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The Challenge (lecture 1)

Developing algorithms for learning about the syntax (semantics,
pragmatics, phonology) of natural language from unlabeled data.

e Classic, hard problem in artificial intelligence

e Many unsuccessful attempts to develop heuristic algorithms
for grammar induction.
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Statistical Inference (lecture 1, assignment 1, readings)

o Statistical Models can deal with the noise and uncertainties
(hidden information, “latent variables”) inherent in real world
data;

o Statistical Inference offers a flexible toolbox of techniques and
concepts:

o Probabilities: likelihood, prior, posterior, data prior;

e Criteria: maximum likelihood, MAP, minimum risk;

e Optimization techniques: grid search, stochastic hillclimbing,
EM, MCMC;

o Conceptual separation of objective function and optimization
technique.
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Generative models

o “Generative story”: we define probability distributions by
decribing the mechanism by which the data could have been
generated.

e “Graphical models”: often graphs are used to define the
statistical dependencies in the generative story.
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Statistical inference

Bayesian inversion

[— \/\/ P(G|D)

O

enerative model




Inside-Outside

Bayesian inversion
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Bayesian inversion
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Probabilistic Grammars

e For natural language grammar, generative models are
instantiatied with probabilistic grammars

e The extended Chomsky hierarchy for symbolic grammars, is
mirrored by a hierarchy of probabilistic grammars.
e Classes on the hierarchy are proper subsets of eachother;

e Corrolary: everything lower in the hierarchy can in principled
be modelled by formalisms for probabilistic grammars higher in
the hierarchy;

e E.g., PCFGs can model ngrams and HMMs (and probabilistic
bilexical dependency grammars).
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Probabilistic Context Free Grammars

Add probabilities to the rules of a context-free grammar;

The PCFG now defines a probability distribution (Gs) over
trees (with S as root, and words as leaves);

It also defines probability distributions over sentences;

It also defines probability distributions (Ga) over trees rooted
in any other nonterminal A;

Gs can be defined using the probabilities of all rules with S as
left-hand side and Ga ... Gz.
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PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in
Chomsky-normal form (i.e., all productions are of the form
A — BCor A — x,where A,B,C € N and x € T) is Gg where:

Ga = Y, pA—BCGpeGc+ Y, pA— xd,
A—BCeRy A—wERY
(PeQ)(z) = ) P(x)Q(y)
Xy=z
dx(w) = 1ifw = xand 0 otherwise

In fact, G4(w) = P(A =* w|0), the sum of the probability of all
trees with root node A and yield w
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Things we want to compute with PCFGs
Given a PCFG G and a string w € T~

e (parsing): the most likely tree for w,

argmax E‘I’C(ZU)PG(IP)
¢ (language modeling): the probability of w,
Po(w) = )}, Po(y)

pe¥o(w)
Learning rule probabilities from data:

¢ (maximum likelihood estimation from visible data): given
a corpus of trees d = (1, ..., P,), which rule probabilities
p makes d as likely as possible?

¢ (maximum likelihood estimation from hidden data): given
a corpus of strings w = (w1, ..., wy), which rule
probabilities p makes w as likely as possible?
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Parsing and language modeling

The probability Pg (1) of a tree ¢y € ¥ (w) is:

Po(y) = [Tp(r)"¥

rerR

Suppose the set of parse trees ¥ ¢ (w) is finite, and we can
enumerate it.

Naive parsing/language modeling algorithms for PCFG G and
string w € T™:
1. Enumerate the set of parse trees ¥ (w)

2. Compute the probability of each i € ¥ (w)

3. Argmax/sum as appropriate
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Chomsky normal form

A CFG is in Chomsky Normal Form (CNF) iff all productions are
oftheform A - BCor A — x,where A,B,Cc€ Nand x € T.

PCFGs without epsilon productions A — € can always be put into
CNE.

