Lecture 8: The Berkeley Parser

Jelle Zuidema

Institute for Logic, Language and Computation University of Amsterdam, The Netherlands

Unsupervised Language Learning 2014 University of Amsterdam

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Three ways forward

Maximum Likelihood PCFG (with traditional linguistic categories) does not work well... So:

- Change the generative model
 - CCM, DMV, UDOP
- Change the supervision mode
 - Learn from bracketed sentences discover constituent labels (categorization) (Lari & Young, 1990; Borensztajn & Zuidema, 2007);
 - Learn from annotated treebank trees discover *finer* constituent labels (Klein & Manning, 2003; Prescher, 2005; Matzuzaki et al., 2005; Petrov et al., 2006)

(日) (日) (日) (日) (日) (日) (日)

Three ways forward (ctd)

Change the objective function

$$\arg\max_{g} P(g|d) = \arg\max_{g} P(g)P(d|g)$$

BMM, Bayesian Tree Substitution Grammar (O'Donnell et al. 2009, Cohn & Blunsom 2009, Knight 2009)

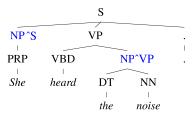
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

For next class, read Knight (2009; p.1-13) instead of Zuidema (2007)!

Learning Accurate, Compact, and Interpretable Tree Annotation

Slav Petrov, Leon Barrett, Romain Thibaux, Dan Klein

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○



 Annotation refines base treebank symbols to improve statistical fit of the grammar

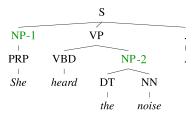
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Parent annotation [Johnson '98]



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Automatic clustering?

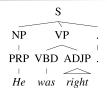
Previous Work:

Manual Annotation [Klein & Manning '03]

- Manually split categories
 - NP: subject vs object
 - DT: determiners vs demonstratives
 - IN: sentential vs prepositional
- Advantages:
 - Fairly compact grammar
 - Linguistic motivations
- Disadvantages:
 - Performance leveled out
 - Manually annotated

Model	F1
Naïve Treebank Grammar	72.6
Klein & Manning '03	86.3

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

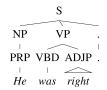


Previous Work: Prescher '05] Automatic Annotation Induction

- Advantages:
 - Automatically learned:

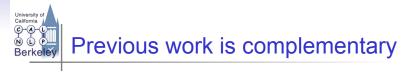
Label *all* nodes with latent variables. Same number k of subcategories for all categories.

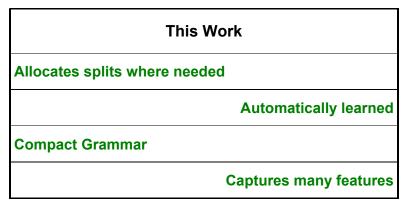
- Disadvantages:
 - Grammar gets too large
 - Most categories are oversplit while others are undersplit.



[Matsuzaki et. al '05,

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7





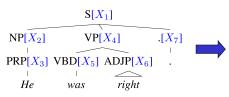
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ - のへで

University of California C+A+L N L P Berkeley

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories



Just like Forward-Backward for HMMs.

Backward

was

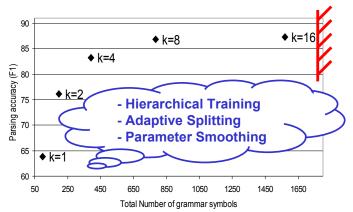
right

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

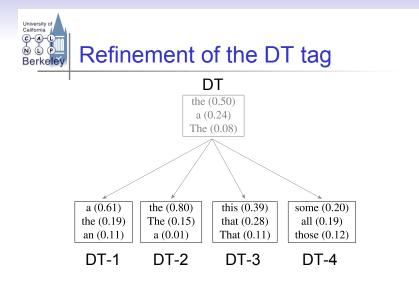
He

Forward

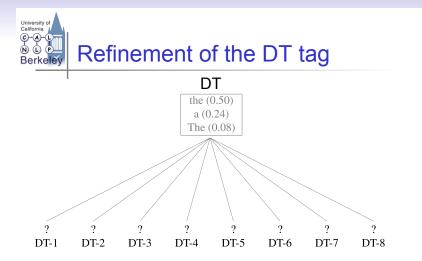
X.



