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EM FOR GAUSSIAN MIXTURES

1. Initialize U, , %,

T, , one for each
Gaussian k

Tip! Use K-means 7?2’ 2
result to initialize: \@
W <y
2, < cov(cluster(K))

]tk <— Number of points in k
Total number of points



EM FOR GAUSSIAN MIXTURES

2. E Step: For each
point X,,, determine
its assignment score
to each Gaussian k:

; _ TN (Xn| By Zi)
’7(211,1\:) - K

N (%n| 15, 35)

=1

Latent variable

| .

is called a “responsibility”: how much is this Gaussian k

J/(Z,,k) responsible for this point X,?
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EM FOR GAUSSIAN MIXTURES

3. M Step: For each
Gaussian k, update
parameters using
new y(z,)

W 1 il 7
= = o Y(2nk)Xn . 2
4\'1-' Z N k= 2 (:/ll.')
n=1

Find the mean that “fits” the assignment scores best
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GENERAL EM ALGORITHM
" Hidden |

1. Initialize parameters 6" variables
E Step: Evaluate p(Z1X,07)
M Step: Evaluate

variables

0" = argmax Q(6, 0°')
0

EE—
Likelihood
where

Q(0.6°) = > " p(Z[X,6°) Inp(X,Z|6)
VA

4. Evaluate log likelihood. If likelihood or
parameters converge, stop. Else 8¢ <— @""

and go to E Step.
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o Hidden variables: the derivations that generated the observed
sentences



Efficient EM for PCFGs: Inside-outside algorithm

o Hidden variables: the derivations that generated the observed
sentences

o E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;



Efficient EM for PCFGs: Inside-outside algorithm

o Hidden variables: the derivations that generated the observed
sentences

o E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

e M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;



Efficient EM for PCFGs: Inside-outside algorithm

o Hidden variables: the derivations that generated the observed
sentences

o E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

e M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

e For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;



Efficient EM for PCFGs: Inside-outside algorithm

o Hidden variables: the derivations that generated the observed
sentences

o E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

e M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

e For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

o expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!



Dynamic programming for E,(f4—.sc|w)
Ep(fa—pclw) =

0<i<j<k<n

Pg(w)

E P(S =% wl,iAwk,,,)p(A — B C)P(B =* w,;,-)P(C =% wj,k)

wo,i

wi,j Wik Wi,n
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Inside-Outside

Dynamic programming recursion

PG(A =" wix)

k=1
= Z Z p(A — BC)PG(B =% w,-,]-)PG(C =% w]',k)
j=i+1 ABCeR(A)

wi,j w]-,k

Pc(A =* w;y) is called the inside probability of A spanning w; .



Inside-Outside

Language modeling using dynamic programming

o Goal: To compute Pg(w) = Z Pe(yp) = Pg(S =" w)
pe¥o(w)
o Data structure: A table called a chart recording
Pc(A =* wiy) forall A€ Nand 0 < i < k < |w|

e Base case: Foralli=1,...,nand A — w;, compute:
Po(A="wi_1i) = p(A— wj)
e Recursion: Forallk —i=2,...,nand A € N, compute:
PG(A =" wix)
k-1

= Z Z p(A - BC)PG(B =* w,-,j)PG(C =* w]-,k)
j=i+1 A—BCER(A)



Recursion in Pg(S =* wq; A wy )

P(S =* worijk,,,) =
j-1

E E P(S =* wol,-Awk,n)p(A — BC)P(B =* w,-,j)
i=0 A,BEN

A—BCeR
n

+ Y, Y, P(S="wyjAw,,)p(A— CD)P(D =" wy)
12611 ADeN
A—CDeR

S
A A
T T
B C C D
' AN ANy N
wo,i Wi, Wik Wi,n wo,;j Wj k Wi,1
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Inside-Outside

Calculating “outside probabilities”

Construct a table of “outside probabilities”
Pe(S =" woi Awy,) forall0 <i<k<nand A e N

Recursion from larger to smaller substrings in w.
Base case: P(S =" wo g Swy,) =1

Recursion: P(S =" wg,; Cwy,,) =
-1
Z Z P(S =" ZUU,,‘Awk/n)p(A — BC)P(B =% w,‘,j)
i=0 ABeN
A—BCeR
n
+ Y Y P(S="wyjAw,,)p(A — CD)P(D =* wy))
I=k+1 A,DEN
A—CDeR



Inside-Outside

The EM algorithm for PCFGs
Input: a corpus of strings w = w1,..., Wy
Guess initial production probabilities p(®)
Fort=1,2,...do:
1. Calculate expected frequency Y1 Epo-1)(fa—alw;) of each

production:

Ep(facalw) = Y faa(®)Pp(¥)

pe¥e(w)
2. Set p*) to the relative expected frequency of each production

2?:1 Ep(r—l) (fA‘iﬂ( ‘wz)

(A= n) =
PA= ) = T (A

Ttis as if p(*) were estimated from a visible corpus ¥¢ in which
each tree ¢ occurs 3L g P o1 (|w;) times.