Key step: binarize productions with more than two children by
introducing new nonterminals

A
A BiE.B; B
A, EEE
B1 B, Bs Bn B1B, Bs

B; B,
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Substrings and string positions

Letw = wyw, ... wy, be a string of length n

A string position for w is an integer i € 0, ..., n (informally, it
identifies the position between words w;_; and w;)

o the o dog e chases o cats e
0 1 2 3 4

A substring of w can be specified by beginning and ending

string positions

w; ; is the substring starting at word i + 1 and ending at word j.
wo4 = the dog chases cats

ZULQ = dOg
wy 4 = chases cats
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Language modeling using dynamic programming

Goal: To compute Pg(w) = Y Pg(yp) = Ps(S =" w)
pe¥c(w)

e Data structure: A table called a chart recording

Po(A="w;;) forall Ae Nand 0 <i <k < |w|

Base case: Foralli =1,...,nand A — w;, compute:

PG(A =% wi,l,i) = p(A — wi)
e Recursion: Forallk—i=2,...,nand A € N, compute:

PG(A =" wiy)
k1

= )Y L p(A=BOPG(B="wi)Pc(C =" wjy)
j=i+1 A—BCeR(A)
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Dynamic programming recursion

Pc(A =" wix)
k1

= Z Z p(A - BC)PG(B =" wi,j)PG(C =+ w]‘/k)
j=i+1 A—BCEeR(A)

wi,]- ZU]',k

Pc(A =" w;y) is called the inside probability of A spanning w; .
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w = George hates John

1.0 S— NPVP
0.7 NP — George
0.5 V — likes

S 0.105

VP 0.15

Left string position

NP 0.7 V0.5 NP 0.3
L]

L] L]
o George 1 hates 2 John 3

Inside-Outside

Example PCFG string probability calculation

1.0 VP — VNP

0.3 NP — John
0.5 V — hates
Right string position
1 2 3
NP 0.7 S 0.105

V0.5 VP 0.15

NP 0.3
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Intermediate Summary

o PCFGs define probability distributions over trees, subtrees
and strings. These distributions can be viewed as recursive
mixtures.

e The probability of a (sub)string can be calculated the naive
way by summing the probabilities of all the trees that contain
it;

e We can make use of the recursive nature of PCFG
distributions to calculate string probabilities more efficiently:
the inside algorithm.
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Computational complexity of PCFG parsing

PG(A =* w,-,k)
k—1

= ). ) P(A—=BCOPG(B="w;;)Pc(C="wy)
j=i+1 A—BCER(A)

For each production r € R and each i, k, we must sum over all
intermediate positions j = O(n®|R|) time
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Estimating (learning) PCFGs from data

Estimating productions and production probabilities from
visible data (corpus of parse trees) is straight-forward:

e the productions are identified by the local trees in the data

o Maximum likelihood principle: select production
probabilities in order to make corpus as likely as possible

¢ Bayesian estimators often produce more useful estimates

Estimating production probabilities from hidden data (corpus of
terminal strings) is much more difficult:

o The Expectation-Maximization (EM) algorithm finds
probabilities that locally maximize likelihood of corpus

e The Inside-Outside algorithm runs in time polynomial in
length of corpus

¢ Bayesian estimators have recently been developed

Estimating the productions from hidden data is an open
problem.
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Estimating PCFGs from visible data

Data: A treebank of parse trees ¥ = ¢1,..., Py.
n
L(p) = HPG(¢i) = H p(A — “)f/\ﬂ,x(‘l’)
=1 A—a€eR

Introduce |N| Lagrange multipliers cg, B € N for the
constraints Y p_gcr(p) P(B — B) = 1:

9 (L(p)— Y cs (Z P(B—Wg)—l))
BEN  \ B—BeR(B) _ L(n)f(¥)

Ip(A — a) p(A — a)

fA*ﬂX (‘Ij)
Ya—aer(a) fa—w(Y)

—ch

Setting thisto 0, p(A —a) =
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Visible PCFG estimation example

S
NP VP NP
Y= 1 |
rice grows rice
Rule Count Rel Freq
S — NP VP 3 1
NP — rice 2 2/3
NP — corn 1 1/3
VP — grows 3 1

Inside-Outside

NP VP

corn  grows

S
NP/\VP = 2/3
ri(‘:e gro‘ws

S
NP/\VP =1/3

corn - grows
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Estimating production probabilities from hidden data

Data: A corpus of sentences w = wy, ..., Wy.

