Tractable depth-bounded approximations to First-Degree Entailment (FDE)

Marcello D'Agostino and Alejandro Solares-Rojas

Department of Philosophy, University of Milan
Logic4Peace
April 22 \& 23, 2022

Plan for the talk

(1) Introduction

- Motivation
- The "depth-bounded" approach
- First-Degree Entailment (FDE)
(2) Depth-bounded FDE
- Applying the "depth-bounded" approach
- 0-depth consequence
- k-depth consequence
(3) Final remarks
- Many interesting propositional logics are likely to be intractable.
- CPL and FDE are co-NP complete.
- IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
- Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli \& Schaerf, Finger \& Wasserman, Massacci, Stålmarck, Crawford \&

Etherington, Lakemeyer \&
Levesque).

- Many interesting propositional logics are likely to be intractable.
- CPL and FDE are co-NP complete.
- IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation
- Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli \& Schaerf, Finger \& Wasserman, Massacci, Stålmarck, Crawford \& Etherington, Lakemeyer \& Levesque)

- Many interesting propositional logics are likely to be intractable.
- CPL and FDE are co-NP complete.
- IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
- Economics, Al, Cognitive
Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli \& Schaerf, Finger \& Wasserman, Massacci, Stålmarck, Crawford \&
 Etherington, Lakemeyer \& Levesque)
- Many interesting propositional logics are likely to be intractable.
- CPL and FDE are co-NP complete.
- IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
- Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli \& Schaerf, Finger \& Wasserman, Massacci, Stålmarck, Crawford \&

Etherington, Lakemeyer \&
Levesque)

- Many interesting propositional logics are likely to be intractable.
- CPL and FDE are co-NP complete.
- IPL is PSPACE-complete.
- Difficulties in areas that need less idealized models of rationality and computation.
- Economics, AI, Cognitive Science, Philosophy, etc.
- Tractable approximations to CPL have been investigated since the 1990's (Cadoli \& Schaerf, Finger \& Wasserman, Massacci, Stålmarck, Crawford \&

Etherington, Lakemeyer \& Levesque).

- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between actual and virtual information.
- Admits of a 3-valued non-deterministic semantics (see Avron \& Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of tractable approximations to CPL, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is bounded by their limited capability of manipulating virtual information.
- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between actual and virtual information.
- Admits of a 3-valued non-deterministic semantics (see Avron \& Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of tractable approximations to CPL, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is bounded by their limited capability of manipulating virtual information
- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between actual and virtual information.
- Admits of a 3-valued non-deterministic semantics (see Avron \& Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of tractable approximations to CPL in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is bounded by their limited capability of manipulating virtual information
- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between actual and virtual information.
- Admits of a 3 -valued non-deterministic semantics (see Avron \& Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of tractable approximations to CPL, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is bounded by their limited capability of manipulating virtual information
- A more recent development is the "depth-bounded" approach (D'Agostino et al., 2009, 2013, D'Agostino, 2015).
- Based on the distinction between actual and virtual information.
- Admits of a 3-valued non-deterministic semantics (see Avron \& Zamansky, 2011), whose values have a natural informational interpretation, and a non-standard proof-theoretical characterization.
- Leads to defining a hierarchy of tractable approximations to CPL, in terms of the maximum number of allowed nested applications of a single branching structural rule which expresses the Principle of Bivalence.
- Levels can be naturally related to the inferential power of agents, which is bounded by their limited capability of manipulating virtual information.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
\mathbf{t} : the computer is told that p is true by some source, without being told that p is false by any source;
f : it's told that p is false but never told that p is true;
\mathbf{b} : it's told that p is true by some source and that p is false by some other source (or the same at different moments);
\mathbf{n} : it's told nothing about the value of p.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
t : the computer is told that p is true by some source, without being told that p is false by any source;
f: it's told that p is false but never told that p is true;
b: it's told that p is true by some source and that p is false by some other source (or the same at different moments)
\mathbf{n} : it's told nothing about the value of p.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
- \mathbf{t} : the computer is told that p is true by some source, without being told that p is false by any source;
f: it's told that p is false but never told that p is true;
\mathbf{b} : it's told that p is true by some source and that p is false by some other source (or the same at different moments)
n : it's told nothing about the value of p.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
- \mathbf{t} : the computer is told that p is true by some source, without being told that p is false by any source;
- f: it's told that p is false but never told that p is true;
b: it's told that p is true by some source and that p is false by some other source (or the same at different moments)
\mathbf{n} : it's told nothing about the value of p.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
- \mathbf{t} : the computer is told that p is true by some source, without being told that p is false by any source;
- \mathbf{f} : it's told that p is false but never told that p is true;
- b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
n : it's told nothing about the value of p.

