Lecture 4: Constituent-Context Model

Jelle Zuidema ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2014

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 二臣 - のへで

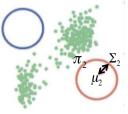
EM FOR GAUSSIAN MIXTURES

- 1. Initialize μ_k , Σ_k π_k , one for each Gaussian k
 - Tip! Use K-means result to initialize:

$$\mu_{k} \leftarrow \mu_{k}$$

$$\Sigma_{k} \leftarrow \operatorname{cov}(cluster(K))$$

$$\pi_{k} \leftarrow \frac{\text{Number of points in k}}{\text{Total number of points}}$$



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 二臣 - のへで

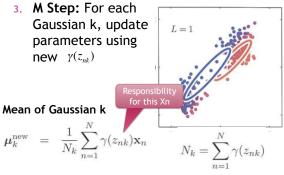
EM FOR GAUSSIAN MIXTURES

 E Step: For each point X_n, determine its assignment score to each Gaussian k:

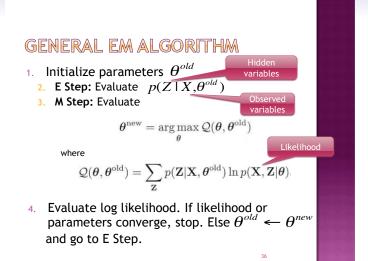
$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 $\gamma(z_{nk})$ is called a "responsibility": how much is this Gaussian k responsible for this point X_n?

EM FOR GAUSSIAN MIXTURES



Find the mean that "fits" the assignment scores best



• Hidden variables: the derivations that generated the observed sentences

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 二臣 - のへで

Hidden variables: the derivations that generated the observed sentences

• E-step: compute the probability distribution over possible derivations of all the sentences in the corpus;

- Hidden variables: the derivations that generated the observed sentences
- E-step: compute the probability distribution over possible derivations of all the sentences in the corpus;
- M-step: maximum likelihood settings of parameters (rule probabilities) given the current estimate of the derivations;

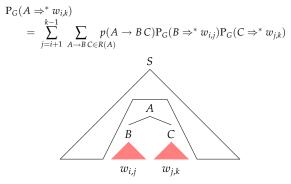
- Hidden variables: the derivations that generated the observed sentences
- E-step: compute the probability distribution over possible derivations of all the sentences in the corpus;
- M-step: maximum likelihood settings of parameters (rule probabilities) given the current estimate of the derivations;
- For the M-step, we only need to know the *expected relative frequency* of each rule in the derivation of the sentences;

- Hidden variables: the derivations that generated the observed sentences
- E-step: compute the probability distribution over possible derivations of all the sentences in the corpus;
- M-step: maximum likelihood settings of parameters (rule probabilities) given the current estimate of the derivations;
- For the M-step, we only need to know the *expected relative frequency* of each rule in the derivation of the sentences;
- *expected relative frequency* of rules can be computed without computing the entire probability distribution over derivations!

Dynamic programming for $E_{\nu}(f_{A \to BC}|w)$ $E_v(f_{A \to BC}|w) =$ $\sum P(S \Rightarrow^* w_{1,i} A w_{k,n}) p(A \to B C) P(B \Rightarrow^* w_{i,j}) P(C \Rightarrow^* w_{i,k})$ $0 \le i < j < k \le n$ $P_G(w)$ S Α В С $w_{i,j}$ $w_{i,k}$ $w_{0,i}$ $w_{k,n}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Dynamic programming recursion



 $P_G(A \Rightarrow^* w_{i,k})$ is called the *inside probability* of A spanning $w_{i,k}$.