L(w)—f{mwi). Po(w) = Y Pa(y).

pe¥e(w)
oL(w) _ L(w) Y, Ec(fa—a|wi)
Ip(A — «) p(A —a)

Setting this equal to the Lagrange multiplier ¢ 4 and imposing
the constraint } 5 ,gcr(p) p(B—B) =1

Y1 Ec(fa—alwi)
A—a) = L
bl ) Y A—u'cR(A) Yit1 Ec(fa—w|wi)

This is an iteration of the expectation maximization algorithm!
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The EM algorithm for PCFGs
Input: a corpus of strings w = wy, ..., w,
Guess initial production probabilities p(©)
Fort=1,2,...do:

1. Calculate expected frequency Y"1 E, o1 (fa—a|wi) of each
production:

Ep(fAHoc|w) = 2 fa—a (w)PP (¥)

pe¥c(w)
2. Set p(*) to the relative expected frequency of each production

Y Epen (famalwi)
Ya—o Lita Epon (faar [wi)

p(A—a) =

Itis as if p!) were estimated from a visible corpus ¥ ¢ in which

each tree § occurs 31y Pu1) ([w;) times.
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Dynamic programming for E,(fa—gc|w)
Ep(fAHBC|w) =

Y. P(S="wy; Awg,)p(A — BC)P(B =" w;;)P(C =" wjy)

0<i<j<k<n

Pg(w)
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Calculating “outside probabilities”

Construct a table of “outside probabilities”
Po(S =* wo; Awgy) forall0 <i<k<nand A€ N

Recursion from larger to smaller substrings in w.
Base case: P(S =" woo Swy,,) =1

Recursion: P(S =* wy,j Cwy,) =
j-1
Y. Y P(S="wy; Awgu)p(A — BC)P(B =" w;))
i=0 ABeN

A—BCeR
n

+ Y Y P(S="wy;Aw,,)p(A — CD)P(D =" wy))

I=k+1 A,DeN
A—CDeR
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Recursion in Pg (S =* wg; Awy,)

P(S =* "(/UQ,]'ka’n) =
j—1
Z E P(S =% wO,iAwkln)p(A i BC)P(B =* wi,]-)

i=0 A,BEN
A—BCeR

n
+ 2 2 P(S :>* wO,jAwlln)p(A — CD)P(D :>* wkl[)
I=k+1 A,DEN

A—CDE€eR
S S
A A
T~ T~
B C C D
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Example: The EM algorithm with a toy PCFG

Initial rule probs

rule

VP -V
VP — V NP
VP — NPV
VP — V NP NP
VP — NP NP V
Det — the

N — the

V — the

prob
0.2
0.2
0.2
0.2
0.2
0.1
0.1
0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
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Probability of “English”

TF T T T T

0.1

P

Average (.01
sentence
probability 0.001

P

P

0.0001 ]
le-05 .
1e-06 | : : ' ' :

0 1 2 3 4 5
Iteration
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Rule probabilities from “English”

1

09 -

0.8
0.7
Rule 0.6

probability 05 1

0.4
0.3
0.2
0.1

0

T T
VP -V NP =———
VP —-NPV =
IVP —V NP NP =—
VP —=NP NPV =
- Det —the
N —the
- V —the
7
\ |
0 1 2 3

Iteration

Inside-Outside
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Probability of “Japanese”

TF T T T T

0.1

P

Average (.01
sentence
probability 0.001

P

P

0.0001

P

le-05

P

T
1

1e-06 | | | |
0 1 2 3 4 5

Iteration
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Rule probabilities from “Japanese”

1 T T T T
| VP SV NP — _
091 VP NPV ——
0.8 VP —V NP NP —— -
VP =NP NPV =———
0.7 Det —the -
N —the
Rulg. 0.6 V —the
probablhtya5 | B
0.4
0.3 -
02 =2 i
0.1 _
0 1 |
0 1 2 3 4 5

Iteration
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Learning in statistical paradigm

The likelihood is a differentiable function of rule
probabilities
= learning can involve small, incremental updates

Learning structure (rules) is hard, but ...

Parameter estimation can approximate rule learning

> start with “superset” grammar

> estimate rule probabilities

> discard low probability rules
¢ Non-parametric Bayesian estimators combine parameter
and rule estimation
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