Standard values

- Put forward as the logic in which "a computer should think", and admits of an intuitive semantics based on informational values (Dunn, 1976; Belnap, 1977).
- 4 possible ways in which an atom p can belong to the present state of information of a computer's database, in turn fed by a set of sources:
- \mathbf{t} : the computer is told that p is true by some source, without being told that p is false by any source;
- f: it's told that p is false but never told that p is true;
- b: it's told that p is true by some source and that p is false by some other source (or the same at different moments);
- \mathbf{n} : it's told nothing about the value of p.

Truth-tables and consequence

\widetilde{V}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{b}	\mathbf{t}	\mathbf{b}	\mathbf{b}	\mathbf{t}
\mathbf{n}	\mathbf{t}	\mathbf{n}	\mathbf{t}	\mathbf{n}

$\widetilde{\wedge}$	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}
\mathbf{b}	\mathbf{b}	\mathbf{f}	\mathbf{b}	\mathbf{f}
\mathbf{n}	\mathbf{n}	\mathbf{f}	\mathbf{f}	\mathbf{n}

$\widetilde{7}$	
\mathbf{t}	\mathbf{f}
\mathbf{f}	\mathbf{t}
\mathbf{b}	\mathbf{b}
\mathbf{n}	\mathbf{n}

Definition

A 4 -valuation is a function $v: F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition
$\Gamma \vDash_{\text {fDE }} A$ iff for every 4 -valuation v, if $v(B) \in\{t, b\}$ for all $B \in \Gamma$, then $v(A) \in\{\mathbf{t}, \mathbf{b}\}$

Truth-tables and consequence

\widetilde{V}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{b}	\mathbf{t}	\mathbf{b}	\mathbf{b}	\mathbf{t}
\mathbf{n}	\mathbf{t}	\mathbf{n}	\mathbf{t}	\mathbf{n}

$\widetilde{\wedge}$	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}
\mathbf{b}	\mathbf{b}	\mathbf{f}	\mathbf{b}	\mathbf{f}
\mathbf{n}	\mathbf{n}	\mathbf{f}	\mathbf{f}	\mathbf{n}

\sim	
\mathbf{t}	\mathbf{f}
\mathbf{f}	\mathbf{t}
\mathbf{b}	\mathbf{b}
\mathbf{n}	\mathbf{n}

Definition

A 4-valuation is a function $v: F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition
$\Gamma \models_{\text {FDE }} A$ iff for every 4 -valuation v, if $v(B) \in\{\mathbf{t}, \mathbf{b}\}$ for all $B \in \Gamma$, then $v(A) \in\{\mathbf{t}, \mathbf{b}\}$

Truth-tables and consequence

\widetilde{V}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{b}	\mathbf{t}	\mathbf{b}	\mathbf{b}	\mathbf{t}
\mathbf{n}	\mathbf{t}	\mathbf{n}	\mathbf{t}	\mathbf{n}

$\widetilde{\wedge}$	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{b}	\mathbf{n}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}
\mathbf{b}	\mathbf{b}	\mathbf{f}	\mathbf{b}	\mathbf{f}
\mathbf{n}	\mathbf{n}	\mathbf{f}	\mathbf{f}	\mathbf{n}

\sim	
\mathbf{t}	\mathbf{f}
\mathbf{f}	\mathbf{t}
\mathbf{b}	\mathbf{b}
\mathbf{n}	\mathbf{n}

Definition

A 4-valuation is a function $v: F(\mathcal{L}) \longrightarrow 4$, that agrees with the tables.

