Recap

Split-head transform

[e]
[e]
(e]e}

o

Lecture 6: Transforming Dependency to
Context-free Grammars

Jelle Zuidema
ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2014

Recap

Plan for today

Recap
UDOP
DG
CH

Split-head transform
Projective Bilexical Dependency Grammars
Split-head encoding
The fold-unfold transform

(based on slides from Mark Johnson)

Split-head transform

Recap Split-head transform

[e]
[e]

(e]e} o

How Does U-DOP Operate?

1. Assign all possible binary trees to strings where each root node is
labeled S and other nodes labeled X, and store them in a parse forest

E.g., for WSJ sentence Investors suffered heavy losses:

S S
S
X
X X
/\X X/\ X/\
Investors suffered heavy losses Investors suffered heavy losses Investors suffered heavy losses

S S
X /\
T X

Investors suffered heavy losses Investors suffered heavy losses

Recap

Split-head transform
o
o
o

(e]e}

2. Convert the set of all trees into all subtrees. For instance:

X X
PN
Investors suffered heavy losses — Suffered heavy
S
X X
Investors losses suffered
S S

/\X X /X\

heavy losses
Investors suffered

=> Note that some subtrees contain discontiguous yields

Recap

Split-head transform
o
o
oo o

3. Compute most probable tree among shortest derivations for new string

(as in DOP):
Probability of...
|71
asubtree t: P@) =
Zt' : root(t')=root(t) [71
a derivation d =1,°...% : Ptio...°ty) = L1 Pty

aparsetree T : P(T) = Y. I1 P(tiq)

Recap

U-DOP compared to other models on WSJ-10

(using 7422 sentences up to 10 words, as in Klein and Manning 2004)

Model F-score on
WSJ-10
CCM 71.9
DMV 52.1
DMV+CCM 77.6
U-DOP 82.7
U-DOP without 72.1

discontiguous subtrees

CCM: Klein and Manning (2002) based on all linear
(contiguous) contexts without holes
DMV: Klein and Manning (2004) using

dependency structures
U-DOP: equivalent to CCM plus discontiguous contexts with
holes: 11% improvement in F-score

Split-head transform

Recap

Shortcomings of U-DOP

» Viewed from the statistical inference
perspective, the model relies much on
heuristics: initialization, training & stopping

* Results with UML-DOP (Bod,06) suggests it
1s approximately Maximum Likelihood...

* ... but not over the entire PTSG space, as
there are exponentially many subtrees, and
exponentially many trees for a sentence!

* Implementation must somehow restrict
space; efficiency remains the achilles heel.

ESSLLI'08, Hamburg Grammar Induction & Language Evolution

Recap

e0

Dependencies
Dependency Model with Valence
Combined Model

Dependency Model Evaluation

Definitions

Definitions:

@ a dependency d is a pair (h, a), where h is the head and a the
argument, both are words in sentence s;

@ a dependency structure D is set of dependencies which form a
planar, acyclic graph rooted in ROOT;

@ the skeleton G of a dependency structure specifies the arrows,
but not the words; G and s together fully determine the
dependency structure.

A/\m
° ° °

° ° ROOT

Frank Keller Natural Language Understanding

Recap

e0
Dependencies
Dependency Model with Valence
Combined Model

Dependency Model Evaluation

Dependency Model with Valence

Klein and Manning (2004) propose a model that generates
dependencies outwards from the head:

@ generate a set of arguments on one side of the head, then a
STOP argument to terminate;
@ the do the same thing on the other side;

@ terminate with probability Pstop, if not STOP then choose
another argument with probability Pcyoose-

/

I
h

a, a,
A A sror

Frank Keller Natural Language Understanding

Recap

e0

Extended Chomsky Hierarchy

language grammar rules
{a, b, cbabb} Set €
(ab)" ngram (a,b),{b,a),(ab, a)
a"ba™ Left-linear S —> AB,B — bA
a"b" Context-free S —» aSb,S — ab

a"b"c"d"1 <n

Range Concatenation
Unrestricted

Slabc] — Ala, c]B[b]

Recap

oe

Probabilistic Extensions

grammar probabilistic grammar
Set Probability distribution
ngram Markov model
Left-linear Hidden Markov (HMM)
Context-free PCFG
Range Concatenation PLCRS
Unrestricted

Split-head transform

CFG encoding of Dependency Grammars

¢ Given that dependency grammars must be somewhere on the
CH, presumable below contextfree, can we reuse the
technology we developed for context-free grammars (rule
extraction, CYK, Inside algorithm, Inside-outside) for
dependency grammars?

¢ Yes!- at least for some kind of dependency grammars and
given the right preprocessing.

Recap Split-head transform
°

[e]
(e]e}

o

Plan for today

Split-head transform
Projective Bilexical Dependency Grammars

Recap Split-head transform
°

Projective Bilexical Dependency Grammars

» Projective Bilexical Dependency Grammar (PBDG)

0" “gave Sandy* “gave
gave” “dog the* “dog
gave” “bone a* “bone

» A dependency parse generated by the PBDG
0 Sandy gave the dog a bone

» Weights can be attached to dependencies (and preserved in CFG
transforms)

Recap Split-head transform
°
o

oo o

A naive encoding of PBDGs as CFGs

S — X, where 07u
Xu — u
Xu — Xv Xu where v u
X — X X where u v
u u v
S
I
X
ave
XSa‘ndy Xgave
Sandy X ave bone
gave Xdog Xa bone
| 5 I I
gave Xth‘e X(‘log a bone
the dog