45 / 87

Language modeling using dynamic programming

- Goal: To compute $P_G(w) = \sum_{\psi \in \Psi_G(w)} P_G(\psi) = P_G(S \Rightarrow^* w)$
- *Data structure:* A table called a *chart* recording $P_G(A \Rightarrow^* w_{i,k})$ for all $A \in N$ and $0 \le i < k \le |w|$
- *Base case:* For all i = 1, ..., n and $A \rightarrow w_i$, compute:

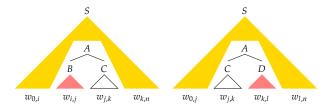
$$\mathbf{P}_G(A \Rightarrow^* w_{i-1,i}) = p(A \to w_i)$$

• *Recursion:* For all k - i = 2, ..., n and $A \in N$, compute:

$$\begin{split} \mathbf{P}_G(A \Rightarrow^* w_{i,k}) \\ &= \sum_{j=i+1}^{k-1} \sum_{A \to B} \sum_{C \in R(A)} p(A \to B \, C) \mathbf{P}_G(B \Rightarrow^* w_{i,j}) \mathbf{P}_G(C \Rightarrow^* w_{j,k}) \end{split}$$

Recursion in $P_G(S \Rightarrow^* w_{0,i} A w_{k,n})$

$$\begin{split} \mathbf{P}(S \Rightarrow^* w_{0,j} C w_{k,n}) &= \\ & \sum_{i=0}^{j-1} \sum_{\substack{A,B \in N \\ A \to B C \in R}} \mathbf{P}(S \Rightarrow^* w_{0,i} A w_{k,n}) p(A \to B C) \mathbf{P}(B \Rightarrow^* w_{i,j}) \\ &+ \sum_{\substack{l=k+1 \\ A \to B C \in R}}^n \sum_{\substack{A,D \in N \\ A \to C D \in R}} \mathbf{P}(S \Rightarrow^* w_{0,j} A w_{l,n}) p(A \to C D) \mathbf{P}(D \Rightarrow^* w_{k,l}) \end{split}$$



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Calculating "outside probabilities"

Construct a table of "outside probabilities" $P_{G}(S \Rightarrow^{*} w_{0,i} A w_{k,n}) \text{ for all } 0 \leq i < k \leq n \text{ and } A \in N$ Recursion from *larger to smaller* substrings in w. *Base case:* $P(S \Rightarrow^{*} w_{0,0} S w_{n,n}) = 1$ *Recursion:* $P(S \Rightarrow^{*} w_{0,j} C w_{k,n}) =$ $\sum_{i=0}^{j-1} \sum_{\substack{A,B \in N \\ A \to B C \in R}} P(S \Rightarrow^{*} w_{0,i} A w_{k,n}) p(A \to B C) P(B \Rightarrow^{*} w_{i,j})$ $+ \sum_{\substack{l=k+1 \\ A \to D C \in R}}^{n} \sum_{\substack{A,D \in N \\ A \to C D C R}} P(S \Rightarrow^{*} w_{0,j} A w_{l,n}) p(A \to C D) P(D \Rightarrow^{*} w_{k,l})$

55 / 87

The EM algorithm for PCFGs

Input: a corpus of strings $w = w_1, \dots, w_n$ Guess initial production probabilities $p^{(0)}$

For t = 1, 2, ... do:

1. Calculate *expected frequency* $\sum_{i=1}^{n} E_{p^{(t-1)}}(f_{A \to \alpha} | w_i)$ of each production:

$$\mathbf{E}_p(f_{A \to \alpha} | w) = \sum_{\psi \in \Psi_G(w)} f_{A \to \alpha}(\psi) \mathbf{P}_p(\psi)$$

2. Set $p^{(t)}$ to the *relative expected frequency* of each production

$$p^{(t)}(A \to \alpha) = \frac{\sum_{i=1}^{n} \mathbb{E}_{p^{(t-1)}}(f_{A \to \alpha} | w_i)}{\sum_{A \to \alpha'} \sum_{i=1}^{n} \mathbb{E}_{p^{(t-1)}}(f_{A \to \alpha'} | w_i)}$$

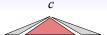
It is as if $p^{(t)}$ were estimated from a visible corpus Ψ_G in which each tree ψ occurs $\sum_{i=1}^{n} P_{p^{(t-1)}}(\psi|w_i)$ times.

