
Recap Split-head transform

Lecture 6: Transforming Dependency to
Context-free Grammars

Jelle Zuidema
ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2014

Recap Split-head transform

Plan for today

Recap
UDOP
DG
CH

Split-head transform
Projective Bilexical Dependency Grammars
Split-head encoding
The fold-unfold transform

(based on slides from Mark Johnson)

Recap Split-head transform

How Does U-DOP Operate?

1. Assign all possible binary trees to strings where each root node is

labeled S and other nodes labeled X, and store them in a parse forest

E.g., for WSJ sentence Investors suffered heavy losses:

Investors suffered heavy losses

X

X

S

 Investors suffered heavy losses

X

X

S

 Investors suffered heavy losses

X

X

S

Investors suffered heavy losses

X

X

S

 Investors suffered heavy losses

XX

S

Recap Split-head transform

2. Convert the set of all trees into all subtrees. For instance:

Investors suffered

X

heavy losses

X

suffered heavy

X

Investors losses

X

X

S

suffered

X

X

Investors suffered

X

X

S

heavy losses

XX

S

=> Note that some subtrees contain discontiguous yields

Recap Split-head transform

3. Compute most probable tree among shortest derivations for new string

(as in DOP):

Probability of…

P(t) =

| t |

Σt' : root(t')=root(t) | t' |
a subtree t :

 a derivation d = t1°...°tn : P(t1 ° ... °tn) = Πi P(ti)

 a parse tree T : P(T) = Σd Πi P(tid)

Recap Split-head transform

U-DOP compared to other models on WSJ-10
(using 7422 sentences up to 10 words, as in Klein and Manning 2004)

Model F-score on
WSJ-10

CCM 71.9
DMV 52.1

DMV+CCM 77.6
U-DOP 82.7

U-DOP without
discontiguous subtrees

72.1

CCM: Klein and Manning (2002) based on all linear
(contiguous) contexts without holes

DMV: Klein and Manning (2004) using
dependency structures

U-DOP: equivalent to CCM plus discontiguous contexts with
holes: 11% improvement in F-score

Recap Split-head transform

ESSLLI'08, Hamburg Grammar Induction & Language Evolution

Shortcomings of U-DOP
• Viewed from the statistical inference

perspective, the model relies much on
heuristics: initialization, training & stopping

• Results with UML-DOP (Bod,06) suggests it
is approximately Maximum Likelihood...

• ... but not over the entire PTSG space, as
there are exponentially many subtrees, and
exponentially many trees for a sentence!

• Implementation must somehow restrict
space; efficiency remains the achilles heel.

Recap Split-head transform

Introduction
Constituent Context Model

Dependency Model

Dependencies
Dependency Model with Valence
Combined Model
Evaluation

Definitions

Definitions:

a dependency d is a pair 〈h, a〉, where h is the head and a the
argument, both are words in sentence s;
a dependency structure D is set of dependencies which form a
planar, acyclic graph rooted in ROOT;
the skeleton G of a dependency structure specifies the arrows,
but not the words; G and s together fully determine the
dependency structure.

Frank Keller Natural Language Understanding 20

Recap Split-head transform

Introduction
Constituent Context Model

Dependency Model

Dependencies
Dependency Model with Valence
Combined Model
Evaluation

Dependency Model with Valence

Klein and Manning (2004) propose a model that generates
dependencies outwards from the head:

generate a set of arguments on one side of the head, then a
STOP argument to terminate;

the do the same thing on the other side;

terminate with probability PSTOP, if not STOP then choose
another argument with probability PCHOOSE.

Frank Keller Natural Language Understanding 21

Recap Split-head transform

Extended Chomsky Hierarchy

language grammar rules
{a, b , cbabb} Set ∈

(ab)n ngram 〈a, b〉 , 〈b , a〉 , 〈ab , a〉
anbam Left-linear S → AB ,B → bA
anbn Context-free S → aSb ,S → ab

anbncndn |1 ≤ n Range Concatenation S[abc]→ A [a, c]B[b]
Unrestricted

Recap Split-head transform

Probabilistic Extensions

grammar probabilistic grammar
Set Probability distribution

ngram Markov model
Left-linear Hidden Markov (HMM)

Context-free PCFG
Range Concatenation PLCRS

Unrestricted

Recap Split-head transform

CFG encoding of Dependency Grammars

• Given that dependency grammars must be somewhere on the
CH, presumable below contextfree, can we reuse the
technology we developed for context-free grammars (rule
extraction, CYK, Inside algorithm, Inside-outside) for
dependency grammars?

