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Abstract

We present a generative probabilistic model for the unsupervised learning of hierarchical natural language syntactic structure.
Unlike most previous work, we do not learn a context-free grammar, but rather induce a distributional model of constituents
which explicitly relates constituent yields and their linear contexts. Parameter search with EM produces higher quality analyses
for human language data than those previously exhibited by unsupervised systems, giving the best published unsupervised
parsing results on theATIS corpus. Experiments on Penn treebank sentences of comparable length show an even higher
constituent F1 of 71% on non-trivial brackets. We compare distributionally induced and actual part-of-speech tags as input
data, and examine extensions to the basic model. We discuss errors made by the system, compare the system to previous
models, and discuss upper bounds, lower bounds, and stability for this task.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The task of inducing hierarchical natural language struc-
ture from observed yields alone has received a great deal of
attention[1–8]. Researchers have explored this problem for
a variety of reasons: to argue empirically against the poverty
of the stimulus[9], to model child language acquisition[10],
to use induction systems as a first stage in constructing large
treebanks[11], or to build better language models[12,13].
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The goal of a hierarchical structure induction system is to
learn syntactic structures like the tree shown inFig. 1(a). The
underlying hypothesis is that there exists a natural and use-
ful decomposition of natural language sentences into nested
units, orconstituents, whose reality rests on some kind of
structural, semantic, or distributional coherence. For exam-
ple, in the analysis of the sentence shown,factory payrolls
is posited as a constituent, whilefell in is not. Various ar-
guments can be put forward to justify constituency (a full
discussion is beyond the scope of this article, but see Rad-
ford [14] inter alia for a comprehensive presentation). For
example, other units likethree stockscan be substituted for
factory payrollswithout destroying the well-formedness of
the sentence, andfactory payrollscan appear as a unit in
other contexts (e.g.They cut factory payrolls by10%). Such
distributional criteria were suggested as the basis of a gram-
mar learning process in Harris[15] and, formalized in vari-
ous ways, have formed the basis of many grammar learning
systems since.

http://www.elsevier.com/locate/patcog
mailto:manning@cs.stanford.edu


1408 D. Klein, C.D. Manning / Pattern Recognition 38 (2005) 1407–1419

Fig. 1. (a) Example parse tree with (b) its associated bracketing
and (c) the yields and contexts for each constituent span in that
bracketing. Distituent yields and contexts are not shown, butare
modeled.

While tree representations of natural language are not per-
fect, much of the broad syntactic structure of natural lan-
guage can be captured by them. By far the most common
formal model of such structures is the family of context-
free grammars (CFGs) or their probabilistic counterparts,
the probabilistic context-free grammars (PCFGs). With the
exception of van Zaanen[11], all of the systems cited above
attempt to induce a CFG or PCFG from observed well-
formed sentences. A famous result of Gold[16] is that all
superfinite languages, including in particular CFGs, are not
identifiable in the limit, meaning that, even if given an in-
finite amount of data generated by a CFG, it is impossible
to uniquely determine which CFG produced that data. The
slightly less famous counter-result[17] is that PCFGscan
be learned in the limit from positive data alone (although it
did not present a practical procedure for doing so).

While some recent work[18] has further explored the
theoretical issues in PCFG-learning as they might pertain to
natural languages, even learning regular languages is a very
difficult problem, both in practice[19] and in theory[20,21].
While people have nonetheless used tree-structured models
in grammar induction, their complexity and amount of hid-
den structure has tended to cause results to be poor. As a
consequence, most researchers in natural language process-
ing have turned to supervised methods for sentence analysis,
inter alia [22,23]. This paper introduces a way to get the
benefits of tree-structured models while avoiding the direct
induction of (P)CFGs. Rather, we learn (nested) bracketings
of data sentences directly. As such, the success of this sys-
tem is best measured by its empirical behavior on natural
language examples.

2. Previous work

Some work on learning syntax has assumed that seman-
tic representations are already specified[10,24], and this as-
sumption is probably correct for child language acquisition,
but many grammar induction systems, including the present
work, look at the problem of learning formal constituency,
in the absence of such prior constraint.

Early work on grammar induction emphasized heuristic
structure search, where the primary induction is done by in-
crementally adding new productions to an initially empty
grammar[25,4,3]. For example, given an initially empty
grammar, and assuming we already knew part-of-speech dis-
tinctions, we might notice an abundance of adjective-noun
pairs and decide to add a production of the formX → AD-
JECTIVE NOUN to our grammar. Later, another production
usingX might be added. As linguists observing the process,
we might hope that thisX category would represent aN (i.e.,
a modified noun unit).

In the early 1990s, attempts were made to do (proba-
bilistic) grammar induction by parameter search, where the
broad structure of the grammar is fixed in advance and only
parameters are induced[26,5]. For example, the same rule
X→ ADJECTIVE NOUN would have been around from the
beginning, but so would other rules likeX → VERB DE-
TERMINER. On this approach, the question of which rules
are included or excluded becomes the question of which
parameters are zero. Classic experiments[26] showed that
the structure induction task is quite difficult for even simple
PCFGs. By placing a complexity-based prior on grammars,
Stolcke and Omohundro[8] extended such techniques to
maximum a posteriori estimation of grammars. Their gram-
mar search procedure started with maximally specific gram-
mar rules read off of trees, and then did greedy state merging.
At the level of rewrites of an individual nonterminal, such
a procedure is similar to the state merging procedures most
commonly used for finite state automata induction[27,19].
However, for large natural language grammars, parameter
search methods seemed fragile, and performed poorly.

