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The Challenge (lecture 1)

Developing algorithms for learning about the syntax (semantics,
pragmatics, phonology) of natural language from unlabeled data.

• Classic, hard problem in artificial intelligence

• Many unsuccessful attempts to develop heuristic algorithms
for grammar induction.
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Statistical Inference (lecture 1, assignment 1, readings)

• Statistical Models can deal with the noise and uncertainties
(hidden information, “latent variables”) inherent in real world
data;

• Statistical Inference offers a flexible toolbox of techniques and
concepts:
• Probabilities: likelihood, prior, posterior, data prior;
• Criteria: maximum likelihood, MAP, minimum risk;
• Optimization techniques: grid search, stochastic hillclimbing,

EM, MCMC;

• Conceptual separation of objective function and optimization
technique.
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Generative models

• “Generative story”: we define probability distributions by
decribing the mechanism by which the data could have been
generated.

• “Graphical models”: often graphs are used to define the
statistical dependencies in the generative story.
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Statistical inference
P(D|G) P(G)

P(D)
P(G|D)=

P(G|D)

P(D|G)
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Statistical inference
Bayesian inversion

Generative model

P(G|D)

P(D|G)
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Stochastic hillclimbing

P(G|D)
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Stochastic hillclimbing
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Local optimum

P(G|D)
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Probabilistic Grammars

• For natural language grammar, generative models are
instantiatied with probabilistic grammars

• The extended Chomsky hierarchy for symbolic grammars, is
mirrored by a hierarchy of probabilistic grammars.

• Classes on the hierarchy are proper subsets of eachother;
• Corrolary: everything lower in the hierarchy can in principled

be modelled by formalisms for probabilistic grammars higher in
the hierarchy;

• E.g., PCFGs can model ngrams and HMMs (and probabilistic
bilexical dependency grammars).
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Probabilistic Context Free Grammars

• Add probabilities to the rules of a context-free grammar;

• The PCFG now defines a probability distribution (GS ) over
trees (with S as root, and words as leaves);

• It also defines probability distributions over sentences;

• It also defines probability distributions (GA ) over trees rooted
in any other nonterminal A ;

• GS can be defined using the probabilities of all rules with S as
left-hand side and GA . . .GZ .



Recap Inside-Outside

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in
Chomsky-normal form (i.e., all productions are of the form
A → B C or A → x, where A, B, C ∈ N and x ∈ T) is GS where:

GA = ∑
A→B C∈RA

pA → B CGB • GC + ∑
A→w∈RA

pA → xδx

(P • Q)(z) = ∑
xy=z

P(x)Q(y)

δx(w) = 1 if w = x and 0 otherwise

In fact, GA(w) = P(A ⇒? w|θ), the sum of the probability of all
trees with root node A and yield w
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Things we want to compute with PCFGs
Given a PCFG G and a string w ∈ T?,

• (parsing): the most likely tree for w,

argmaxψ∈ΨG(w)PG(ψ)

• (language modeling): the probability of w,

PG(w) = ∑
ψ∈ΨG(w)

PG(ψ)

Learning rule probabilities from data:

• (maximum likelihood estimation from visible data): given
a corpus of trees d = (ψ1, . . . , ψn), which rule probabilities
p makes d as likely as possible?

• (maximum likelihood estimation from hidden data): given
a corpus of strings w = (w1, . . . , wn), which rule
probabilities p makes w as likely as possible?
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Parsing and language modeling

The probability PG(ψ) of a tree ψ ∈ ΨG(w) is:

PG(ψ) = ∏
r∈R

p(r) fr(ψ)

Suppose the set of parse trees ΨG(w) is finite, and we can
enumerate it.
Naive parsing/language modeling algorithms for PCFG G and
string w ∈ T?:

1. Enumerate the set of parse trees ΨG(w)

2. Compute the probability of each ψ ∈ ΨG(w)

3. Argmax/sum as appropriate
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Chomsky normal form

A CFG is in Chomsky Normal Form (CNF) iff all productions are
of the form A → B C or A → x, where A, B, C ∈ N and x ∈ T.
PCFGs without epsilon productions A → ε can always be put into
CNF.
Key step: binarize productions with more than two children by
introducing new nonterminals

B3

A

B1 B2 Bn
⇒

B1B2B3

B1 B2

B1B2 B3

A

B4
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Substrings and string positions

Let w = w1w2 . . . wn be a string of length n
A string position for w is an integer i ∈ 0, . . . , n (informally, it
identifies the position between words wi−1 and wi)

• the • dog • chases • cats •
0 1 2 3 4

A substring of w can be specified by beginning and ending
string positions
wi,j is the substring starting at word i + 1 and ending at word j.

w0,4 = the dog chases cats

w1,2 = dog

w2,4 = chases cats
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Language modeling using dynamic programming

• Goal: To compute PG(w) = ∑
ψ∈ΨG(w)

PG(ψ) = PG(S ⇒∗ w)

• Data structure: A table called a chart recording
PG(A ⇒∗ wi,k) for all A ∈ N and 0 ≤ i < k ≤ |w|

• Base case: For all i = 1, . . . , n and A → wi, compute:

PG(A ⇒∗ wi−1,i) = p(A → wi)

• Recursion: For all k − i = 2, . . . , n and A ∈ N, compute:

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)
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Dynamic programming recursion

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A ⇒∗ wi,k) is called the inside probability of A spanning w i,k.
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Example PCFG string probability calculation

w = George hates John

R =







1.0 S → NP VP 1.0 VP → V NP

0.7 NP → George 0.3 NP → John

0.5 V → likes 0.5 V → hates







George hates John

NP 0.7 V 0.5 NP 0.3

S 0.105

1 2 30

VP 0.15

Right string position

0 NP 0.7

2

1

S 0.105

VP 0.15

1 2 3

V 0.5

NP 0.3Le
ft

st
rin

g
po

sit
io

n
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Intermediate Summary

• PCFGs define probability distributions over trees, subtrees
and strings. These distributions can be viewed as recursive
mixtures.