• Yes!- at least for some kind of dependency grammars and
given the right preprocessing.

Recap Split-head transform

Plan for today

Recap
UDOP
DG
CH

Split-head transform
Projective Bilexical Dependency Grammars
Split-head encoding
The fold-unfold transform

Recap Split-head transform

Projective Bilexical Dependency Grammars

◮ Projective Bilexical Dependency Grammar (PBDG)

0 gave Sandy gave
gave dog the dog
gave bone a bone

◮ A dependency parse generated by the PBDG

0 Sandy gave the dog a bone

◮ Weights can be attached to dependencies (and preserved in CFG
transforms)

4 / 22

Recap Split-head transform

A naive encoding of PBDGs as CFGs

S → X
u

where 0 u

X
u
→ u

X
u
→ X

v
X

u
where v u

X
u
→ X

u
X

v
where u v

gave

the dog

X
the

X
dog

X
dog

X
gave

X
gave

X
bone

X
a

a

X
bone

bone

X
gave

X
Sandy

Sandy

X
gave

S

5 / 22

Recap Split-head transform

Spurious ambiguity in naive encoding

◮ Naive encoding allows dependencies on different sides of head to
be freely reordered

⇒ Spurious ambiguity in CFG parses (not present in PBDG parses)

gave

the dog

X
the

X
dog

X
dog

X
gave

X
gave

X
bone

X
a

a

X
bone

bone

X
gave

X
Sandy

Sandy

X
gave

S

Sandy the dog

X
the

X
dog

X
dog

X
bone

X
a

a

X
bone

bone

X
gave

X
gave

gave

X
Sandy

X
gave

X
gave

S

6 / 22

Recap Split-head transform

Parsing naive CFG encoding takes O(n5) time

◮ A production schema such as

X
u
→ X

u
X

v

has 5 variables, and so can match input in O(n5) different ways

k

Xu

u

Xu

Xv

vi j

7 / 22

Recap Split-head transform

Plan for today

Recap
UDOP
DG
CH

Split-head transform
Projective Bilexical Dependency Grammars
Split-head encoding
The fold-unfold transform

Recap Split-head transform

Simple split-head encoding

◮ Replace input word u with a left variant uℓ and a right variant ur

(can be avoided in practice with fancy book-keeping)

Sandy gave the dog a bone
⇓

Sandy
ℓ

Sandy
r

gave
ℓ

gave
r

the
ℓ

the
r

dog
ℓ

dog
r

a
ℓ

a
r

bone
ℓ

bone
r

◮ PCFG separately collects left dependencies and right dependencies

the doggave
ℓ

gave
r

gave
R X

dog

gave
R X

bone

a bone

gave
R

L
gave

X
Sandy

Sandy

L
gave

X
gave

S

S → X
u

where 0 u

X
u
→ L

u u
R where u ∈ Σ

L
u
→ ul

L
u
→ X

v
L

u
where v u

u
R → ur

u
R →

u
R X

v
where u v

9 / 22

Recap Split-head transform

Simple split-head CFG parse

dog
R

X
Sandy

L
Sandy

Sandy
ℓ

X
dog

gave
r

gave
ℓ

gave
R

gave
R

L
a

a
ℓ

a
R

a
r

X
a

L
bone

bone
ℓ

L
bone

bone
r

bone
R

X
bone

Sandy
R

Sandy
r

L
gave

L
gave

X
gave

S

gave
R

L
the

the
ℓ

the
R

the
r

X
the

L
dog

dog
ℓ

L
dog

dog
r

10 / 22

Recap Split-head transform

L
u

and
u
R heads are phrase-peripheral ⇒ O(n4)