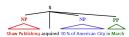
53 / 87

うして ふぼう ふほう ふほう ふしつ

A Nested Distributional Model

- Klein and Manning (2002) propose a model that:
 - Ties spans to linear contexts (like distributional clustering)
 - Considers only proper tree structures
 - Has no symmetries to break (like a dependency model)





◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Unsupervised Language Learning

Generative model

- *S* is a sentence
- *B* is a bracketing
- *P*_{bin}(*B*) : uniform prob. over binary bracketings
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}

•
$$P(S,B) = P_{bin}(B) P(S|B)$$

• $P(S|B) = \prod P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$

ULL'11

Unsupervised Language Learning

うして ふぼう ふほう ふほう ふしつ

Generative model

- *S* is a sentence
- *B* is a bracketing
- *P*_{bin}(*B*) : uniform prob. over binary bracketings
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}

•
$$P(S,B) = P_{bin}(B) P(S|B)$$

• $P(S|B) = \prod P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$

ULL'11

Unsupervised Language Learning

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

Generative model

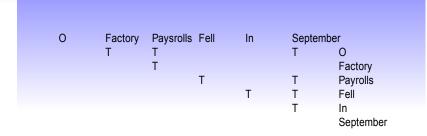
- *S* is a sentence
- *B* is a bracketing
- *P*_{bin}(*B*) : uniform prob. over binary bracketings
- α_{ij} parts-of-speech from *i* to *j*
- x_{ij} context of α_{ij}

•
$$P(S,B) = P_{bin}(B) P(S|B)$$

•
$$P(S|B) = \prod_{i < j} P(\alpha_{ij}|B_{ij})P(x_{ij}|B_{ij})$$

ULL'11

Unsupervised Language Learning



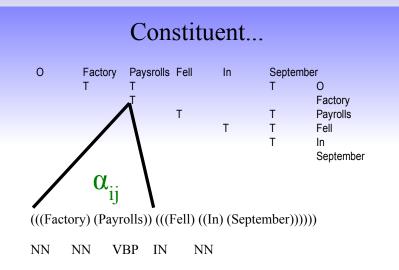
(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

ULL'11

Unsupervised Language Learning

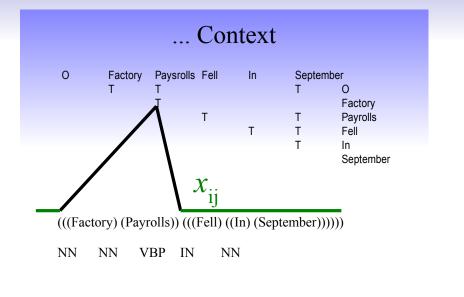
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



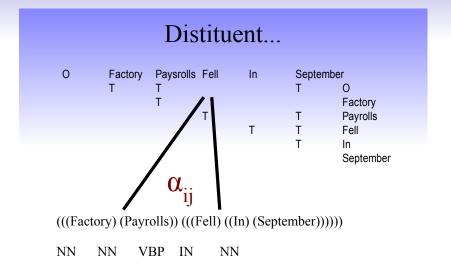
ULL'11

Unsupervised Language Learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



Unsupervised Language Learning

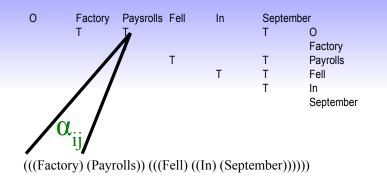


ULL'11

Unsupervised Language Learning

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 二臣 - のへで

Constituent...

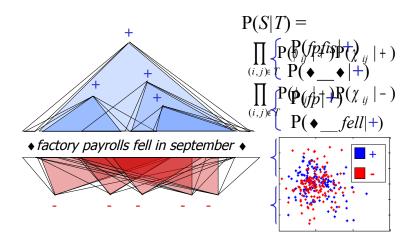


NN NN VBP IN NN

ULL'11

Unsupervised Language Learning

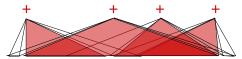
Constituent-Context Model (CCM)



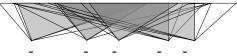
▲□▶▲□▶▲□▶▲□▶ □ ○ ○ ○ ○

Constituent-Context Model (CCM)