Partially because of disappointing results from parame-
ter search methods, and partially because of the conceptual
appeal of modeling the actual incremental search process,
most recent work has returned to structure search. Recently,
several researchers have taken new approaches: van Zaanen
[11] uses alignment-based learning to directly reason about
constituency from minimal pairs of sentences; Adriaans and
Haas[18] discuss a theoretically sound method for identify-
ing a certain restricted class of PCFGs, but it does not seem
to perform well in practice on natural language data; Clark
[9] uses a distributional clustering technique along with a
constituent-filtering heuristic to achieve substantially more
success. Structure search methods are local; one must have
a way of making local decisions about which merges will
produce a coherent, globally good grammar. To the extent
that such incremental approaches work, they work because
good local heuristics have been explicitly engineered[28,9].
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Parameter search is also local, but in another way—
parameters which are locally optimal may be globally poor.
A concrete example is the experiments from[5]. They re-
stricted the space of grammars to the PCFGs which are iso-
morphic to a dependency grammar over the part-of-speech
(POS) symbols in the Penn treebank (a collection of 1 mil-
lion words of hand-parsed text[29], which gives traditional
parses such as the one shown inFig. 1(a)). Such a grammar
has productions likeVERB → NOUN VERB indicating that a
verb-headed unit (like a verb phrase) can take as a left argu-
ment a noun-headed unit (like a noun phrase) and become a
new verb-headed unit (like a sentence).1 There is one cate-
gory for each part-of-speech type (henceforth referred to as
tags), of which there are 45 in the Treebank tag set. Carroll
and Charniak then searched for parameters with the inside-
outside algorithm (a special case of the EM algorithm for
PCFGs,[12]) starting with 300 random production-weight
vectors. Each seed converged to a different locally opti-
mal grammar, none of them nearly as good as the treebank
grammar, measured either by parsing performance or data-
likelihood.

Parameter search methods do have a potential advantage
over structure search methods. By aggregating over only
valid, complete parses of each sentence, they naturally in-
corporate the constraint that constituents cannot cross—the
bracketing decisions made by the grammar must be coher-
ent. However, the Carroll and Charniak experiments had two
primary causes for failure which nullified this benefit. First,
random initialization is not always good, nor even necessary.
The parameter space for a PCFG is riddled with local likeli-
hood maxima, and starting with a very specific, but random,
grammar should not be expected to work well. To give a
concrete example, when a verb has a determiner-noun direct
object (call the number), the natural unit is the determiner-
noun pair (the number), not the verb-determiner pair (call
the). However, if a grammar has a strong initial preference
for the latter analysis, no amount of data will cause it to
switch; that would mean both taking away mass from one
rule (like VERB → VERB DETERMINER) and adding mass
to another rule (likeNOUN → DETERMINER NOUN). This
kind of ridge operation is generally difficult for search pro-
cedures, and EM empirically will not explore across such
ridges.

The reason grammars are generally given random initial-
ization is because in many situations it is necessary to break
model symmetry. For example, in the K-means algorithm
(which is an instance of hard-assignment EM for a mixture
of spherical gaussians), one cannot begin with all the means
at the same point. This configuration is a saddle point, like
a balanced needle, because the problem is symmetric in the
means—each data point pulls equally on each mean in that

1 Note that this isnot what linguists usually mean bydepen-
dency grammars; they typically consider lexical dependency gram-
mars in which there are many more symbols, one for each word
in the lexicon.

configuration. This symmetry is not present in the case of
dependency grammars: it is not the case that any grammar
symbol can generate any sequence. For a sequence likead-
jective noun, only the non-terminals corresponding tonoun
andadjectivecan be parsed over it, regardless of the initial
parameters. We duplicated the Carroll and Charniak exper-
iments, but used a uniform parameter initialization where
all productions were equally likely. This allowed the inter-
action between the grammar and data to break the initial
symmetry, and resulted in an induced grammar of higher
quality than Carroll and Charniak reported. This grammar,
which we refer to asDEP-PCFGwill be evaluated in more
detail in Section 4.

Viewed with hindsight, the second way in which their
experiment was guaranteed to be somewhat unencouraging
is that a delexicalized dependency grammar is a very poor
model of human language, even in a supervised setting. By
the F1 measure used in the experiments in Section 4, an in-
duced dependency PCFG scores 48.2, compared to a score
of 82.1 for a supervised PCFG read from local trees of the
treebank. However, a superviseddependencyPCFG scores
only 53.5, not much better than the unsupervised version,
and worse than the right-branching baseline (of 60.0) dis-
cussed in Section 4. As an example of the inherent short-
comings of such a dependency grammar, it is structurally
unable to distinguish whether the subject or object should
be attached to the verb first. Since both parses involve the
same set of productions (VERB → NOUN VERB for the sub-
ject andVERB → VERB NOUN for the object), both anal-
yses will have equal likelihood. This is a consequence of
the grammar symbols not being sufficiently rich to distin-
guish between a verb, verb phrase, and sentence: they are all
headed by a verb, but have very different syntactic behavior.

