähnle, R. (1999). Tableaux for many-valued logics. In *Handbook of Tableau Methods*, Springer, 529–580.

Shramko, Y., & Wansing, H. (2005). Some useful 16-valued logics: How a computer network should think. *Journal of Philosophical Logic*, 34(2), 121–153.

Urquhart, A. (1990). The complexity of decision procedures in relevance logic. In *Truth or consequences*, Springer, Dordrecht, 61–76.

Virtual information in CPL

no

р				
p ightarrow q				
q ightarrow r				
r ightarrow s				$p \lor q \lor r$
s ightarrow t				$p \lor q \lor \neg r$
t ightarrow u				$p \lor \neg q \lor s$
$u \rightarrow v$				$p \lor \neg q \lor \neg s$
v ightarrow w				$ eg p \lor q \lor t$
$w \to x$		$p \lor q$		$ eg p \lor q \lor eg t$
$x \rightarrow y$		p ightarrow r		$\neg p \lor \neg q \lor u$
$y \rightarrow z$		q ightarrow r		$\neg p \lor \neg q \lor \neg u$
Z	<	r	<	<u>ــــــــــــــــــــــــــــــــــــ</u>
virtual info		virtual info		nested virtual info

1-depth intelim refutation in **FDE**

 $T A \vee (B \wedge C)^{@}$ $F(A \lor B) \land (A \lor C)^{@}$ TA FA $TA \lor B \quad TB \land C$ $FA \lor C$ TBFA TC $TA \lor B$ $TA \lor C$ $T(A \lor B) \land (A \lor C)$

Figure 1: Initialized graph

Figure 2: Saturated graph

5N-tables for **FDE**

LP/K_3 standard tables

$\widetilde{\vee}$	true	false	i
true	true	true	true
false	true	false	i
i	true	i	i

$\widetilde{\wedge}$	true	false	i
true	true	false	i
false	false	false	false
i	i	false	i

$\widetilde{\neg}$		$\widetilde{\rightarrow}$	true	false	i
true	false	true	true	false	i
false	true	false	true	true	true
i	i	i	true	i	i

Additional intelim rules for LP and K_3

$\frac{F^* A}{T A \to B}$	$\frac{TB}{TA\to B}$	$ \begin{array}{c} T^* A \\ F B \\ \overline{F A \to B} \end{array} $	
$\frac{FA}{T^*A \to B}$	$\frac{T^* B}{T^* A \to B}$	$ \begin{array}{c} T A \\ F^* B \\ \hline F^* A \to B \end{array} $	
$\frac{F A \to B}{T^* A}$	$\frac{F A \to B}{F B}$	$\frac{F^* A \to B}{T A}$	$\frac{F^* A \to B}{F^* B}$
$ \begin{array}{c} T A \to B \\ T^* A \\ \hline T B \end{array} $	$ \begin{array}{c} T^* A \to B \\ T A \\ T^* B \end{array} $	$\frac{T A \to B}{F B}$ $\overline{F^* A}$	$ \begin{array}{c} T^* A \to B \\ F^* B \\ \hline F A \end{array} $
 	F A F* A		$\frac{F^* A}{F A}$