P(S,B) = P(B) P(S|B)



♦ factory payrolls fell in september ◆



P(*B*)

P(S|B)

▲□▶▲□▶▲□▶▲□▶ □ □ ● ● ●

Constituent-Context Model (CCM; Klein and Manning 2002)

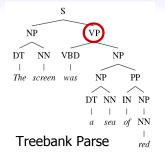
- Generative model where *every* possible constituent/distituent generates its yield as well as its context;
- Parameters of the model are the probabilities with which yields/contexts are generated;
- Parameters are initialized using a clever scheme (Klein, 2005);
- Parameters are optimized using EM & early stopping

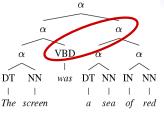
ULL'11

Unsupervised Language Learning

Results: Constituency

CCM: 71.9%





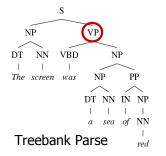
CCM Parse

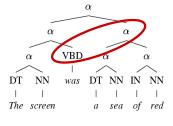
Unsupervised Language Learning

・ロト・日本・日本・日本・日本・日本

Results: Constituency

Right-Branch 70.0	
-------------------	--





CCM Parse

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

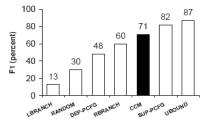
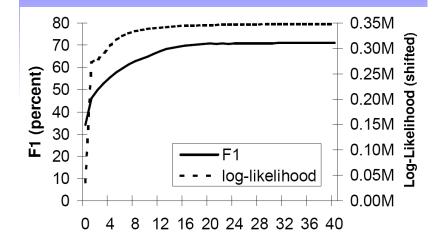


Figure 4: F₁ for various models on WSJ-10.

System	UP	UR	F_1	CB
EMILE	51.6	16.8	25.4	0.84
ABL	43.6	35.6	39.2	2.12
CDC-40	53.4	34.6	42.0	1.46
RBRANCH	39.9	46.4	42.9	2.18
COND-CCM	54.4	46.8	50.3	1.61
CCM	55.4	47.6	51.2	1.45

Figure 6: Comparative ATIS parsing results.



Unsupervised Language Learning

Spectrum of Systematic Errors

Analysis	Inside NPs	Possesives	Verb groups
ССМ	the [lazy cat]	John ['s cat]	[will be] there
Treebank	the lazy cat	[John 's] cat	will [be there]
CCM Right?	Yes	Maybe	No

But the worst errors are the non-systematic ones (~25%)

How good is CCM?

- How good is CCM's f-score of 71.9% (63.2% with induced POS tags)
- It can be improved to 77.6% if enriched with dependency structure (Klein and Manning 2004)
- Yet, there shortcomings of CCM:
 - Initialization & stopping heuristics play a big role;
 - The generative mode is linguistically not plausible;
 - No discontiguous context is taken into account

Unsupervised Language Learning

How good is CCM?

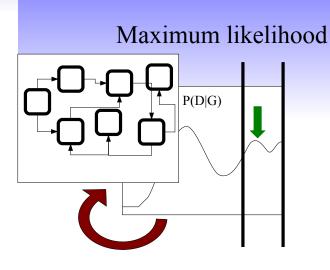
- How good is CCM's f-score of 71.9% (63.2% with induced POS tags)
- It can be improved to 77.6% if enriched with dependency structure (Klein and Manning 2004)
- Yet, there shortcomings of CCM:
 - Initialization & stopping heuristics play a big role;
 - The generative mode is linguistically not plausible;
 - No discontiguous context is taken into account

Unsupervised Language Learning

How good is CCM?

- How good is CCM's f-score of 71.9% (63.2% with induced POS tags)
- It can be improved to 77.6% if enriched with dependency structure (Klein and Manning 2004)
- Yet, there are some shortcomings of CCM:
 - Initialization & stopping heuristics play a big role;
 - The generative mode is linguistically not plausible;
 - No discontiguous context is taken into account

うして ふぼう ふぼう ふほう トーロー



ULL'11

Unsupervised Language Learning

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●