• The probability of a (sub)string can be calculated the naive
way by summing the probabilities of all the trees that contain
it;

• We can make use of the recursive nature of PCFG
distributions to calculate string probabilities more efficiently:
the inside algorithm.
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Computational complexity of PCFG parsing

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

For each production r ∈ R and each i, k, we must sum over all
intermediate positions j ⇒ O(n3|R|) time
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Estimating (learning) PCFGs from data
Estimating productions and production probabilities from
visible data (corpus of parse trees) is straight-forward:
• the productions are identified by the local trees in the data
• Maximum likelihood principle: select production

probabilities in order to make corpus as likely as possible
• Bayesian estimators often produce more useful estimates

Estimating production probabilities from hidden data (corpus of
terminal strings) is much more difficult:
• The Expectation-Maximization (EM) algorithm finds

probabilities that locally maximize likelihood of corpus
• The Inside-Outside algorithm runs in time polynomial in

length of corpus
• Bayesian estimators have recently been developed

Estimating the productions from hidden data is an open
problem.

49 / 87



Recap Inside-Outside

Estimating PCFGs from visible data

Data: A treebank of parse trees Ψ = ψ1, . . . , ψn.

L(p) =
n

∏
i=1

PG(ψi) = ∏
A→α∈R

p(A → α) fA→α(Ψ)

Introduce |N| Lagrange multipliers cB, B ∈ N for the
constraints ∑B→β∈R(B) p(B → β) = 1:

∂



L(p) − ∑
B∈N

cB



 ∑
B→β∈R(B)

p(B → β) − 1









∂p(A → α)
=

L(p) fr(Ψ)

p(A → α)
− cA

Setting this to 0, p(A → α) =
fA→α(Ψ)

∑A→α′∈R(A) fA→α′(Ψ)
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Visible PCFG estimation example

Ψ =

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

P








S

NP VP

rice grows








= 2/3

P








S

NP VP

corn grows








= 1/3
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Estimating production probabilities from hidden data

Data: A corpus of sentences w = w1, . . . , wn.

L(w) =
n

∏
i=1

PG(wi). PG(w) = ∑
ψ∈ΨG(w)

PG(ψ).

∂L(w)

∂p(A → α)
=

L(w) ∑
n
i=1 EG( fA→α|wi)

p(A → α)

Setting this equal to the Lagrange multiplier cA and imposing
the constraint ∑B→β∈R(B) p(B → β) = 1:

p(A → α) =
∑

n
i=1 EG( fA→α|wi)

∑A→α′∈R(A) ∑
n
i=1 EG( fA→α′ |wi)

This is an iteration of the expectation maximization algorithm!
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The EM algorithm for PCFGs
Input: a corpus of strings w = w1, . . . , wn

Guess initial production probabilities p(0)

For t = 1, 2, . . . do:

1. Calculate expected frequency ∑
n
i=1 Ep(t−1)( fA→α|wi) of each

production:

Ep( fA→α|w) = ∑
ψ∈ΨG(w)

fA→α(ψ)Pp(ψ)

2. Set p(t) to the relative expected frequency of each production

p(t)(A → α) =
∑

n
i=1 Ep(t−1)( fA→α|wi)

∑A→α′ ∑
n
i=1 Ep(t−1)( fA→α′ |wi)

It is as if p(t) were estimated from a visible corpus ΨG in which
each tree ψ occurs ∑

n
i=1 Pp(t−1)(ψ|wi) times.

53 / 87



Recap Inside-Outside

Dynamic programming for Ep( fA→B C|w)

Ep( fA→B C|w) =

∑
0≤i<j<k≤n

P(S ⇒∗ w1,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n
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Calculating “outside probabilities”

Construct a table of “outside probabilities”
PG(S ⇒∗ w0,i A wk,n) for all 0 ≤ i < k ≤ n and A ∈ N
Recursion from larger to smaller substrings in w.
Base case: P(S ⇒∗ w0,0 S wn,n) = 1
Recursion: P(S ⇒∗ w0,j C wk,n) =

j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)
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Recursion in PG(S ⇒∗ w0,i A wk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n
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Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·
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Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “English”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
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Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
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Learning in statistical paradigm

• The likelihood is a differentiable function of rule
probabilities
⇒ learning can involve small, incremental updates

• Learning structure (rules) is hard, but . . .
• Parameter estimation can approximate rule learning

I start with “superset” grammar
I estimate rule probabilities
I discard low probability rules

• Non-parametric Bayesian estimators combine parameter
and rule estimation
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