
Lecture 4: Constituent-Context Model

Jelle Zuidema
ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2014

1.  Initialize ,
 , one for each

Gaussian k

 Tip! Use K-means
result to initialize: €

µk

€

µ2

€

Σk

€

π k

€

Σ2

€

π 2

€

µk ← µk

€

Σk ← cov(cluster(K))

€

π k ← Number of points in k
Total number of points

29

2.  E Step: For each
point Xn, determine
its assignment score
to each Gaussian k:

.7 .3

is called a “responsibility”: how much is this Gaussian k
responsible for this point Xn?

€

γ(znk)

Latent variable

30

3.  M Step: For each
Gaussian k, update
parameters using
new

€

γ(znk)

Responsibility
for this Xn

Mean of Gaussian k

Find the mean that “fits” the assignment scores best
31

1.  Initialize parameters
2.  E Step: Evaluate
3.  M Step: Evaluate

4.  Evaluate log likelihood. If likelihood or
parameters converge, stop. Else

 and go to E Step.

€

θ old

€

p(Z | X,θ old)

where

€

θ old ←θ new

Observed
variables

Hidden
variables

Likelihood

36

Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!

Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!

Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!

Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!

Efficient EM for PCFGs: Inside-outside algorithm

• Hidden variables: the derivations that generated the observed
sentences

• E-step: compute the probability distribution over possible
derivations of all the sentences in the corpus;

• M-step: maximum likelihood settings of parameters (rule
probabilities) given the current estimate of the derivations;

• For the M-step, we only need to know the expected relative
frequency of each rule in the derivation of the sentences;

• expected relative frequency of rules can be computed without
computing the entire probability distribution over derivations!

Recap Inside-Outside

Dynamic programming for Ep(fA→B C|w)

Ep(fA→B C|w) =

∑
0≤i<j<k≤n

P(S ⇒∗ w1,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n

54 / 87

Recap Inside-Outside

Dynamic programming recursion

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A ⇒∗ wi,k) is called the inside probability of A spanning w i,k.

45 / 87

Recap Inside-Outside

Language modeling using dynamic programming

• Goal: To compute PG(w) = ∑
ψ∈ΨG(w)

PG(ψ) = PG(S ⇒∗ w)

• Data structure: A table called a chart recording
PG(A ⇒∗ wi,k) for all A ∈ N and 0 ≤ i < k ≤ |w|

• Base case: For all i = 1, . . . , n and A → wi, compute:

PG(A ⇒∗ wi−1,i) = p(A → wi)

• Recursion: For all k − i = 2, . . . , n and A ∈ N, compute:

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

44 / 87

Recap Inside-Outside

Recursion in PG(S ⇒∗ w0,i A wk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n

56 / 87

Recap Inside-Outside

Calculating “outside probabilities”

Construct a table of “outside probabilities”
PG(S ⇒∗ w0,i A wk,n) for all 0 ≤ i < k ≤ n and A ∈ N
Recursion from larger to smaller substrings in w.
Base case: P(S ⇒∗ w0,0 S wn,n) = 1
Recursion: P(S ⇒∗ w0,j C wk,n) =

j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

55 / 87

Recap Inside-Outside

The EM algorithm for PCFGs
Input: a corpus of strings w = w1, . . . , wn

Guess initial production probabilities p(0)

For t = 1, 2, . . . do:

1. Calculate expected frequency ∑
n
i=1 Ep(t−1)(fA→α|wi) of each

production:

Ep(fA→α|w) = ∑
ψ∈ΨG(w)

fA→α(ψ)Pp(ψ)

2. Set p(t) to the relative expected frequency of each production

p(t)(A → α) =
∑

n
i=1 Ep(t−1)(fA→α|wi)

∑A→α′ ∑
n
i=1 Ep(t−1)(fA→α′ |wi)

It is as if p(t) were estimated from a visible corpus ΨG in which
each tree ψ occurs ∑

n
i=1 Pp(t−1)(ψ|wi) times.