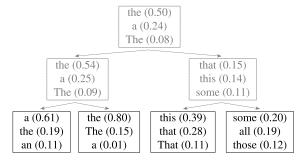
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



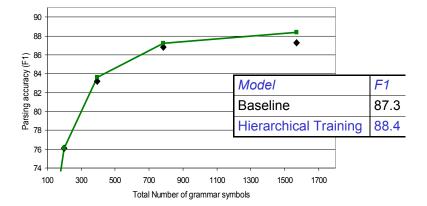
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

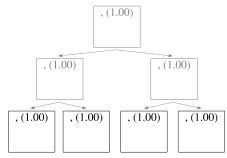


◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

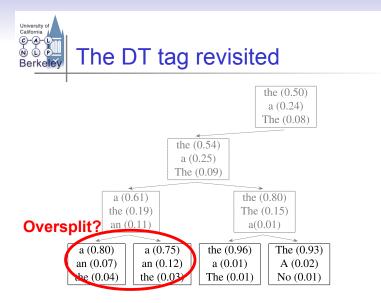


◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 「豆」 のへで

 Splitting all categories the same amount is wasteful:

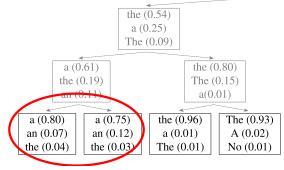


▲□▶▲□▶▲□▶▲□▶ □ のQ@

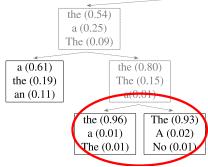


◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = のへで

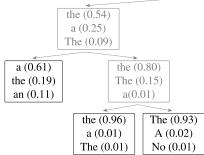
- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

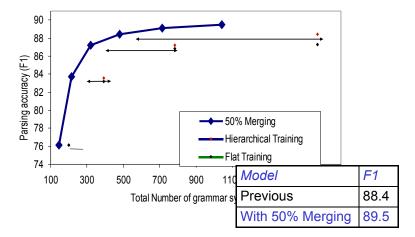
 Evaluate loss in likelihood from removing each split =

Data likelihood with split reversed

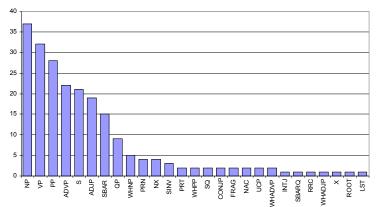
Data likelihood with split

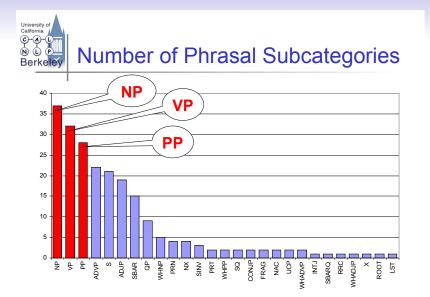
 No loss in accuracy when 50% of the splits are reversed.

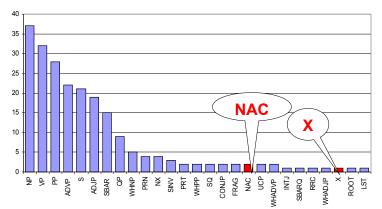
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



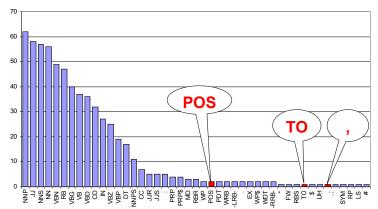
・ロト・西ト・西ト・西・ うろう



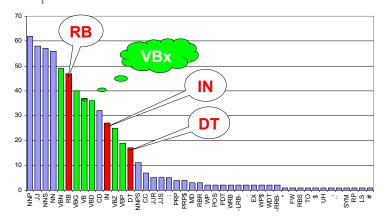


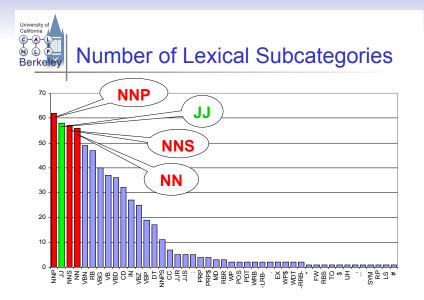


▲□▶▲□▶▲目▶▲目▶ 目 のへで



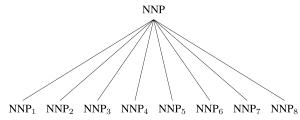
▲□▶▲□▶▲□▶▲□▶ □ ● ● ●





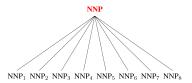
▲□▶▲□▶▲□▶▲□▶ □ のへで

- Heavy splitting can lead to overfitting
- Idea: Smoothing allows us to pool statistics



