Recaj o UDOP

Dependency Grammars

Lecture 5: UDOP, Dependency Grammars

Jelle Zuidema ILLC, Universiteit van Amsterdam

Recap o UDOP

Dependency Grammars o

	Generative Model					
objective	PCFG	PTSG	CCM	DMV		
heuristic	Wolff (1984)	UDOP				
ML	IO		K&M'05	K&M'04		
MAP	Stolcke'94					

Dependency Grammars

A Nested Distributional Model

- Klein and Manning (2002) propose a model that:
 - Ties spans to linear contexts (like distributional clustering)
 - Considers only proper tree structures
 - Has no symmetries to break (like a dependency model)

Generative model

- *S* is a sentence
- *B* is a bracketing
- *P*_{*bin}(<i>B*) : uniform prob. over binary bracketings</sub>
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}
- $P(S,B) = P_{bin}(B) P(S|B)$
- $P(S|B) = \prod P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$

Unsupervised Language Learning

ULL'11

Generative model

- *S* is a sentence
- *B* is a bracketing
- *P*_{*bin}(<i>B*) : uniform prob. over binary bracketings</sub>
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}
- $P(S,B) = P_{bin}(B) P(S|B)$
- $P(S|B) = \prod P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$

Unsupervised Language Learning

ULL'11

Generative model

- *S* is a sentence
- *B* is a bracketing
- *P*_{bin}(*B*) : uniform prob. over binary bracketings
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}

•
$$P(S,B) = P_{bin}(B) P(S|B)$$

•
$$P(S|B) = \prod_{i < j} P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$$

Unsupervised Language Learning

ULL'11

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

ULL'11

Recap

UDOP

Dependency Grammars

Constituent-Context Model (CCM)

P(S,B) = P(B) P(S|B)

factory payrolls fell in september

P(*B*)

P(S|B)

U

Recap •

- Defective probability model;
- Good empirical performance;
- "heuristic" rather than "maximum likelihood";
- Dead end?

Recap o UDOP

Dependency Grammars O

Shortcomings of CCM

• CCM neglects dependencies that are *non*-contiguous:

LIDOP

- British Airways carried more people than cargo (WSJ)
- Most companies in Vietnam are small-sized (Business in Asia)
- =>We need an *all-subtrees* model, rather than *all-substrings* model: grammar induction with **PTSG** rather than **PCFG**

Probabilistic Tree Substitution Grammars

- Another generative model
- String sets same as those of context-free grammars
- Larger set of tree languages
- Probabilistically richer than PCFGs (PCFG class is properly contained in PTSG class).

The 'all-subtrees approach' to unsupervised induction

- Use counts of *all* subtrees from *all* possible trees of sentences to predict the most probable parse trees for (new) sentences (maximalist approach)
- All-subtrees models have already been widely used in *supervised* parsing:

DOP, Tree-Kernels, PTSG: Bod (1993, 2003), Collins and Duffy (2002, 2004), Sima'an (2003), Goodman (2003), Kudo et al. (2005), Moschitti et al (2006) ...

- Alternative to Bod's maximalism: Parsimonious Dataoriented Parsing (Zuidema, 2007)
- Recently, application of DOP to unsupervised induction

LIDOP

How can we learn PTSGs?

- PTSGs: probabilistic tree-substitution grammars:
 - productive units can span several levels of constituent structure
 - DOP: PTSG where subtrees are learned from a treebank
- We will first deal with **supervised** DOP , next with **unsupervised** DOP ("U-DOP")

Basic idea of (supervised) DOP: use all subtrees from a treebank as probabilistic tree grammar (Scha, 1990; Bod 1993,1998)

Given an extremely simple treebank consisting of two tree structures:

=> The first derivation is preferred if we want to maximize 'analogy' with corpus. ESSLLI'08, Hamburg Grammar Induction & Language Evolution

sh e

saw

she

the dress

the dress with the telescope

- DOP1: weights of subtrees are determined by their relative frequencies in a corpus;
- Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000): *"structural analogy"*
- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: Most probable shortest derivation (Bod 2003, Zollmann and Sima'an 2005)
- **ML-DOP** uses *EM*, **PDOP** can be given Bayesian interpretation (*work in progress*)