Definition

$\Gamma \vDash_{\text {fDE }} A$ iff for every $\mathbf{4}$-valuation v, if $v(B) \in\{\mathbf{t}, \mathbf{b}\}$ for all $B \in \Gamma$, then $v(A) \in\{\mathbf{t}, \mathbf{b}\}$.

First key observation: the need of imprecise values

- Despite its informational flavour, FDE is co-NP complete (see Urquhart, 1990; Arieli \& Denecker, 2003), and so an idealized model of how an agent can think.
- Except for b, the standard values cannot be taken as stable without assuming complete information about the set of sources:
b: there is at least a source assenting to p and at least a source dissenting from p - \mathbf{t}, \mathbf{f} and \mathbf{n} : there is no source such that
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b" implicit in the choice of designated values in the semantics of FDE

First key observation: the need of imprecise values

- Despite its informational flavour, FDE is co-NP complete (see Urquhart, 1990; Arieli \& Denecker, 2003), and so an idealized model of how an agent can think.
- Except for b, the standard values cannot be taken as stable without assuming complete information about the set of sources:
- b: there is at least a source assenting to p and at least a source dissenting from p - \mathbf{t}, \mathbf{f} and \mathbf{n} : there is no source such that
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b" implicit in the choice of designated values in the semantics of FDE

First key observation: the need of imprecise values

- Despite its informational flavour, FDE is co-NP complete (see Urquhart, 1990; Arieli \& Denecker, 2003), and so an idealized model of how an agent can think.
- Except for b, the standard values cannot be taken as stable without assuming complete information about the set of sources:
- b: there is at least a source assenting to p and at least a source dissenting from p;
- \mathbf{t}, \mathbf{f} and \mathbf{n} : there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b" implicit in the choice of designated values in the semantics of FDE

First key observation: the need of imprecise values

- Despite its informational flavour, FDE is co-NP complete (see Urquhart, 1990; Arieli \& Denecker, 2003), and so an idealized model of how an agent can think.
- Except for b, the standard values cannot be taken as stable without assuming complete information about the set of sources:
- b: there is at least a source assenting to p and at least a source dissenting from p;
- \mathbf{t}, \mathbf{f} and \mathbf{n} : there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b" implicit in the choice of designated values in the semantics of FDE

First key observation: the need of imprecise values

- Despite its informational flavour, FDE is co-NP complete (see Urquhart, 1990; Arieli \& Denecker, 2003), and so an idealized model of how an agent can think.
- Except for b, the standard values cannot be taken as stable without assuming complete information about the set of sources:
- b: there is at least a source assenting to p and at least a source dissenting from p;
- \mathbf{t}, \mathbf{f} and \mathbf{n} : there is no source such that...
- What if the agent does not have such a complete knowledge about the sources (e.g., the set of sources is "open")?
- This motivates the need for a stable imprecise value such as "t or b", implicit in the choice of designated values in the semantics of FDE

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:

- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005)
- TA and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and $F A$.

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;

- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005)
- TA and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and $F A$

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;
- $\mathrm{F} A: x$ holds that A is non-true, $v(A) \in\{\mathbf{f}, \mathbf{n}\}$;
- $\mathrm{F}^{*} A$: x holds that A is at least false, $v(A) \in\{\mathbf{f}, \mathbf{b}\}$
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005)
- $T A$ and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T^{*} A and F A

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;
- F A : x holds that A is non-true, $v(A) \in\{\mathbf{f}, \mathbf{n}\}$;
- $\mathrm{T}^{*} A$: x holds that A is non-false, $v(A) \in\{\mathbf{t}, \mathbf{n}\}$;
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005)
- $T A$ and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and $\mathrm{F} A$

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;
- F A : x holds that A is non-true, $v(A) \in\{\mathbf{f}, \mathbf{n}\}$;
- $\mathrm{T}^{*} A: x$ holds that A is non-false, $v(A) \in\{\mathbf{t}, \mathbf{n}\}$;
- $\mathrm{F}^{*} A$: x holds that A is at least false, $v(A) \in\{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005)
- TA and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and $\mathrm{F} A$.