◮ Heads of L
u

and
u
R are always at right (left) edge

u
R

u
r

u
R

u
ℓ

X
u

L
u

X
v1

L
u

L
u

X
v2

X
v3

X
v4

u
R

S → X
u

where 0 u

X
u
→ L

u u
R where u ∈ Σ

L
u
→ ul

L
u
→ X

v
L

u
where v u

u
R → ur

u
R →

u
R X

v
where u v

◮ X
u
→ L

u u
R take O(n3)

◮
u
R →

u
R X

v
take O(n4)

i = u

u
R

u
R

X
v

vj k

11 / 22

Recap Split-head transform

Plan for today

Recap
UDOP
DG
CH

Split-head transform
Projective Bilexical Dependency Grammars
Split-head encoding
The fold-unfold transform

Recap Split-head transform

The Unfold-Fold transform
◮ Unfold-fold originally proposed for transforming recursive programs;

used here to transform CFGs into new CFGs

◮ Unfolding a nonterminal replaces it with its expansion

A → α B γ

B → β1

B → β2

. . .

⇒

A → α β1 γ

A → α β2 γ

B → β1

B → β2

. . .

◮ Folding is the inverse of unfolding (replace RHS with nonterminal)

A → α β γ

B → β

. . .

⇒

A → α B γ

B → β

. . .

◮ Transformed grammar generates same language (Sato 1992)

13 / 22

Recap Split-head transform

Unfold-fold converts O(n4) to O(n3) grammar

◮ Unfold X
v

responsible for O(n4) parse time

L
u
→ ul

L
u
→ X

v
L

u

X
v
→ L

v v
R

⇒
L

u
→ ul

L
u
→ L

v v
R L

u

◮ Introduce new non-terminals
x
M

y
(doesn’t change language)

x
M

y
→

x
R L

y

◮ Fold two children of L
u

into
x
M

y

L
u
→ ul

L
u
→ L

v v
R L

u

x
M

y
→

x
R L

y

⇒

L
u
→ ul

L
u
→ L

v v
M

u

x
M

y
→

x
R L

y

14 / 22

Recap Split-head transform

Transformed grammar collects left and right

dependencies separately

u
R

u
r

u
ℓ

X
v

v
RL

v

L
u u

R

X
v′

L
v′ v′

RL
u

⇒
u
M

v′

u
r

u
ℓ

v
RL

v

L
u u

R

L
v′ v′

RL
u

v
M

u

u
R

◮ X
v

constituents (which cause O(n4) parse time) no longer used
◮ Head annotations now all phrase peripheral ⇒ O(n3) parse time
◮ Dependencies can be recovered from parse tree
◮ Basically same as Eisner and Satta O(n3) algorithm

◮ explains why Inside-Outside sanity check fails for Eisner/Satta
◮ two copies of each terminal ⇒ each terminals’ Outside

probability is double the Inside sentence probability
15 / 22

Recap Split-head transform

Parse using O(n3) transformed split-head grammar

S

dog
r

the
r

L
dogthe

R

the
M

dog

the
ℓ

L
the

L
dog

dog
ℓ

gave
r

gave
R

gave
M

dog

gave
ℓ

dog
R

gave
R

a
ℓ

a
r

a
R

bone
ℓ

L
bone

a
M

bone
L

a

L
bone

gave
M

bone bone
R

bone
r

gave
RL

gave

L
gaveSandy

R

Sandy
M

gave
L

Sandy

Sandy
ℓ

Sandy
r

0 Sandy gave the dog a bone

16 / 22

Recap Split-head transform

Parsing time of CFG encodings of same PBDG

CFG schemata sentences parsed / second
Naive O(n5) CFG 45.4

O(n4) simple split-head CFG 406.2
O(n3) transformed split-head CFG 3580.0

◮ Weighted PBDG; all pairs of heads have some dependency weight

◮ Dependency weights precomputed before parsing begins

◮ Timing results on a 3.6GHz Pentium 4 machine parsing section 24
of the PTB

◮ CKY parsers with grammars hard-coded in C (no rule lookup)

◮ Dependency accuracy of Viterbi parses = 0.8918 for all grammars

◮ Feature extraction is much slower than even naive CFG

17 / 22

	Recap
	UDOP
	DG
	CH

	Split-head transform
	Projective Bilexical Dependency Grammars
	Split-head encoding
	The fold-unfold transform