- DOP1: weights of subtrees are determined by their relative frequencies in a corpus;
- Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000): *"structural analogy"*
- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: Most probable shortest derivation (Bod 2003, Zollmann and Sima'an 2005)
- **ML-DOP** uses *EM*, **PDOP** can be given Bayesian interpretation (*work in progress*)

- DOP1: weights of subtrees are determined by their relative frequencies in a corpus;
- Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000): *"structural analogy"*
- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: *Most probable shortest derivation* (Bod 2003, Zollmann and Sima'an 2005)
- **ML-DOP** uses *EM*, **PDOP** can be given Bayesian interpretation (*work in progress*)

- DOP1: weights of subtrees are determined by their relative frequencies in a corpus;
- Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000): *"structural analogy"*
- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: Most probable shortest derivation (Bod 2003, Zollmann and Sima'an 2005)
- **ML-DOP** uses *EM*, **PDOP** can be given Bayesian interpretation (*work in progress*)

- DOP1: weights of subtrees are determined by their relative frequencies in a corpus;
- Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000): *"structural analogy"*
- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: *Most probable shortest derivation* (Bod 2003, Zollmann and Sima'an 2005)
- ML-DOP uses *EM*, PDOP can be given Bayesian interpretation (*work in progress*)

Recap o

How does DOP determine the 'best' tree?

• Shortest derivation (of fewest subtrees) maximizes overlaps with previous sentences (Bod 2000):

"structural analogy"

- If shortest derivation is not unique (i.e. the typical case) compute most probable tree from among trees proposed by shortest derivations:
- MPSD: Most probable shortest derivation (Bod 2003, Zollmann and Sima'an 2005)
 - 1. Maximizes structural analogy
 - 2. Maximizes probability of the structure given a sentence
- Probability of a parse tree is computed from probabilities of all subtrees in the corpus

Recaj o UDOP

Dependency Grammars

Probability of...

a subtree t:
$$P(t) = \frac{|t|}{\sum_{t': root(t')=root(t)} |t'|}$$

a derivation $d = t_1^{\circ} \dots^{\circ} t_n$: $P(t_1^{\circ} \dots^{\circ} t_n) = \prod_i P(t_i)$

a parse tree
$$T$$
: $P(T) = \sum_d \prod_i P(t_{id})$

 t_{id} is the *i*-th subtree in derivation *d* that produces *T*

Recall: DOP models of this kind are Probabilistic Tree-Substitution Grammars (PTSGs)

• PTSGs subsume:

probabilistic regular grammars probabilistic context-free grammars probabilistic lexicalized grammars

- DOP is a PTSG where tree-units are of arbitrary size
- "DOP principle":

If you don't know which subtrees are needed, take them all and let statistics (and analogy) decide

Recap 0 UDOP

Dependency Grammars

Computational Issues

- Although there are exponentially many subtrees, there exists an efficient PCFGreduction for DOP (Goodman 2003)
- This PCFG reduction is *linear* in the size of the corpus (8 rules for each node) rather than *exponential*
- Thus: while there are exponentially many subtrees, the PCFG reduction of U-DOP is linear in size!
- Best tree can be efficiently computed by Viterbi *n*-best (cf. Manning and Schuetze 1999):

Compute 1,000 most probable derivations by the standard Viterbi algorithm and sum up derivations that lead to the same tree

Sketch of PCFG reduction of DOP

- Basic idea: Assign every node in every tree a unique number:
- Some terminology:

<u>A@k</u>: the node at address k where A is the nonterminal labeling that node.

A new nonterminal is created for each node in the training data.

This nonterminal is called Ak.

 a_j : the number of subtrees headed by the node <u>A@j</u>,

a : the number of subtrees headed by nodes with nonterminal *A*, that is $a = \sum_{j} a_{j}$.

Recap o UDOP

Dependency Grammars

Sketch of PCFG reduction of DOP (2)

There is a 'PCFG' with the following property: for every subtree in the training corpus headed by A, the grammar will generate an isomorphic subderivation with probability 1/a.