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;
- FA: x holds that A is non-true, $v(A) \in\{\mathbf{f}, \mathbf{n}\}$;
- T* A : x holds that A is non-false, $v(A) \in\{\mathbf{t}, \mathbf{n}\}$;
- $\mathrm{F}^{*} A: x$ holds that A is at least false, $v(A) \in\{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005).
- T A and $F^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of T* A and $\mathrm{F} A$.

Strategy

- Inspired by (D'Agostino, 1990) and (Fitting, 1991, 1994; Avron, 2003), we address this issue by shifting to signed formulae, where the signs express imprecise values associated with two distinct bipartitions of the set of standard values:
- T A : x holds that A is at least true, $v(A) \in\{\mathbf{t}, \mathbf{b}\}$;
- FA: x holds that A is non-true, $v(A) \in\{\mathbf{f}, \mathbf{n}\}$;
- T ${ }^{*} A$: x holds that A is non-false, $v(A) \in\{\mathbf{t}, \mathbf{n}\}$;
- $\mathrm{F}^{*} A: x$ holds that A is at least false, $v(A) \in\{\mathbf{f}, \mathbf{b}\}$.
- Similar approaches are given in (Blasio, 2015, 2017) and (Shramko \& Wansing, 2005).
- $\mathrm{T} A$ and $\mathrm{F}^{*} A$ express information that an agent may hold even without a complete knowledge of the sources, but that's not the case of $\mathrm{T}^{*} A$ and $F A$.

Second key observation

- No reason to assume that an agent is "told" about the values of atoms only.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father)
- The value of an atom may be completely undefined when the agent's information is insufficient to even establish any of the imprecise values.

Second key observation

- No reason to assume that an agent is "told" about the values of atoms only.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father)
- The value of an atom may be completely undefined when the agent's information is insufficient to even establish any of the imprecise values.

Second key observation

- No reason to assume that an agent is "told" about the values of atoms only.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely undefined when the agent's information is insufficient to even establish any of the imprecise values.

Second key observation

- No reason to assume that an agent is "told" about the values of atoms only.
- Agents may be told that a disjunction is true without being told which of the two disjuncts is the true one, and dually for conjunctions.
- For example, being told that Alice and Bob are siblings (either they have the same mother or they have the same father).
- The value of an atom may be completely undefined when the agent's information is insufficient to even establish any of the imprecise values.

Linear introduction rules

$$
\begin{array}{cccc}
\frac{\mathrm{F} A}{\mathrm{~F} A \wedge B} & \frac{\mathrm{~F} B}{\mathrm{~F} A \wedge B} & \frac{\mathrm{~F}^{*} A}{\mathrm{~F}^{*} A \wedge B} & \frac{\mathrm{~F}^{*} B}{\mathrm{~F}^{*} A \wedge B} \\
\frac{\mathrm{~T} A}{\mathrm{~T} A \vee B} & \frac{\mathrm{~T} B}{\mathrm{~T} A \vee B} & \frac{\mathrm{~T}^{*} A}{\mathrm{~T}^{*} A \vee B} & \frac{\mathrm{~T}^{*} B}{\mathrm{~T}^{*} A \vee B} \\
\frac{\mathrm{~T} A}{\mathrm{~T} B} & \frac{\mathrm{~F} A}{\mathrm{~T} A \wedge B} & \frac{\mathrm{~T} B}{\mathrm{~F} A \vee B} & \frac{\mathrm{~T}^{*} A}{\mathrm{~T}^{*} A \wedge B} \\
\frac{\mathrm{~T} A}{\mathrm{~F}^{*} \neg A} & \frac{\mathrm{~F} A}{\mathrm{~T}} \mathrm{~T}^{*} \neg A & \frac{\mathrm{~F}^{*} A}{\mathrm{~F}^{*} A \vee B} \\
\mathrm{~F} \neg A & \frac{\mathrm{~F}^{*} A}{\mathrm{~T} \neg A}
\end{array}
$$

Linear elimination rules

$\mathrm{F} A \wedge B$
$\mathrm{~T} A$

$\mathrm{~F} B$$\frac{\mathrm{~F} A \wedge B}{\mathrm{~T} B} \quad$| $\mathrm{F}^{*} A \wedge B$ |
| :---: |
| $\mathrm{~F} A$ |\quad| $\mathrm{T}^{*} A$ |
| :---: |
| $\mathrm{~F}^{*} B$ |$\frac{\mathrm{~T}^{*} B}{\mathrm{~F}^{*} A}$