Recap

Split-head transform
o
°
o

(e]e}

Spurious ambiguity in naive encoding

» Naive encoding allows dependencies on different sides of head to
be freely reordered

= Spurious ambiguity in CFG parses (not present in PBDG parses)

S
|
X S
. —seave |
Sandy Xgavc ’//ng\C\
Sandy X ave Xpone X ave Xpone
—
ave Xdo X, bone X ave X dog X, bone
& € I f e g I f
gave Xt}ﬁc o a bone XSﬁndy Xg‘avc X“ﬂc)(C}Og a bone
the dog Sandy gave the dog

Recap

Split-head transform
o
°
o

Parsing naive CFG encoding takes O(n°) time

(e]e}

» A production schema such as

X — XX

u u v

has 5 variables, and so can match input in O(n°) different ways

Recap Split-head transform
o

°
(e]e}

o

Plan for today

Split-head transform

Split-head encoding

Recap Split-head transform
o

°
(e]e} [e]

Simple split-head encoding

» Replace input word u with a left variant u, and a right variant u,
(can be avoided in practice with fancy book-keeping)

Sandy gave the dog a bone
)

Sandy, Sandy, gave, gave the, the dog, dog a, a bone, bone

» PCFG separately collects left dependencies and right dependencies

S
N S — X, where 0" u
e X — L R whereuveX
L R u u u
_eave _ mave L — u
XSandy Lgave gaveR Xbone I— - X |— Where VK\U
P — P u v u
Sandy ‘ gach Xdog abone UR — U,
| A >
gave, gave thedog UR - UR XV where u” “v

9/22

Recap Split-head transform

o]
o]
[o]e] []
Simple split-head CFG parse
S
I
X
o Teae
/LWE\ R
o eave
End\y nge /‘gy& Aﬁne\
Lo somsR O L R
Sandy, Sandy, —gave, gave, /Ldgy\ P /Xd\ Lb?ue
/XK L‘%Og T L‘a a‘R bone, bone,
Lt‘he th?R dog, dog, a, a,
the, the,

10/22

Recap Split-head transform
o
o

oo °

L and R heads are phrase-peripheral = O(n%)

» Heads of L and R are always at right (left) edge

X, S — Xu where 0y
- X — L R wherevueX
L R u u u
/!u u!\ Lu -
Xw i XV3 Lu — XV Lu where v u
Lu uR UR — U,
X L R X R — R X_ whereu v
u u v
Vo ‘u u‘ Va4
Ué Ur
» X — L R take O(n%) A
u u u —_—
» R — R X take O(n) uR %
u u v

Recap Split-head transform
o

[e]
(e]e}

Plan for today

Split-head transform

The fold-unfold transform

Recap Split-head transform
The Unfold-Fold transform

» Unfold-fold originally proposed for transforming recursive programs;
used here to transform CFGs into new CFGs

» Unfolding a nonterminal replaces it with its expansion

A—alby
A—aBxy A= by
B — [N Bﬂﬂ
B — B !

B —
» Folding is the inverse of unfolding (replace RHS with nonterminal)
A—afly A—aBxy

B—p = B—p

» Transformed grammar generates same language (Sato 1992)

Recap

Split-head transform
o
o
oo °

Unfold-fold converts O(n*) to O(n®) grammar

» Unfold X responsible for O(n*) parse time

=

u

u

Xrr
Ll

— X &

L
B L — L RL

v v v

» Introduce new non-terminals M (doesn't change language)
xy

M — RL
x Ty

x Yy

» Fold two children of Lu into XMy

L, — wu L, — wu

Lu — LV R Lu = Lu — Lv Vl\/lu
M — RL M — RL
x Uy x y x Uy x y

14 /22

Recap Split-head transform

Transformed grammar collects left and right
dependencies separately

LR LR
X/j X = M M~
L R L R L, R L R L R L, R
‘V '\’k ‘U U‘ AV AY o ‘V Vk ‘u U‘ AV v o

LIZ Llr UZ LI’

X, constituents (which cause O(n*) parse time) no longer used
Head annotations now all phrase peripheral = O(n?) parse time
Dependencies can be recovered from parse tree
Basically same as Eisner and Satta O(n®) algorithm
» explains why Inside-Outside sanity check fails for Eisner/Satta
» two copies of each terminal = each terminals’ Outside
probability is double the Inside sentence probability

vV VvyVvYyy

Recap

Split-head transform
o
o
°

Parse using O(n®) transformed split-head grammar

(e]e}

S
/L% /&VR\
LSandy sw%/c //w’\flbonc\ bone
R Lo I
Sandy, Sandy, J&Mdk P L, M
el L R L
gave, gave, Lthe theMaog a, a, bone[bone,

0 Sandy gave the dog a bone

16 /22

Recap Split-head transform
o

Parsing time of CFG encodings of same PBDG

CFG schemata sentences parsed / second
Naive O(n®) CFG 45.4
O(n*) simple split-head CFG 406.2
O(n®) transformed split-head CFG 3580.0

» Weighted PBDG; all pairs of heads have some dependency weight
» Dependency weights precomputed before parsing begins

» Timing results on a 3.6GHz Pentium 4 machine parsing section 24
of the PTB

» CKY parsers with grammars hard-coded in C (no rule lookup)
» Dependency accuracy of Viterbi parses = 0.8918 for all grammars

» Feature extraction is much slower than even naive CFG

	Recap
	UDOP
	DG
	CH

	Split-head transform
	Projective Bilexical Dependency Grammars
	Split-head encoding
	The fold-unfold transform