E.g., for a node (A@j (B@k, C@l)), the following eight rules and probabilities are generated:

$A_j \rightarrow BC$	$(1/a_j)$	$A \rightarrow BC$	(1/a)
$A_j \rightarrow B_k C$	(b_k/a_j)	$A \rightarrow B_k C$	(b_k/a)
$A_j \rightarrow BC_l$	(c_{l}/a_{j})	$A \rightarrow BC_l$	(c_{l}/a)
$A_j \rightarrow B_k C_l$	$(b_k c_l/a_j)$	$A \rightarrow B_k C_l$	$(b_k c_l/a)$

This construction produces derivations isomorphic to DOP derivations with equal probability (Goodman 2003: 130-133)

Thus, we can use a "compact" set of PCFGs which is *linear* in the size of the training corpus (8 rules for each node) rather than *exponential*

Recap o UDOP

Computing MPSD with PCFG reduction

- Recall: MPSD selects most probable parse from among shortest derivations
 - ⇒ Note that the shortest derivation is equivalent to most probable derivation if subtrees are given equal probability
- Thus there there exists also a PCFG reduction for the shortest derivation:

$X_j \longrightarrow BC$	1	$X \longrightarrow BC$	0.5
$X_j \longrightarrow B_k C$	1	$X \longrightarrow B_k C$	0.5
$X_j \rightarrow BC_l$	1	$X \rightarrow BC_l$	0.5
$X_j \longrightarrow B_k C_l$	1	$X \longrightarrow B_k C_l$	0.5

• Next, most probable parse from among shortest derivations is computed by Viterbi *n*-best as mentioned above
How can we extend DOP to structure induction?

Generalize the DOP principle (i.e. *be agnostic!*):

- If you don't know what kind of structures should be assigned to sentences: allow for all possible trees and let linguistic experience decide
- Unsupervised DOP (*U-DOP*):
 - 1. Assign all possible unlabeled binary trees to a set of sentences
 - 2. Convert the binary trees into all subtrees
 - 3. Compute the best tree (MPSD) for each sentence
 - 4. These best trees form our DOP grammar

Recap

UDOP

Dependency Grammars

How Does U-DOP Operate?

1. Assign *all* possible binary trees to strings where each root node is labeled *S* and other nodes labeled *X*, and store them in a parse forest

E.g., for WSJ sentence Investors suffered heavy losses:

Recap o UDOP

Dependency Grammars

All Binary Trees are Stored in a Chart

• Number of possible binary trees grows exponentially with string length but they can be efficiently stored by a shared *chart* in quadratic space

Inves- tors	Х	Х	S
	suffered	Х	х
		heavy	Х
			losses

Reca o UDOP

Dependency Grammars

2. Convert the set of all trees into all subtrees. For instance:

=> Note that some subtrees contain discontiguous yields

3. Compute most probable tree among shortest derivations for new string (as in DOP):

Probability of...

a subtree t:
$$P(t) = \frac{|t|}{\sum_{t': root(t')=root(t)} |t'|}$$

a derivation $d = t_1 \circ \dots \circ t_n$: $P(t_1 \circ \dots \circ t_n) = \prod_i P(t_i)$

a parse tree T: $P(T) = \sum_{d} \prod_{i} P(t_{id})$

Recap o UDOP

Dependency Grammars

A simple, conceptual illustration of U-DOP

Suppose that *Watch the dog* and *The dog barks* are heard by language learner:

(1) Assign all unlabeled (binary) trees to a set of sentences :

Recaj o UDOP

Dependency Grammars o

(2) Divide the trees into all subtrees (12 subtrees total):

Probability of each subtree is 1/12 except for [the dog] which has probability 2/12

(3) Compute the 'best' tree (MPSD) for each sentence

Probability of a tree structure is sum of probabilities of its derivations, e.g. for the dog bark:

Shortest derivation is not unique, thus tree structure II wins due to more frequent [the dog]

Recap O UDOP

Dependency Grammars

Computational Issues

- Number of possible binary trees grows exponentially with string length but they can be efficiently stored by packed forest in quadratic space
- U-DOP can be converted into a compact PCFG reduction in roughly the same way as proposed for supervised DOP:

Recall: there is a "compact" PCFG for DOP which is *linear* in the size of the training corpus (8 rules for each node) rather than *exponential*

• How can we apply this PCFG reduction technique to parse forests of all binary trees of sentences?