$\frac{\mathrm{T} A \wedge B}{\mathrm{~T} A}$
$\frac{\mathrm{T} A \wedge B}{\mathrm{~T} B}$
$\frac{\mathrm{T}^{*} A \wedge B}{\mathrm{~T}^{*} A}$
$\frac{\mathrm{T}^{*} A \wedge B}{\mathrm{~T}^{*} B}$

$\mathrm{T} A \vee B$
$\mathrm{~F} A$
$\mathrm{~T} B$

$\mathrm{T}^{*} A \vee B$
$\mathrm{T}^{*} A \vee B$
$\frac{\mathrm{F}^{*} A}{\mathrm{~T}^{*} B}$
$\frac{\mathrm{F}^{*} B}{\mathrm{~T}^{*} A}$
$\frac{\mathrm{FA} B B}{\mathrm{FA}}$
$\frac{\mathrm{FA} B B}{\mathrm{FB}}$
$\frac{\mathrm{F}^{*} A \vee B}{\mathrm{~F}^{*} A}$
$\frac{\mathrm{F}^{*} A \vee B}{\mathrm{~F}^{*} B}$
$\frac{\mathrm{T} \neg A}{\mathrm{~F}^{*} A}$
$\frac{\mathrm{F} \neg A}{\mathrm{~T}}$
$\frac{\mathrm{T}^{*} \neg A}{\mathrm{~F} A}$

Intelim sequences and tractability

$$
\begin{aligned}
& \mathrm{T} \neg(A \vee B)^{@} \\
& \mathrm{~T} \neg C^{\complement} \\
& \mathrm{F}^{*} A \vee B \\
& \mathrm{~F}^{*} A \\
& \mathrm{~F}^{*} C \\
& \mathrm{~F}^{*} A \vee C \\
& \mathrm{~T} \neg(A \vee C)
\end{aligned}
$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a Tarskian logic.
- This consequence relation can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

Intelim sequences and tractability

$$
\begin{aligned}
& \mathrm{T} \neg(A \vee B)^{@} \\
& \mathrm{~T} \neg C^{\complement} \\
& \mathrm{F}^{*} A \vee B \\
& \mathrm{~F}^{*} A \\
& \mathrm{~F}^{*} C \\
& \mathrm{~F}^{*} A \vee C \\
& \mathrm{~T} \neg(A \vee C)
\end{aligned}
$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a Tarskian logic.
- This consequence relation can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$.

Intelim sequences and tractability

$$
\begin{aligned}
& \mathrm{T} \neg(A \vee B)^{@} \\
& \mathrm{~T} \neg C^{@} \\
& \mathrm{~F}^{*} A \vee B \\
& \mathrm{~F}^{*} A \\
& \mathrm{~F}^{*} C \\
& \mathrm{~F}^{*} A \vee C \\
& \mathrm{~T} \neg(A \vee C)
\end{aligned}
$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a Tarskian logic.
- This consequence relation can be decided in time $O\left(n^{2}\right)$.

Intelim sequences and tractability

$$
\begin{aligned}
& \mathrm{T} \neg(A \vee B)^{@} \\
& \mathrm{~T} \neg C^{\complement} \\
& \mathrm{F}^{*} A \vee B \\
& \mathrm{~F}^{*} A \\
& \mathrm{~F}^{*} C \\
& \mathrm{~F}^{*} A \vee C \\
& \mathrm{~T} \neg(A \vee C)
\end{aligned}
$$

- The intelim rules characterize only the basic (0-depth) logic in the hierarchy of approximations.
- This is a Tarskian logic.
- This consequence relation can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$.

Branching structural rules and virtual information

- The intelim rules are not complete for full FDE. Completeness is obtained by adding only:

$$
\begin{array}{l|l}
P B: & \mathrm{T} A \\
\hline \mathrm{~F} A & P B^{*}: \quad \mathrm{T}^{*} A \\
\hline
\end{array}
$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "virtual"
- The more virtual information needs to be invoked via $P B$ or $P B^{*}$, the harder the inference is.
- The nested applications of $P B$ and $P B^{*}$ provide a sensible measure of inferential depth.

