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2.  E Step: For each 
point Xn, determine 
its assignment score 
to each Gaussian k: 

.7 .3 

is called a “responsibility”: how much is this Gaussian k   
responsible for this point Xn? 
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γ(znk )

Latent variable 
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3.  M Step: For each 
Gaussian k, update 
parameters using 
new   

€ 

γ(znk )

Responsibility 
for this Xn 

Mean of Gaussian k 

Find the mean that “fits” the assignment scores best 
31 



1.  Initialize parameters  
2.  E Step: Evaluate  
3.  M Step: Evaluate   

4.  Evaluate log likelihood. If likelihood or 
parameters converge, stop. Else 

 and go to E Step.  

€ 

θ old

€ 

p(Z | X,θ old )

where 

€ 

θ old ←θ new

Observed 
variables 

Hidden 
variables 

Likelihood 

36 



Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!
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Recap Inside-Outside

Dynamic programming for Ep( fA→B C|w)

Ep( fA→B C|w) =

∑
0≤i<j<k≤n

P(S ⇒∗ w1,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n
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Recap Inside-Outside

Dynamic programming recursion

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A ⇒∗ wi,k) is called the inside probability of A spanning w i,k.
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Recap Inside-Outside

Language modeling using dynamic programming

• Goal: To compute PG(w) = ∑
ψ∈ΨG(w)

PG(ψ) = PG(S ⇒∗ w)

• Data structure: A table called a chart recording
PG(A ⇒∗ wi,k) for all A ∈ N and 0 ≤ i < k ≤ |w|

• Base case: For all i = 1, . . . , n and A → wi, compute:

PG(A ⇒∗ wi−1,i) = p(A → wi)

• Recursion: For all k − i = 2, . . . , n and A ∈ N, compute:

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)
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Recap Inside-Outside

Recursion in PG(S ⇒∗ w0,i A wk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n
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Recap Inside-Outside

Calculating “outside probabilities”

Construct a table of “outside probabilities”
PG(S ⇒∗ w0,i A wk,n) for all 0 ≤ i < k ≤ n and A ∈ N
Recursion from larger to smaller substrings in w.
Base case: P(S ⇒∗ w0,0 S wn,n) = 1
Recursion: P(S ⇒∗ w0,j C wk,n) =

j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)
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Recap Inside-Outside

The EM algorithm for PCFGs
Input: a corpus of strings w = w1, . . . , wn

Guess initial production probabilities p(0)

For t = 1, 2, . . . do:

1. Calculate expected frequency ∑
n
i=1 Ep(t−1)( fA→α|wi) of each

production:

Ep( fA→α|w) = ∑
ψ∈ΨG(w)

fA→α(ψ)Pp(ψ)

2. Set p(t) to the relative expected frequency of each production

p(t)(A → α) =
∑

n
i=1 Ep(t−1)( fA→α|wi)

∑A→α′ ∑
n
i=1 Ep(t−1)( fA→α′ |wi)

It is as if p(t) were estimated from a visible corpus ΨG in which
each tree ψ occurs ∑

n
i=1 Pp(t−1)(ψ|wi) times.
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ULL'11 Unsupervised Language Learning

A Nested Distributional Model

• Klein and Manning (2002) 
propose a model that:
● Ties spans to linear contexts 

(like distributional clustering)
● Considers only proper tree 

structures
● Has no symmetries to break (like 

a dependency model)

c



ULL'11 Unsupervised Language Learning

Generative model
• S is a sentence
• B is a bracketing
• Pbin(B) : uniform prob. over binary bracketings

• αij - parts-of-speech from i to j

• xij – context of αij

• P(S,B) = Pbin(B) P(S|B)

• P(S|B) = Π P(αij|Bij)P(xij|Bij)
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Generative model
• S is a sentence
• B is a bracketing
• Pbin(B) : uniform prob. over binary bracketings

• αij - parts-of-speech from i to j

• xij – context of αij

• P(S,B) = Pbin(B) P(S|B)

• P(S|B) = Π P(αij|Bij)P(xij|Bij)
i<j



ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls
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(((Factory) (Payrolls)) (((Fell) ((In) (September))))))
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Constituent-Context Model (CCM)

P(S|T) =

♦factory payrolls fell in september ♦
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Constituent-Context Model (CCM)

P(S,B) = P(B) P(S|B)

P(B) P(S|B)

♦factory payrolls fell in september ♦

+ + ++

- - - - -



ULL'11 Unsupervised Language Learning

Constituent-Context Model (CCM; 
Klein and Manning 2002)

• Generative model where every possible 
constituent/distituent generates its yield as 
well as its context;

• Parameters of the model are the probabilities 
with which yields/contexts are generated;

• Parameters are initialized using a clever 
scheme (Klein, 2005);

• Parameters are optimized using EM & early 
stopping



ULL'11 Unsupervised Language Learning

Results: Constituency

CCM: 71.9%

Treebank Parse CCM Parse



Results: Constituency

Right-Branch 70.0
CCM [Klein & Manning 02] 81.6

Treebank Parse CCM Parse
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Spectrum of Systematic Errors

CCM 
analysis 
better

Treebank 
analysis 
better

But the worst errors are the non-systematic ones (~25%)

Analysis Inside NPs Possesives Verb groups
CCM the [lazy cat] John [‘s cat] [will be] there
Treebank the lazy cat [John ‘s] cat will [be there]
CCM Right? Yes Maybe No



ULL'11 Unsupervised Language Learning

How good is CCM?

• How good is CCM’s f-score of 71.9% (63.2% 
with induced POS tags)

• It can be improved to 77.6% if enriched with 
dependency structure (Klein and Manning 2004)

• Yet, there shortcomings of CCM:
– Initialization & stopping heuristics play a big role;
– The generative mode is linguistically not plausible;
– No discontiguous context is taken into account
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ULL'11 Unsupervised Language Learning

Maximum likelihood

P(D|G)