While grammar induction has only recently begun to scale
successfully to real language data, distributional clustering
has proven much more robust, at least for discovering pat-
terns at the word level[30–32]. In distributional clustering,
items are clustered based on the distributions of their linear
contexts. For example, bothpresidentandreport occur fre-
quently betweenthe on the left andsaid on the right and
might therefore be clustered together. Since there are fairly
good methods of discovering word groups which to a certain
degree capture part-of-speech distinctions, we, like other au-
thors, take our input to be word cluster sequences. For most
of our experiments below, we used the true part-of-speech
tags from the Penn treebank sentences, but we also exper-
imented with automatically induced word classes to verify
that the success of the system was not due purely to human-
chosen word groups. Therefore, instead ofFactory payrolls
fell in September, the system would actual be presented with
NN NNS VBD IN NN—the finer-grained versions ofNOUN
NOUN VERB PREPOSITION NOUNused by the Penn Tree-
bank, which also indicate, for instance, verb form and noun
plurality. When it adds clarity, we will accompany such tag
sequences with specific word examples, usually the most
common realization of the sequence in the treebank.
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Clark [9] describes a method for distributionally cluster-
ing multi-unit spans, just as words have traditionally been
clustered. In his system,DT NN (the company) might be
clustered withDT JJ NN(the third quarter). Of course, most
spans (and therefore most clusters) are not constituents, and
so contain sequences likeVB IN DT (comment on the) and
VB DT (be a). He uses a second phase to figure out which
clusters are the “good” ones and then to decide how to turn
such clusters into a grammar. The next section describes our
model, which can be seen as a simpler approach which gen-
eralizes the word-level distributional approach to a direct
tree-structure induction algorithm.

3. A generative constituent-context model

To exploit the benefits of parameter search and the past
success of distributional methods, we introduce a novel
model which is designed specifically to enable a more felic-
itous search space. The fundamental assumption is a much
weakened version of classic distributional linguistic con-
stituency tests[14]: constituents appear in constituent con-
texts. A particular linguistic phenomenon that the system
exploits is that long constituents often have short, com-
mon equivalents, orproforms [14], which appear in simi-
lar contexts and whose constituency is easily discovered (or
guaranteed).2 Our model is designed to transfer the con-
stituency of a sequence directly to its containing context,
which is intended to then pressure new sequences that occur
in that context into being parsed as constituents in the next
round of the iterative reestimation process. The model is also
designed to exploit the successes of distributional cluster-
ing, and can equally well be viewed as doing distributional
clustering in the presence of no-overlap constraints.

3.1. Constituents and contexts

Unlike a PCFG, our model describes all contiguous sub-
sequences of a sentence (spans), including empty spans, re-
gardless of whether they are constituents or non-constituents
(distituents). A span encloses a (possibly empty) sequence
of terminals, oryield, �, such asDT JJ NN.3 A span occurs
in a context x, such as�—VBZ, wherex is the ordered pair
of preceding and following terminals (� denotes a sentence

2 The classic examples are pronouns (he, she, it, etc.), which,
being one word, are certainly constituents, but there are other ex-
amples such astherewhich can serve as a proform for prepositional
phrases. Since pronouns occur in the same positions as larger noun
phrases (e.g., subject position between the sentence beginning and
the first verb), this interchangeability argues for the constituency
of those more complex noun phrases.

3 Recall that our inputs are parts-of-speech sequences using the
Penn Treebank tagset. DT JJ NN stands for determiner–adjective-
noun, the most frequent Treebank example of which isthe third
quarter.

boundary andVBZ is a present-tense verb likeis). A brack-
eting of a sentence is a boolean matrixB, which indicates
which spans are constituents and which are not. The corre-
spondence between such bracketings (also called parse tri-
angles or well-formed substring tables) is well-known; see
for example[33]. Fig. 1 shows a parse of a short sentence,
the bracketing corresponding to that parse, and the labels,
yields, and contexts of its constituent spans.

Fig. 2 shows several bracketings of the sentence inFig.
1. A bracketingB of a sentence isnon-crossingif, when-
ever two spans cross, at most one is a constituent inB.
A non-crossing bracketing istree-equivalentif the size-one
terminal spans and the full-sentence span are constituents,
and all size-zero spans are distituents.Fig. 2(a) and (b) are
tree-equivalent. Tree-equivalent bracketingsB correspond to
(unlabeled) trees in the obvious way. A bracketing isbinary
if it corresponds to a binary tree.Fig. 2(b) is binary. We will
induce trees by inducing tree-equivalent bracketings.

Our basic generative model over sentencesS has two
phases. First, we choose a bracketingB according to some
distribution P(B) and then generate the sentence given that
bracketing:

P(S, B) = P(B)P(S|B).

Given B, we fill in each span independently. The context
and yield of each span are independent of each other, and
generated conditionally on the constituencyBij of that span.

P(S|B) =
∏

〈i,j〉∈spans(S)

P(�ij , xij |Bij )

=
∏

〈i,j〉
P(�ij |Bij )P(xij |Bij ).

For the main model of the paper, the bracketing just distin-
guishes constituents from non-constituents. The distribution
P(�ij |Bij ) is thus a pair of multinomial distributions over
the set of all possible yields: one for constituents (Bij = c)
and one for distituents (Bij = d). Similarly, P(xij |Bij ) is a
pair of distributions over contexts. The marginal probability
assigned to the sentenceS is given by summing over all pos-
sible bracketings ofS: P(S) = ∑

BP(B)P(S|B).4 Figs. 3
and4 illustrate the process. These figures show the slightly
more general case, which we discuss in Section 4.2, where
constituent brackets can have various labels, but distituent
brackets all have the single labeld.