Branching structural rules and virtual information

- The intelim rules are not complete for full FDE. Completeness is obtained by adding only:

$$
\begin{array}{l|l}
P B: & \mathrm{T} A \\
\hline \mathrm{~F} A & P B^{*}: \quad \mathrm{T}^{*} A \\
\hline
\end{array}
$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "virtual'
- The more virtual information needs to be invoked via $P B$ or $P B^{*}$, the harder the inference is.
- The nested applications of PB and PB* provide a sensible measure of inferential depth.

Branching structural rules and virtual information

- The intelim rules are not complete for full FDE. Completeness is obtained by adding only:

$$
P B: \quad \begin{array}{l|l}
\mathrm{T} A & \mathrm{FA} \\
\hline
\end{array} \quad P B^{*}: \quad \mathrm{T}^{*} A \mid \mathrm{F}^{*} A
$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "virtual".
- The more virtual information needs to be invoked via $P B$ or $P B^{*}$, the harder the inference is.
- The nested applications of PB and PB* provide a sensible measure of inferential depth.

Branching structural rules and virtual information

- The intelim rules are not complete for full FDE. Completeness is obtained by adding only:

$$
P B: \quad \mathrm{T} A\left|\mathrm{FA} \quad P B^{*}: \quad \mathrm{T}^{*} A\right| \mathrm{F}^{*} A
$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "virtual".
- The more virtual information needs to be invoked via $P B$ or $P B^{*}$, the harder the inference is.

Branching structural rules and virtual information

- The intelim rules are not complete for full FDE. Completeness is obtained by adding only:

$$
P B: \quad \mathrm{T} A\left|\mathrm{FA} \quad P B^{*}: \quad \mathrm{T}^{*} A\right| \mathrm{F}^{*} A
$$

- One of the two cases must obtain considering the whole set of sources even if the agent has no actual information about which is the case.
- We call the information expressed by each of the two complementary signed formulae "virtual".
- The more virtual information needs to be invoked via $P B$ or $P B^{*}$, the harder the inference is.
- The nested applications of $P B$ and $P B^{*}$ provide a sensible measure of inferential depth.

Intelim trees

Tractability and non-deterministic semantics

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of $P B$ and $P B^{*}$ that are allowed.
- Each k-depth consequence relation, $k \geq 0$, can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{k+2}\right)$.
- Admits of a 5-valued non-deterministic semantics (see Avron \& Zamansky, 2011): takes the signs as imprecise values, and adds a fifth value standing for the case where the value of a formula is completely undefined in that the information is insufficient to even establish any of the imprecise values.

Tractability and non-deterministic semantics

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of $P B$ and $P B^{*}$ that are allowed.
- Each k-depth consequence relation, $k \geq 0$, can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{k}+2}\right)$.
- Admits of a 5-valued non-deterministic semantics (see Avron \& Zamansky, 2011): takes the signs as imprecise values, and adds a fifth value standing for the case where the value of a formula is completely undefined in that the information is insufficient to even establish any of the imprecise values.

Tractability and non-deterministic semantics

- Leads to an infinite hierarchy of tractable depth-bounded approximations, in terms of the maximum number of nested applications of $P B$ and $P B^{*}$ that are allowed.
- Each k-depth consequence relation, $k \geq 0$, can be decided in time $\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{k}+2}\right)$.
- Admits of a 5-valued non-deterministic semantics (see Avron \& Zamansky, 2011): takes the signs as imprecise values, and adds a fifth value standing for the case where the value of a formula is completely undefined in that the information is insufficient to even establish any of the imprecise values.
- The method easily extends to LP and K_{3}.
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos \& Volpe, 2015).

Thanks!

- The method easily extends to LP and \mathbf{K}_{3}.
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos \& Volpe, 2015).
Thanks!
- The method easily extends to LP and K_{3}.
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos \& Volpe, 2015).
Thanks!
- The method easily extends to LP and \mathbf{K}_{3}.
- First investigation of the "depth-bounded" approach as applied to nonclassical logics.
- Paves the way for extending the approach to a variety of finite-valued logics, in the spirit of (Carnielli, 1987; Hähnle 1999; Caleiro, Marcos \& Volpe, 2015).