53 / 87

ULL'11 Unsupervised Language Learning

A Nested Distributional Model

• Klein and Manning (2002)
propose a model that:
● Ties spans to linear contexts

(like distributional clustering)
● Considers only proper tree

structures
● Has no symmetries to break (like

a dependency model)

c

ULL'11 Unsupervised Language Learning

Generative model
• S is a sentence
• B is a bracketing
• Pbin(B) : uniform prob. over binary bracketings

• αij - parts-of-speech from i to j

• xij – context of αij

• P(S,B) = Pbin(B) P(S|B)

• P(S|B) = Π P(αij|Bij)P(xij|Bij)

ULL'11 Unsupervised Language Learning

Generative model
• S is a sentence
• B is a bracketing
• Pbin(B) : uniform prob. over binary bracketings

• αij - parts-of-speech from i to j

• xij – context of αij

• P(S,B) = Pbin(B) P(S|B)

• P(S|B) = Π P(αij|Bij)P(xij|Bij)

ULL'11 Unsupervised Language Learning

Generative model
• S is a sentence
• B is a bracketing
• Pbin(B) : uniform prob. over binary bracketings

• αij - parts-of-speech from i to j

• xij – context of αij

• P(S,B) = Pbin(B) P(S|B)

• P(S|B) = Π P(αij|Bij)P(xij|Bij)
i<j

ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls

T T Fell
T In

September

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls

T T Fell
T In

September

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

αij

Constituent...

ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls

T T Fell
T In

September

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

xij

... Context

ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls

T T Fell
T In

September

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

αij

Distituent...

ULL'11 Unsupervised Language Learning

O Factory Paysrolls Fell In September
T T T O

T Factory
T T Payrolls

T T Fell
T In

September

(((Factory) (Payrolls)) (((Fell) ((In) (September))))))

NN NN VBP IN NN

Constituent...

αij

Constituent-Context Model (CCM)

P(S|T) =

♦factory payrolls fell in september ♦

+

- - - - -

P(fpfis|+)
P(♦__♦|+)
P(fp|+)
P(♦__ fell|+)
P(fis|+)
P(p __ ♦|+)
P(is|+)
P(fell __ ♦|+)

+
 +

+

-

+

∏
∈

++
Tji

ijij
),(

)|(P)|(P χφ

∏
∉

−−
Tji

ijij
),(

)|(P)|(P χφ

Constituent-Context Model (CCM)

P(S,B) = P(B) P(S|B)

P(B) P(S|B)

♦factory payrolls fell in september ♦

+ + ++

- - - - -

ULL'11 Unsupervised Language Learning

Constituent-Context Model (CCM;
Klein and Manning 2002)

• Generative model where every possible
constituent/distituent generates its yield as
well as its context;

• Parameters of the model are the probabilities
with which yields/contexts are generated;

• Parameters are initialized using a clever
scheme (Klein, 2005);

• Parameters are optimized using EM & early
stopping

ULL'11 Unsupervised Language Learning

Results: Constituency

CCM: 71.9%

Treebank Parse CCM Parse

Results: Constituency

Right-Branch 70.0
CCM [Klein & Manning 02] 81.6

Treebank Parse CCM Parse

ULL'11 Unsupervised Language Learning

ULL'11 Unsupervised Language Learning

Spectrum of Systematic Errors

CCM
analysis
better

Treebank
analysis
better

But the worst errors are the non-systematic ones (~25%)

Analysis Inside NPs Possesives Verb groups
CCM the [lazy cat] John [‘s cat] [will be] there
Treebank the lazy cat [John ‘s] cat will [be there]
CCM Right? Yes Maybe No

ULL'11 Unsupervised Language Learning

How good is CCM?

• How good is CCM’s f-score of 71.9% (63.2%
with induced POS tags)

• It can be improved to 77.6% if enriched with
dependency structure (Klein and Manning 2004)

• Yet, there shortcomings of CCM:
– Initialization & stopping heuristics play a big role;
– The generative mode is linguistically not plausible;
– No discontiguous context is taken into account

ULL'11 Unsupervised Language Learning

How good is CCM?

• How good is CCM’s f-score of 71.9% (63.2%
with induced POS tags)

• It can be improved to 77.6% if enriched with
dependency structure (Klein and Manning 2004)

• Yet, there shortcomings of CCM:
– Initialization & stopping heuristics play a big role;
– The generative mode is linguistically not plausible;
– No discontiguous context is taken into account

ULL'11 Unsupervised Language Learning

How good is CCM?

• How good is CCM’s f-score of 71.9% (63.2%
with induced POS tags)

• It can be improved to 77.6% if enriched with
dependency structure (Klein and Manning 2004)

• Yet, there are some shortcomings of CCM:
– Initialization & stopping heuristics play a big role;
– The generative mode is linguistically not plausible;
– No discontiguous context is taken into account

ULL'11 Unsupervised Language Learning

Maximum likelihood

P(D|G)