It is worth emphasizing that in this model spans are
nested, and therefore hierarchical structures are learned, but

4 Viewed as a model generatingsentences, this model is de-
ficient, placing mass on yield and context choices which will not
tile into a valid sentence, either because specifications for posi-
tions conflict or because yields of incorrect lengths are chosen.
However, we could renormalize by dividing by the mass placed on
proper sentences and zeroing the probability of improper bracket-
ings. The rest of the paper, and results, would be unchanged except
for notation to track the renormalization constant.
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Fig. 2. Three bracketings of the sentence inFig. 1: constituent spans in black. (b) corresponds to the binary parse inFig. 1; (a) does not
contain the〈2, 5〉 VP bracket, while (c) contains a〈0, 3〉 bracket crossing that VP bracket.
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Fig. 3. The generative process. (a) A binary tree-equivalent bracketing is chosen at random. (b) Constituent (black) nodes are labeled with
a constituent label, distituent (white) nodes are labeledd. In the two-class case, there is only a single consituent labelc, and so this step
can be conceptually omitted. (c)Eachspan generates its yield and context. Derivations which are not coherent are given mass zero.

0 01 /1 4 1 /1 4 1 /1 4… … 

(a) P(B), bracketing.

(b) P(L B),  labeling. (c) P (α L) and P (x L), yields and contexts.

Fig. 4. The probabilities in the model. (a) The distribution over bracketings is always uniform over all binary tree-equivalent bracketings
(14 for size 5). (b) The distribution over class labels varies during estimation. (c) The probabilities of different sequences and context also
vary. Numbers here are illustrative of what an “ideal” setting might be.

recursion is not explicitly modeled (though some recursive
facts are captured by modeling contexts). The model thus
identifies an interesting middle-ground where the nested
constituents learned do implicitly show the recursive struc-
ture of natural language, but do not explicitly encode it in a

grammar. While not having an explicit model of recursion
may seem to fly in the face of conventional wisdom about
representing natural language, it is in fact a substantial part
of why this system is so successful: (1) inducing deeply hid-
den recursive structure makes the search very hard and (2)
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NP
VP
PP

Usually a Constituent
Rarely a Constituent

(a) (b)

Fig. 5. The most frequent yields of (a) three constituent types and (b) constituents and distituents, as context vectors, projected onto their
first two principal components. Clustering is effective at labeling, but not detecting constituents.

context-freedom assumptions have been shown to be wildly
false for PCFGs of small to moderate size[34], making their
induction by maximum likelihood or MAP methods chal-
lenging.

To induce structure, we run EM over this model, treating
the sentencesSas observed and the bracketingsB as unob-
served. The parameters� of the model are the constituency-
conditional yield and context distributions P(�|b) and
P(x|b), and the possible bracketings P(B). However, as
discussed below, we keep P(B) fixed in our model.5

If P(B) is uniform over all (possibly crossing) bracket-
ings, then this procedure will be equivalent to soft-clustering
with two equal-prior classes. There is reason to believe that
such soft clusterings alone will not produce valuable dis-
tinctions, even if we introduce a large number of constituent
classes. The distituents must necessarily outnumber the con-
stituents, and so such distributional clustering will result in
mostly distituent classes. Clark[9] finds exactly this effect,
and must resort to a filtering heuristic to separate constituent
and distituent clusters. To underscore the difference between
the bracketing and labeling tasks, considerFig. 5. In both
plots, each point is a frequent tag sequence, assigned to the
(normalized) vector of its context frequencies. Each plot has
been projected onto the first two principal components of
its respective data set. The left plot shows the most frequent
sequences of three constituent types. Even in just two di-
mensions, the clusters seem coherent, and it is easy to be-
lieve that they would be found by a clustering algorithm in
the full space. On the right, sequences have been labeled ac-
cording to whether their occurrences are constituents more
or less of the time than a cutoff (of 0.2). These pictures are

5 Learning P(B) as well is a simple extension to the model, but
requires some parameterization of bracketing distributions, because
the space of bracketings is extremely large. Learning P(B) could,
for example, allow the model to capture right- or left-branching
tendencies. However, in our experiments, parameterizations of P(B)

in terms of branching tendencies became self-reinforcing, resulting
in entirely left- or right-branching structure.

suggestive rather than being proofs, but all the evidence we
have suggests that the distinction between constituent and
distituent seems much less easily discernible than the dis-
tinction between various categories.

We can turn what at first seems to be distributional clus-
tering into tree induction by confining P(B) to put mass
only on tree-equivalent bracketings. In particular, consider
Pbin(B) which is uniform over binary bracketings and zero
elsewhere (illustrated inFig. 4(a)). If we take this bracket-
ing distribution, then when we sum over data completions,
we will only aggregate over bracketings which correspond
to valid binary trees. This restriction is the basis for our
algorithm.

3.2. The induction algorithm

We now essentially have our induction algorithm. We take
the prior P(B) to be Pbin(B), so that all binary trees are
equally likely. The P(B) term is not learned or otherwise
varied from Pbin(B) during convergence. We then apply the
EM algorithm:

E-Step. Find the conditional completion likelihoods
P(B|S, �) according to the current�.

M-Step. Fixing P(B|S, �), find the�′ which maximizes∑
BP(B|S, �) log P(S, B|�′).