Thanks!

References

Arieli, O., \& Denecker, M. (2003). Reducing preferential paraconsistent reasoning to classical entailment. Journal of Logic and Computation, 13(4): 557-580.

Avron, A. (2003) Tableaux with four signs as a unified framework. In TABLEAUX 2003, volume 2796 of Lecture Notes in Computer Science, Springer, 4-16.

Avron, A. \& Zamansky, A. (2011). Non-deterministic semantics for logical systems. In Handbook of philosophical logic, Springer, 227-304.

Belnap, N. (1977). How a computer should think. In Contemporary Aspects of Philosophy, Oriel Press, 30-55.

Blasio, C. (2015). Up the hill: on the notion of information in logics based on the four-valued bilattice. LSFA 2015 GeTFun 3.0 FILOMENA 2 LFIs 15 TRS Reasoning School, 99.

Blasio, C. (2017). Revisitando a logica de Dunn-Belnap. Manuscrito, 40, 99-126.
Carnielli, W. (1987). Systematization of finite many-valued logics through the method of tableaux. The Journal of Symbolic Logic, 52(2):473-493.

Caleiro, C., Marcos, J. and Volpe, M. (2015). Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics. Theoretical Computer Science, 603:84-110.

D'Agostino, M. (1990). Investigations into the Complexity of some Propositional Calculi. Oxford University. Computing Laboratory. Programming Research Group.

References

D'Agostino, M. and Floridi, L. (2009). The enduring scandal of deduction, Synthese, 167(2):271-315.
D'Agostino, Finger \& Gabbay, D. (2013). Semantics and proof-theory of depth bounded boolean logics, Theoretical Computer Science, 480:43-68.

D'Agostino, M. (2015). An informational view of classical logic, Theoretical Computer Science, 606:79-97.

Dunn, J. (1976). Intuitive semantics for first-degree entailments and 'coupled trees'. Philosophical studies, 29(3), 149-168.

Fitting, M. (1991). Bilattices and the semantics of logic programming. The Journal of Logic Programming, 11(2), 91-116.

Fitting, M. (1994). Kleene's three valued logics and their children. Fundamenta informaticae, 20(1, 2, 3), 113-131.

Hähnle, R. (1999). Tableaux for many-valued logics. In Handbook of Tableau Methods, Springer, 529-580.

Shramko, Y., \& Wansing, H. (2005). Some useful 16-valued logics: How a computer network should think. Journal of Philosophical Logic, 34(2), 121-153.

Urquhart, A. (1990). The complexity of decision procedures in relevance logic. In Truth or consequences, Springer, Dordrecht, 61-76.

Virtual information in CPL

$$
\begin{aligned}
& p \\
& p \rightarrow q \\
& q \rightarrow r \\
& r \rightarrow s \\
& s \rightarrow t \\
& t \rightarrow u \\
& u \rightarrow v \\
& v \rightarrow w \\
& w \rightarrow x \quad p \vee q \\
& x \rightarrow y \\
& \frac{y \rightarrow z}{z} \\
& \text { no virtual info } \\
& p \rightarrow r \\
& p \vee q \vee r \\
& p \vee q \vee \neg r \\
& p \vee \neg q \vee s \\
& p \vee \neg q \vee \neg s \\
& \neg p \vee q \vee t \\
& \neg p \vee q \vee \neg t \\
& \neg p \vee \neg q \vee u \\
& <\quad \frac{q \rightarrow r}{r} \\
& \text { virtual info }
\end{aligned}
$$