 Klein and Manning (2002)
propose a model that:

* Ties spans to linear contexts
(like distributional clustering)

C
* Considers only proper tree .
structures ] _w
* Has no symmetries to break (like
d d del ®
a dependency mode °
I'e} [ ) )
P
°
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* B is a bracketing

P,. (B) : uniform prob. over binary bracketings

o - parts-of-speech from i to j

X~ context of o

P(S,B) = P, (B) P(S|B)

P(s\B) = I P(a,|B )P(x,|B,)
ULL'l1 Unsupervised Language Learning
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B is a bracketing

P,. (B) : uniform prob. over binary bracketings

o - parts-of-speech from i to j

x.. — context of a..
1j 1

P(S,B) = P, (B) P(S|B)
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I

* B is a bracketing

P,. (B) : uniform prob. over binary bracketings

o - parts-of-speech from i to j

X;— context of o
P(S,B) =P, (B) P(S|B)

P(S|B) = g P(a,|B)P(x,|B,)

o = = = = 9ac
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Constituent-Context Model (CCM)
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Constituent-Context Model (CCM)

P(S,B) = P(B) P(S|B)

- + + -

¢ factory payrolls fell in september ¢

P(B) P(S|B)



Constituent-Context Model (CCM,;
Klein and Manning 2002)

Generative model where every possible
constituent/distituent generates its yield as
well as its context;

Parameters of the model are the probabilities
with which yields/contexts are generated;

Parameters are initialized using a clever
scheme (Klein, 2005);

Parameters are optimized using EM & early
stopping

ULL'11 Unsupervised Language Learning



CCM:

1 71.9%
S o4
P
PR
DT NN VBD NP o VBD 7 o
| | | S
The screen was NP PP DT/\NN !
PN
DT NN IN NP

|
[ N B

a sea of NN
Treebank Parse

P N
was DT NN IN NN
| | | |
The screen a

sea
red
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Results: Constituency

Right-Branch

700 | I |

DT NN VBD NP
| | | S
The screen was NP PP
N N

DT NN IN NP
[
a sea of NN

Treebank Parse '

red

o
(e «
— S
a VBD, o] o
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The screen a sea of red

CCM Parse



a7 a7

L 71 System UP UR F | CB
% a0 EMILE 516 163 254 [ 0.84
3 ABL 436 356 392|212

= 40 30
C cpc40 | 534 346 420|146
20 RBRANCH | 399 464 429|218
COND-CCM | 544 463 3503 | 161
\’ﬂw “},00* o 208 o ccM 554 476 512|145

Figure 4: Fy for various models on WSJ-10.
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Figure 6: Comparative ATIS parsing results.



F1 (percent)

20 —F1 T
10 - - - log-likelihood |
0 e B

0 4 8 12 16 20 24 28 32 36 40
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Spectrum of Systematic Errors

CCM Treebank
analysis ﬁ analysis
better better
Analysis Inside NPs Possesives Verb groups
CCM the [lazy cat] John [ ‘s cat] [will be] there
Treebank the lazy cat [John ‘s] cat will [be there]
CCM Right? | Yes Maybe No

But the worst errors are the non-systematic ones (~25%)




with induced POS tags)

* How good is CCM’s f-score of 71.9% (63.2%

* It can be improved to 77.6% if enriched with

dependency structure (Klein and Manning 2004)
» Yet, there shortcomings of CCM:

— Initialization & stopping heuristics play a big role;

— The generative mode is linguistically not plausible;
ULL'11
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How good 1s CCM?

* How good is CCM’s f-score of 71.9% (63.2%
with induced POS tags)

* It can be improved to 77.6% if enriched with
dependency structure (Klein and Manning 2004)
* Yet, there are some shortcomings of CCM:
— Initialization & stopping heuristics play a big role;
— The generative mode is linguistically not plausible;
— No discontiguous context is taken into account

ULL'11 Unsupervised Language Learning



Maximum likelihood

P(DIG)

xlm
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