The completions (bracketings) cannot be efficiently enu-
merated, and so a cubic dynamic program similar to the
inside–outside algorithm is used to calculate the expected
counts of each yield and context, both as constituents and
distituents. Relative frequency estimates (which are the ML
estimates for this model) are used to set�′.

To begin the process, we did not (as is usual) begin at the
E-step with an initial guess at�. Rather, we began at the M-
step, using an initial guess at a distribution over completions
P(B|S, �). This was because in our model we did not have
a ready estimate of a mean or neutral value of�. One op-
tion for an initial guess over completions P(B|S, �) was the
prior, uniform distribution over binary trees Pbin(B). That
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was undesirable as an initial posterior because, combinato-
rialy, almost all trees are relatively balanced. On the other
hand, in language, we want to allow unbalanced structures
to have a reasonable chance of being discovered. Therefore,
consider the following uniform-splitting process of gener-
ating binary trees overk terminals: choose a split point at
random, then recursively build trees by this process on each
side of the split. This process gives a distribution Psplit which
puts relatively more weight on unbalanced trees, but only
in a very general, non language-specific way. This distribu-
tion was not used as P(B) in the model itself, however. It
seemed to bias too stronglyagainstbalanced structures, and
led to entirely linear-branching posterior structures.

Probability distributions built from natural language data
typically require smoothing to cope with data sparseness.
The smoothing used was straightforward. For each yield�
or contextx, we added 10 counts of that item as a constituent
and 50 as a distituent. This reflected the relative skew of
random spans being more likely to be distituents.6

4. Experiments

We performed most experiments on the 7422 sentences
in the Penn treebank Wall Street Journal section which con-
tained no more than 10 words after the removal of punctua-
tion and null elements (WSJ-10). For most experiments, we
take treebank part-of-speech sequences as input, but in Sec-
tion 4.3, we use distributionally induced tags as input. Per-
formance with induced tags is somewhat reduced, but still
gives better performance than previous models. Evaluation
was done by seeing whether proposed constituent spans are
also in the treebank parse, measuring unlabeled constituent
precision, recall, and their harmonic mean F1. Constituents
which could not be gotten wrong (namely those of span one
and those spanning entire sentences) were discarded.7 The

6 The required smoothing here contrasts with our earlier dis-
criminative model of Klein and Manning[35], which was sensitive
as to smoothing method, and required a massive amount of it.

7 Since reproducible evaluation is important, a few more notes:
this is different from the original (unlabeled) bracketing measures
proposed in the PARSEVAL standard[36], which did not count sin-
gle words as constituents, but did give points for putting a bracket
over the entire sentence. Secondly, bracket labels and multiplic-
ity are just ignored. Finally, our evaluation macro-averaged statis-
tics per-sentence, rather than micro-averaging per-bracket. The F1
scores we report are slightly lower for having discarded the triv-
ial sentence-level bracket, but slightly higher for having macro-
averaged; the net effect was small (and slightly negative). Below,
we also present results using the EVALB program for comparabil-
ity. The EVALB program fromhttp://nlp.cs.nyu.edu/evalb/ is
commonly used as a standard implementation of these metrics for
supervised parser evaluation. But we note that while one can get
results from it that ignore bracket labels, it never ignores bracket
multiplicity, nor does it ignore span-one brackets. These two con-
straints seem less satisfactory to us as measures for evaluating
unsupervised constituency decisions.
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Fig. 6. F1 for various models on WSJ-10.

basic experiments, as described above, do not label con-
stituents. An advantage to having only a single constituent
class is that it encourages constituents of one type to be
found even when they occur in a context which canonically
holds another type. For example,NPS and PPs both occur
between a verb and the end of the sentence, and they can
transfer constituency to each other through that context.

Fig. 6 shows the F1 score for various methods of pars-
ing. RANDOM chooses a binary tree uniformly at random
from the set of binary trees.8 This is the unsupervised
baseline.DEP-PCFGis the result of duplicating the exper-
iments of Carroll and Charniak[5], using EM to train a
dependency-structured PCFG.LBRANCH and RBRANCH
choose the completely left- and right-branching structures,
respectively.RBRANCH is a frequently used baseline for
supervised parsing, but it should be stressed that it encodes
a significant fact about English structure, and an induction
system need not beat it to claim a degree of success.CCM is
our system, as described above.SUP-PCFGis a supervised
PCFG parser trained on a 90-10 split of this data, using the
treebank grammar, with the Viterbi (maximum posterior
likelihood) parses right-binarized.9 UBOUND is the upper
bound on how well a binary system can do against the
treebank sentences. The treebank sentences are generally
flatter than binary, hence limiting the maximum precision
which can be attained, since additional brackets added to
provide a binary tree will be counted as wrong.

TheCCM does extremely well at 71.1%, much better than
right-branching structure. One common issue with grammar
induction systems is a tendency to chunk in a bottom-up
fashion. Especially since theCCM does not model recursive
structure explicitly, one might be concerned that the high
overall accuracy is due to a high accuracy on short-span
constituents.Fig. 7 shows that this is not true. Recall drops
slightly for mid-size constituents, but longer constituents are
as reliably proposed as short ones. Another effect illustrated

8 This choice corresponds to choosing from Pbin(B), and is
different from making random parsing decisions, corresponding to
Psplit(B), which gave a higher score of 34.8%.