1-depth intelim refutation in FDE

Figure 1: Initialized graph

Figure 2: Saturated graph

5N-tables for FDE

V	t	f	t^{*}	f^{*}	\perp
t	\{t $\}$	\{t\}	\{t\}	\{t $\}$	\{t $\}$
f	\{t $\}$	\{f\}	$\left\{\mathrm{t}^{*}\right\}$	$\{\perp$ \}	$\left\{\perp, \mathrm{t}^{*}\right\}$
t^{*}	\{t $\}$	$\left\{\mathrm{t}^{*}\right\}$	$\left\{\mathrm{t}^{*}\right\}$	$\left\{\mathrm{t}^{*}\right\}$	$\left\{\mathrm{t}^{*}\right\}$
f^{*}	\{t $\}$	$\{\perp\}$	$\left\{\mathrm{t}^{*}\right\}$	\{f* $\}$	$\{\perp, \mathrm{t}\}$
\perp	\{t $\}$		$\left\{\mathrm{t}^{*}\right\}$	$\{\perp, \mathrm{t}\}$	$\left\{\mathrm{t}, \mathrm{t}^{*}, \perp\right\}$
π	t	f	t^{*}	f^{*}	\perp
t	\{t $\}$	\{f\}	$\{\perp$ \}	$\left\{\mathrm{f}^{*}\right\}$	$\left\{\perp, \mathrm{f}^{*}\right\}$
f	\{f\}	\{f\}	\{f\}	\{f\}	\{f\}
t^{*}	\{ \perp \}	\{f\}	$\left\{t^{*}\right\}$	$\left\{f^{*}\right\}$	$\{\perp, \mathrm{f}\}$
f^{*}	\{f* ${ }^{\text {* }}$	\{f\}	$\left\{\mathrm{f}^{*}\right\}$	$\left\{\mathrm{f}^{*}\right\}$	$\left\{\mathrm{f}^{*}\right\}$
\perp	$\left\{\perp, \mathrm{f}^{*}\right\}$	\{f\}	$\{\perp, \mathrm{f}\}$	$\left\{\mathrm{f}^{*}\right\}$	$\left\{\mathrm{f}, \mathrm{f}^{*}, \perp\right\}$
\sim					
			t f f^{*}		
			f t ${ }^{\text {* }}$		
			t^{*} f		
			f^{*} t		
			$\perp \perp$		

$\mathrm{LP} / \mathrm{K}_{3}$ standard tables

\widetilde{V}	true	false	i
true	true	true	true
false	true	false	i
i	true	i	i

$\widetilde{\wedge}$	true	false	i
true	true	false	i
false	false	false	false
i	i	false	i

\sim	
true	false
false	true
i	i

$\widetilde{\rightarrow}$	true	false	i
true	true	false	i
false	true	true	true
i	true	i	i

Additional intelim rules for LP and K_{3}

$$
\begin{aligned}
& \frac{\mathrm{F}^{*} A}{\mathrm{~T} A \rightarrow B} \\
& \frac{\mathrm{~T} B}{\mathrm{~T} A \rightarrow B} \\
& \begin{array}{l}
\mathrm{T}^{*} A \\
\mathrm{~F} B \\
\mathrm{~F} A \rightarrow B
\end{array} \\
& \text { TA } \\
& \frac{\mathrm{F} A}{\mathrm{~T} A \rightarrow B} \\
& \frac{\mathrm{~T}^{*} B}{\mathrm{~T}^{*} A \rightarrow B} \\
& \frac{\mathrm{~F}^{*} B}{\mathrm{~F}^{*} A \rightarrow B} \\
& \frac{\mathrm{~F} A \rightarrow B}{\mathrm{~T} A} \\
& \frac{\mathrm{~F} A \rightarrow B}{\mathrm{FB}} \\
& \frac{\mathrm{~F}^{*} A \rightarrow B}{\mathrm{~T} A} \\
& \frac{\mathrm{~F}^{*} A \rightarrow B}{\mathrm{~F}^{*} B} \\
& \mathrm{~T} A \rightarrow B \\
& \mathrm{~T}^{*} A \rightarrow B \\
& \mathrm{~T} A \rightarrow B \\
& \mathrm{~T}^{*} A \rightarrow B \\
& \frac{\mathrm{~T} * A}{\mathrm{~T} B} \\
& \frac{\mathrm{~T} A}{\mathrm{~T} A} \\
& \frac{\mathrm{~T}^{*} A}{\mathrm{~T} A} \quad \frac{\mathrm{~F} A}{\mathrm{~F}^{*} A} \\
& \frac{\mathrm{~T} A}{\mathrm{~T}^{*} A} \quad \frac{\mathrm{~F}^{*} A}{\mathrm{~F} A}
\end{aligned}
$$