Recap o UDOP

Dependency Grammars

Computational Issues (2)

• U-DOP's trees are stored by AND-OR graph (parse forest) in $O(n^3)$:

AND nodes are the usual parse tree nodes OR nodes are distinct partial parses occurring in the same context

• Instead of assigning a unique address to each node in each tree (as in DOP), we assign a unique address to each node in each parse forest

 \Rightarrow Same node may be part of more than one tree

• This means that there are cubically many nodes to which the PCFG reduction needs to be applied

Recap 0 UDOP

Dependency Grammars

How can we evaluate U-DOP?

1. Quantitative evaluation:

Induce constituent structures for Wall St Journal and CHILDES data and next compare results with hand-annotations

2. Simulations:

Simulate learning of specific linguistic phenomena such as agreement, auxiliary inversion or particle verbs

3. Qualitative evaluation:

Analyze the induced structures and simulated sentences

Recap o

Wall St Journal data is widely used in structure induction (Klein and Manning 2004):

"If the future markets have a problem, then those products could have a problem":

- All annotations are binarized to make comparison possible. We discard labels
- Accuracy is computed by f-score (F) of precision (P) and recall (R): F = 2*P*R/(P+R)

Reca o

Experiments with U-DOP on Penn Treebank data

unlabeled F-score on **word strings** up to 100 words (!) from sects 01-21 using 10-fold testing

Max. Subtree	F-score			
Depth	(Wall St Journal)			
1 (simple PCFG)	28.7			
2	40.5			
3	58.9			
4	66.0			
6	68.7			
8	68.8			
10	70.2			
16	70.3			

- F-score increases with larger subtrees
- F-score is very low at depth 1 (simple "PCFG", cf. Lari and Young 1990)

Recap 0

U-DOP compared to other models on WSJ-10

(using 7422 sentences up to 10 words, as in Klein and Manning 2004)

Model	F-score on WSJ-10
CCM	71.9
DMV	52.1
DMV+CCM	77.6
U-DOP	82.7
U-DOP without	72.1
discontiguous subtrees	

CCM:	Klein and Manning (2002) based on all linear
	(contiguous) contexts without holes
DMV:	Klein and Manning (2004) using
	dependency structures
U-DOP:	equivalent to CCM plus discontiguous contexts with
	holes: 11% improvement in F-score

Recap o

U-DOP for other languages

Model	English (WSJ10)		German (NEGRA10)		Chinese (CTB10)				
	UP	UR	F1	UP	UR	F1	UP	UR	F1
CCM	64.2	81.6	71.9	48.1	85.5	61.6	34.6	64.3	45.0
DMV	46.6	59.2	52.1	38.4	69.5	49.5	35.9	66.7	46.7
DMV+CCM	69.3	88.0	77.6	49.6	89.7	63.9	33.3	62.0	43.3
U-DOP	75.9	90.9	82.7	52.4	91.0	66.5	37.6	65.7	47.8

WSJ10: 7422 sentences ≤ 10 words in American English NEGRA10: 2298 sentences ≤ 10 words in German CTB10: 2205 sentences ≤ 10 words in Mandarin Chinese

=> F-scores for German and Chinese are lower than for English.

- Viewed from the statistical inference perspective, the model relies much on heuristics: initialization, training & stopping
- Results with UML-DOP (Bod,06) suggests it is approximately Maximum Likelihood...
- ... but not over the entire PTSG space, as there are exponentially many subtrees, and exponentially many trees for a sentence!
- Implementation must somehow restrict space; efficiency remains the achilles heel.

- Viewed from the statistical inference perspective, the model relies much on heuristics: initialization, training & stopping
- Results with UML-DOP (Bod,06) suggests it is approximately Maximum Likelihood...
- ... but not over the entire PTSG space, as there are exponentially many subtrees, and exponentially many trees for a sentence!
- Implementation must somehow restrict space; efficiency remains the achilles heel.