9 Without post-binarization, the F1 score was 88.9.

http://nlp.cs.nyu.edu/evalb/
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Fig. 7. Accuracy scores for CCM-induced structures by span size.
The drop in precision for span length 2 is largely due to analysis
inside NPs which is omitted by the treebank. Also shown is F1
for the induced PCFG. The PCFG shows higher accuracy on small
spans, while the CCM is more even.

System UP UR F1 CB

EMILE 51.6 16.8 25.4 0.84

ABL 43.6 35.6 39.2 2.12

CDC-40 53.4 34.6 42.0 1.46

RBRANCH 39.9 46.4 42.9 2.18

COND-CCM 54.4 46.8 50.3 1.61

CCM 55.4 47.6 51.2 1.45

Fig. 8. Comparative ATIS parsing results (unlabeled precision
(UP) and unlabeled recal (UR), as scored byevalb). This sys-
tem (CCM) outperforms the best previously published systems’
numbers. EMILE is described in[18], ABL in [11], and CDC-40
in [9]. RBRANCH is the right-branching (supervised) baseline.
COND-CCM is a previous conditional formulation of our model,
described in[35].

in this graph is that, for span 2, constituents have low pre-
cision for their recall. This contrast is primarily due to the
single largest difference between the system’s induced struc-
tures and those in the treebank: the treebank does not parse
into NPs such asDT JJ NN, while our system does, and gen-
erally does so correctly, identifyingN units likeJJ NN. This
overproposal drops span-2 precision. In contrast,Fig. 7also
shows the F1 for DEP-PCFG, which does exhibit a drop in
F1 over larger spans.

The top row ofFig. 10 shows the recall of non-trivial
brackets, split according the brackets’ labels in the treebank.
Unsurprisingly,NP recall is highest, but other categories
are also high. Because we ignore trivial constituents, the
comparatively lowS representsonly embedded sentences,
which are harder even for supervised systems.

To facilitate comparison with other recent work,Fig. 8
shows the accuracy of both our system and some other recent

systems tested on theATIS corpus, and evaluated according
to the EVALB program.10 The F1 numbers are lower for
this corpus and evaluation method.11 Still, CCM beats not
only RBRANCH(by 8.3%), but also our previous conditional
COND-CCM [35] and the next closest unsupervised system
(which does not beatRBRANCH in F1).

4.1. Error analysis

Parsing figures can only be a component of evaluating
an unsupervised induction system. Low scores may indicate
systematic alternate analyses rather than true confusion, and
the Penn treebank is a sometimes arbitrary or even incon-
sistent gold standard. To give a better sense of the kinds
of errors the system is or is not making, we can look at
which sequences are most often over-proposed, or most of-
ten under-proposed, compared to the treebank parses.

Fig. 9 shows the 10 most frequently over- and under-
proposed sequences. The system’s main error trends can be
seen directly from these two lists. It formsMD VB verb
groups systematically, and it attaches the possessive parti-
cle to the right, like a determiner, rather than to the left.12

It provides binary-branching analyses withinNPs, normally
resulting in correct extraN constituents, likeJJ NN, which
are not bracketed in the treebank. In this case, the system’s
analysis is widely held to be superior to the treebank’s,
which was made extremely flat by design. However, not
all differences represent acceptable alternate analyses. Most
seriously, the system tends to attach post-verbal preposi-
tions to the verb and it gets confused by long sequences of
nouns (splitting them into multiple separate noun phrases).
A significant improvement over earlier systems is the ab-
sence of subject-verb groups, which disappeared when we
switched to Psplit(B) for initial completions; the more bal-
anced subject-verb analysis had a substantial combinatorial
advantage with Pbin(B).

4.2. Multiple constituent classes

We also ran the system with multiple constituent classes,
using a slightly more complex generative model in which
the bracketing generates a labeling which then generates the
constituents and contexts. The sets of labels for constituent
spans and distituent spans are forced to be disjoint (seeFigs.
3 and4).

10 Our system was trained on the same WSJ data, and then
tested on ATIS. EMILE and ABL are lexical systems described in
[11,18]. CDC-40, from[9], reflects training on much more data
(12M words).

11The primary cause of the lower F1 is that the ATIS corpus
is replete with span-one NPs; adding an extra bracket aroundall
single words raises our EVALB recall to 71.9; removing all unaries
from the ATIS gold standard gives an F1 of 63.3%.

12 Linguists have at times argued for both analyses: Halliday
[37] and Abney[38], respectively.
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Overproposed Underproposed

Rank Type Example Type Example

1 JJ NN last year NNP POS Friday's

2 MD VB will be TO CD CD to 1 million

3 DT NN a share NN NNS interest rates

4 NNP NNP New York NN NN vice president

5 RB VB n't be TO VB to be

6 JJ NNS common shares IN CD in 1988

7 NNP NN Bush administration NNP NNP POS Wall Street's

8 RB VBN n't been DT NN POS the company's

9 IN NN in addition RB CD only one

10 POS NN 's stock IN DT of the (of that)

Fig. 9. Constituent yields most frequently over- and under-proposed by our system. Also shown are the most frequent example of that
sequence, for concreteness.

Classes Tags Precision Recall F1 NP Recall PP Recall VP Recall S Recall

2 Treebank 63.8 80.2 71.1 83.4 78.5 78.6 40.7

12 Treebank 63.6 80.0 70.9 82.2 59.1 82.8 57.0

2 Induced 56.8 71.1 63.2 52.8 56.2 90.0 60.5

Fig. 10. Scores for the 2- and 12-class model with Treebank tags, and the 2-class model with induced tags.