▲□▶▲□▶▲□▶▲□▶ □ のQ@

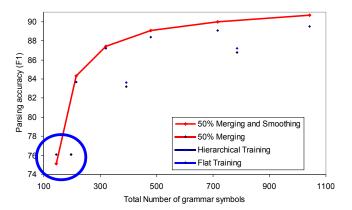
$$p_x = \mathcal{P}(A_x \to BC)$$



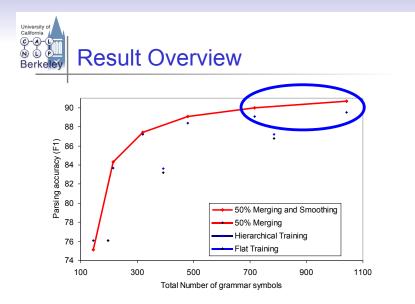
◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

$$p'_x = (1 - \alpha)p_x + \alpha \bar{p}$$

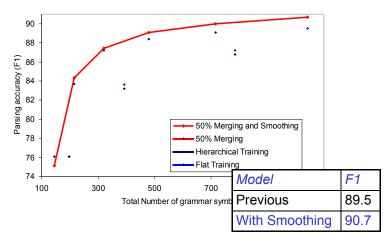
where
$$\bar{p} = \frac{1}{n} \sum_{x} p_x$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□> ◆□> ◆目> ◆目> ◆目> ◆□>



Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
This Work	90.2	89.7

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = − の < @

Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
This Work	90.2	89.7

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	I
PRP-1	it	he	they
PRP-2	it	them	him

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

	1 1		
CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Conclusions

- New Ideas:
 - Hierarchical Training
 - Adaptive Splitting
 - Parameter Smoothing
- State of the Art Parsing Performance:
 - Improves from X-Bar initializer 63.4 to 90.2
- Linguistically interesting grammars to sift through.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Multi-Word Expressions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Idiomatic expressions

- by and large
- lo and behold
- beat a dead horse
- make amends
- cast aspersions
- a flash in the pan

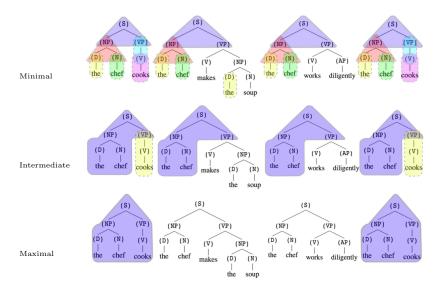
Multi-Word Expressions

Formulaic expressions

•

- declined to comment (WSJ)
- Stocks went up to \$ 15.4 from \$ 15.3 (WSJ)
- I want to travel from Baltimore to Oakland (ATIS)
- Ik wil vandaag van Amsterdam naar Leuven (OVIS)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



▲□▶▲圖▶▲≣▶▲≣▶ … 差 …の≪

PTSGs: Old Generative Story

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ ○ ◆ ○ ◆

Probabilistic Tree Substitution Grammars

An PTSG is a 5-tuple $\langle V_n, V_t, S, T, w \rangle$

$$w: T \rightarrow [0, 1]$$
, such that $\forall r \sum_{t:r(t)=r} w(t) = 1$

The probability of a derivation:

[hidden]

$$P(d = t_1 \circ \ldots \circ t_n) = \prod_{i=1}^n (w(t_i))$$

The probability of a parse:

[observable]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

$$P(p) = \sum_{d:\hat{d}=p} \left(P(d) \right)$$

PTSGs: New Generative Story

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

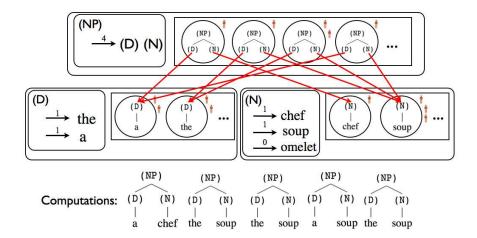
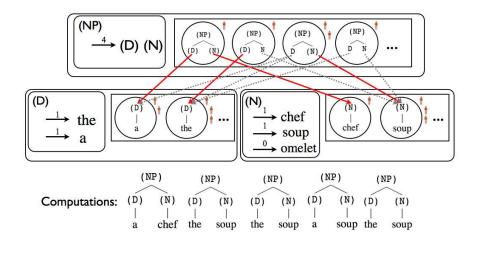


Figure 12: Dependentiation of a possible state of an edeptor proprior of the $1 \ge 100^{\circ}$



・ロト・(部・・ヨ・・ヨ・ うへぐ