- Viewed from the statistical inference perspective, the model relies much on heuristics: initialization, training & stopping
- Results with UML-DOP (Bod,06) suggests it is approximately Maximum Likelihood...
- ... but not over the entire PTSG space, as there are exponentially many subtrees, and exponentially many trees for a sentence!
- Implementation must somehow restrict space; efficiency remains the achilles heel.

- Viewed from the statistical inference perspective, the model relies much on heuristics: initialization, training & stopping
- Results with UML-DOP (Bod,06) suggests it is approximately Maximum Likelihood...
- ... but not over the entire PTSG space, as there are exponentially many subtrees, and exponentially many trees for a sentence!
- Implementation must somehow restrict space; efficiency remains the achilles heel.

Dependency Grammars $_{\odot}$

Constituent labels

- Neither CCM nor U-DOP assign labels to constituents;
- Constituent labels are meant to define *substitutability*;
- Many difficulties with gold standard labels, but ignoring them is not the solution;
- BMM gives the currently best results on unsupervised labeling when brackets given.

Recap

UDOP

Dependency Grammars

Dependency Grammars

Truth-Conditional Semantics

- Denotation:
 - [[bob]] = some specific person (in some context)
 - [[sings(bob)]] = ???
- Types on translations:
 - bob : e (for entity)
 - sings(bob) : t (for truth-value)

Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - Bob : bob [[bob]]^w → ???
- Sentences:
 - Are either true or false (given how the world actually is)
 - Bob sings : sings(bob)

- So what about verbs (and verb phrases)?
 - sings must combine with bob to produce sings(bob)
 - The λ-calculus is a notation for functions whose arguments are not yet filled.
 - sings : λx.sings(x)
 - This is predicate a function which takes an entity (type e) and produces a truth value (type t). We can write its type as e→t.
 - Adjectives?

Recap 0

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ (function application)
 - VP : $\lambda x \cdot \alpha(x) \land \beta(x) \rightarrow VP$: α and : \emptyset VP : β (intersection)
- Example:

Do we need phrase-structure?

talks(arg1,arg2,mod) • Juliette • Romeo • fondly = talks(J,R,fondly) Functor-argument structure

More recent models of unsupervised parsing use dependencies:

- dependency structures captures the head-argument and head-modifier relationships in a sentence;
- dependencies hold directly between lexical items;
- for language which have a flexible word order (German) and few function words (Chinese), dependency structure is easier to acquire than phrase structure.
- in a dependency graphs, arrows go from head to argument.

Definitions:

- a dependency d is a pair $\langle h, a \rangle$, where h is the head and a the argument, both are words in sentence s;
- a dependency structure *D* is set of dependencies which form a planar, acyclic graph rooted in ROOT;
- the skeleton *G* of a dependency structure specifies the arrows, but not the words; *G* and *s* together fully determine the dependency structure.

Dependency Grammars

Introduction Constituent Context Model Dependency Model Dependencies Dependency Model with Valence Combined Model Evaluation

Dependency Model with Valence

Klein and Manning (2004) propose a model that generates dependencies outwards from the head:

- generate a set of arguments on one side of the head, then a STOP argument to terminate;
- the do the same thing on the other side;
- terminate with probability P_{STOP} , if not STOP then choose another argument with probability P_{CHOOSE} .

For a dependency structure D, let each word h have left dependents $deps_D(h, l)$ right dependents $deps_D(h, r)$. Then the probability of the fragment D(h) is:

$$P(D(h)) = \prod_{dir \in \{r,l\}} \prod_{a \in deps_D(h, dir)} P_{\text{STOP}}(\neg \text{STOP}|h, dir, adj)$$
$$P_{\text{CHOOSE}}(a|h, dir)P(D(a))P_{\text{STOP}}(\text{STOP}|h, dir, adj)$$

The binary variable *adj* indicates whether or not a dependent has already been generated in direction *dir*.

Use the EM algorithm to estimate these probabilities.

Recap o UDOP

Dependency Grammars

Sentence # 6 V s a w

Recap O UDOP

Dependency Grammars

Sentence #7 V s a w Pron them Recap 0 UDOP

Dependency Grammars

Sentence # 8 V s a w Pron V them wave