Intuitively, it seems that more classes should help, by
allowing the system to distinguish different types of con-
stituents and constituent contexts. However, it seemed to
slightly hurt parsing accuracy overall.Fig. 10compares the
performance for 2 versus 12 classes; in both cases, only
one of the classes was allocated for distituents. Overall F1
dropped very slightly with 12 classes, but the category recall
numbers indicate that the errors shifted around substantially.
PP accuracy is lower, which is not surprising considering
that PPs tend to appear rather optionally and in contexts in
which other, easier categories also frequently appear. On the
other hand, embedded sentence recall is substantially higher,
possibly because of more effective use of the top-level sen-
tences which occur in the signature context�–�.

The classes found, as might be expected, range from
clearly identifiable to nonsense. Note that simply directly
clustering all sequences into 12 categories produced almost
entirely the latter, with clusters representing various dis-
tituent types.Fig. 11shows several of the 12 classes. Class
0 is the model’s distituent class. Its most frequent members
are a mix of obvious distituents (IN DT, DT JJ, IN DT, NN
VBZ) and seemingly good sequences likeNNP NNP. How-
ever, there are many sequences of 3 or moreNNP tags in a
row, and not all adjacent pairs can possibly be constituents
at the same time. Class 1 is mainly commonNP sequences,

class 2 is properNPs, class 3 isNPs which involve num-
bers, and class 6 isN sequences, which tend to be linguis-
tically right but unmarked in the treebank. Class 4 is a mix
of seemingly goodNPs, often from positions likeVBZ–NN
where they werenot constituents, and other sequences that
share such contexts with otherwise goodNP sequences. This
is a danger of not jointly modeling yield and context, and
of not modeling any kind of recursive structure. Class 5 is
mainly composed of verb phrases and verb groups. No class
corresponded neatly toPPs: perhaps because they have no
signature contexts. The 2-class model is effective at identi-
fying them only because they share contexts with a range
of other constituent types (such asNPs andVPs). Given the
success of Clark[9] in clustering sequences without brack-
eting constraints, it is likely that the multi-class model can
be made to be superior to the two-class model; however this
would likely require a degree of tying of probabilities across
classes.

4.3. Induced parts-of-speech

A reasonable criticism of the experiments presented so
far, is that we assume treebank part-of-speech tags as in-
put. This criticism could be two-fold. First, state-of-the-art
supervised PCFGs do not perform nearly so well with their
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Class 0 Class 1

NNP NNP New York NN VBD company said DT NN the company

NN IN percent of NN NN vice president JJ NNS common shares

IN DT of the NNS VBP companies are DT NNS the shares

DT JJ the first NNS VBD officials said DT JJ NN the third quarter

NN VBZ company is TO VB to be NN NNS interest rates

Class 2 Class 3

NNP NNP New York CD CD 100 million

NNP NNP NNP New York Stock (Exchange) CD NN 10 percent

CC NNP & Co. IN CD CD of 2 1/2

POS NN 's stock CD NNS million shares

NNP NNP NNP NNP New York Stock Exchange CD CD IN CD CD 200 million of 8 7/8

Class 4 Class 5 Class 6

VBN IN compared with MD VB will be JJ NN last year

JJ IN such as MD RB VB wo n' t be JJ NNS common shares

DT NN the company VBN IN compared with JJ JJ NN chief executive officer

JJ CC economic and WDT VBZ which is CD NNS million shares

DT JJ NN the third quarter JJ IN such as NNP NN Bush administration

Fig. 11. Most frequent members of several classes found.

input delexicalized. We may be reducing data sparsity and
making it easier to see a broad picture of the grammar, but
we are also limiting how well we can possibly do. It is cer-
tainly worth exploring methods which supplement or replace
tagged input with lexical input. However, we address here
the more serious criticism: that our results stem from clues
latent in the treebank tagging information which are con-
ceptually posterior to knowledge of structure. For instance,
some Penn Treebank tag distinctions, such as particle (RP)
vs. preposition (IN) or predeterminer (PDT) vs. determiner
(DT) or adjective (JJ), could be said to import into the tag
set distinctions that can only be made syntactically.

To show results from a complete grammar induction sys-
tem, we also did experiments starting with a clustering of
the words in the treebank. We used basically the baseline
method of word type clustering in[31] (which is close to
the methods of Finch[39]). For (all-lowercased) word types
in the Penn treebank, a 1000 element vector was made by
counting how often each co-occurred with each of the 500
most common words immediately to the left or right in Tree-
bank text and additional 1994–96 WSJ newswire. These vec-
tors were length-normalized, and then rank-reduced by an
SVD, keeping the 50 largest singular vectors. The resulting
vectors were clustered into 200 word classes by a weighted
k-means algorithm, and then grammar induction operated
over these classes. We do not believe that the quality of our
tags matches that of the better methods of Schütze[31],
much less the recent results of Clark[32]. Nevertheless,

English German Chinese

UP UR F1 UP UR F1 UP UR F1

LBRANCH 20.5 24.2 22.2 31.1 41.0 35.4 19.4 25.5 22.0

RBRANCH 54.1 67.5 60.0 38.8 56.2 45.9 26.1 31.3 28.4

CCM 63.8 80.2 71.1 52.0 83.8 64.2 32.7 42.2 36.8

UBOUND 78.3 100.0 87.7 60.2 100.0 75.2 75.5 100.0 86.1

Fig. 12. Performance of the model on various languages. English
data: 7422 sentences from the Penn treebank; German data: 1438
sentences from the NEGRA corpus; Chinese data 443 sentences
from the Chinese treebank.

using these tags as input still gave induced structure substan-
tially above right-branching.Fig. 10shows the performance
with induced tags compared to correct tags. Overall F1 has
dropped, but, interestingly,VP andS recall are higher. This
seems to be due to a marked difference between the induced
tags and the treebank tags: nouns are scattered among a dis-
proportionally large number of induced tags, increasing the
number of commonNP sequence types, but decreasing the
frequency of each.

4.4. Extension to other human languages

A grammar induction system should be as language-
independent as possible. To test how well our system
would work for languages other than English, we ran it
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Fig. 13. Overall F1 is non-decreasing until convergence (a) but per-type F1 is not necessarily so (b).

essentially unchanged on the two other bracketed treebanks
we had available: the NEGRA corpus (German,[40]) and
the Chinese Treebank[41]. The NEGRA corpus had 1438
sentences of length less than 10 after removal of punc-
tuation. Smoothing was proportionally reduced, and the
system was otherwise run identically to the English ex-
periments. The results are shown inFig. 12. The German
right-branching baseline is lower than for English, at 45.9%,
due to the more variable branching behavior of German.
Since the German gold parses are flatter than the English
ones, the upper bound for binary branching hypotheses
is lower, as well, at 75.2%, and the number of training
sentences is much smaller. Nonetheless, the system learns
structures which are substantially above right branching,
scoring 64.2%. At the time of these experiments, the Chi-
nese treebank had only 443 sentences of length up to 10
which had non-empty parses. On this data, the performance
was substantially less impressive, with the system scoring
only 36.8%, above the right-branching baseline of 28.4%,
but far below the upper bound of 86.1%. Worse, unlike for
the German and English, convergence in model likelihood
did not correspond to maximum F1. The relatively poor
performance on the Chinese data is partially attributable
to the much smaller training size, but also likely reflects a
real weakness in the system. One of the present model’s
strengths is its proper identification of the role of function
words, for example, grouping determiners with their fol-
lowing nouns. This kind of behavior is much less useful for
languages like Chinese, which has few such function words.

4.5. Convergence and stability

A serious issue with previous systems has been their sen-
sitivity to initial search choices and initial parameters. For
example, the conditional model of Klein and Manning[35]
had the drawback that the variance of final F1, and qualita-
tive grammars found, was fairly high, depending on small
differences in first-round random parses. The model pre-
sented here does not suffer from this: while it is clearly sen-
sitive to the quality of the input tagging, it is robust with
respect to smoothing parameters and data splits. Varying the

smoothing counts a factor of ten in either direction did not
change the overall F1 by more than 1%. Training on random
subsets of the training data brought lower performance, but
constantly lower over equal-size splits. Moreover, there are
no first-round random decisions to be sensitive to; the soft
EM procedure is deterministic.

Fig. 13 shows the overall F1 score and the data likeli-
hood according to our model during convergence.13 Sur-
prisingly, both are non-decreasing as the system iterates, in-
dicating that data likelihood in this model corresponds well
with parse accuracy.14 Fig. 13shows recall for various cat-
egories by iteration.NP recall exhibits the more typical pat-
tern of a sharp rise followed by a slow fall, but the other
categories, after some initial drops, all increase until conver-
gence. These graphs stop at 40 iterations. The system actu-
ally converged in both likelihood and F1 by iteration 38, to
within a tolerance of 10−10. The time to convergence varied
according to amount of smoothing, number of classes, and
tags used, but the system almost always converged within
80 iterations, usually within 40.

4.6. Partial supervision

For practical applications, such as building initial tree-
banks, there is not a great difference between a totally un-
supervised system and a weakly supervised one, in terms of
resources required. To test the effect of partial supervision,
we supplied the system with treebank parses for various
fractions of 90% of the training data, and tested on the re-
maining 10%. During training, analyses which crossed the
brackets of the supervision parses were given zero weight.
Fig. 14 shows F1 on the held-out 10% as supervision per-
cent increased. Accuracy goes up initially, though it drops
slightly at very high supervision levels. The interesting con-
clusion from this graph is that, while this model does not
parse as well in a supervised setting as a PCFG, it performs
better in an unsupervised setting, and its performance is

13The data likelihood is not shown exactly, but rather we show
the linear transformation of it calculated by the system.

14 Pereira and Schabes[6] find otherwise for PCFGs.
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Fig. 14. Partial supervision.

surprisingly close to its supervised limit in that unsupervised
setting.

5. Conclusions

We have presented a simple generative model for the un-
supervised distributional induction of hierarchical linguistic
structure which does not explicitly model recursion. The sys-
tem achieves the best published unsupervised parsing scores
on theWSJ-10 andATIS data sets. The induction algorithm
combines the benefits of EM-based parameter search and
distributional clustering methods. We have shown that this
method acquires a substantial amount of correct structure,
to the point that the most frequent discrepancies between
the induced trees and the treebank gold standard are sys-
tematic alternate analyses, many of which are linguistically
plausible. We have shown that the system is not reliant on
supervised POS tag input, and demonstrated increased ac-
curacy, speed, simplicity, and stability compared to previous
systems.
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