Lecture 3: Inside-Outside

Jelle Zuidema ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2013

Rec 0 0

Recap

Challenge Inference Generative models Probabilistic Grammars

Inside-Outside

The Challenge (lecture 1)

Developing algorithms for learning about the syntax (semantics, pragmatics, phonology) of natural language from unlabeled data.

• Classic, hard problem in artificial intelligence

Recap

• Many unsuccessful attempts to develop heuristic algorithms for grammar induction.

Recap

Statistical Inference (lecture 1, assignment 1, readings)

Recap ○ ●

- Statistical Models can deal with the noise and uncertainties (hidden information, "latent variables") inherent in real world data;
- Statistical Inference offers a flexible toolbox of techniques and concepts:
 - Probabilities: likelihood, prior, posterior, data prior;
 - Criteria: maximum likelihood, MAP, minimum risk;
 - Optimization techniques: grid search, stochastic hillclimbing, EM, MCMC;
- Conceptual separation of objective function and optimization technique.

Generative models

- "Generative story": we define probability distributions by decribing the mechanism by which the data could have been generated.
- "Graphical models": often graphs are used to define the statistical dependencies in the generative story.

Recap 0 0

Local optimum

Inside-Outside

000

Inside-Outside

Recap

Probabilistic Grammars

- For natural language grammar, generative models are instantiatied with probabilistic grammars
- The extended Chomsky hierarchy for symbolic grammars, is mirrored by a hierarchy of probabilistic grammars.
- Classes on the hierarchy are proper subsets of eachother;
 - Corrolary: everything lower in the hierarchy can in principled be modelled by formalisms for probabilistic grammars higher in the hierarchy;
 - E.g., PCFGs can model ngrams and HMMs (and probabilistic bilexical dependency grammars).

Probabilistic Context Free Grammars

- Add probabilities to the rules of a context-free grammar;
- The PCFG now defines a probability distribution (*G*_S) over trees (with S as root, and words as leaves);
- It also defines probability distributions over sentences;
- It also defines probability distributions (*G_A*) over trees rooted in any other nonterminal *A*;
- G_S can be defined using the probabilities of all rules with S as left-hand side and $G_A \dots G_Z$.

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in *Chomsky-normal form* (i.e., all productions are of the form $A \rightarrow BC$ or $A \rightarrow x$, where $A, B, C \in N$ and $x \in T$) is G_S where:

$$G_A = \sum_{A \to B C \in R_A} pA \to B CG_B \bullet G_C + \sum_{A \to w \in R_A} pA \to x\delta_x$$

$$(P \bullet Q)(z) = \sum_{xy=z} P(x)Q(y)$$

$$\delta_x(w) = 1 \text{ if } w = x \text{ and } 0 \text{ otherwise}$$

In fact, $G_A(w) = P(A \Rightarrow^* w | \theta)$, the sum of the probability of all trees with root node *A* and yield *w*

Things we want to compute with PCFGs

Given a PCFG *G* and a string $w \in T^*$,

• (parsing): the most likely tree for *w*,

 $\operatorname{argmax}_{\psi \in \Psi_G(w)} \mathbf{P}_G(\psi)$

• (language modeling): the probability of *w*,

$$\mathrm{P}_G(w) \;=\; \sum_{\psi \in \Psi_G(w)} \mathrm{P}_G(\psi)$$

Learning rule probabilities from data:

- (maximum likelihood estimation from visible data): given a corpus of trees $d = (\psi_1, \dots, \psi_n)$, which rule probabilities p makes d as likely as possible?
- (maximum likelihood estimation from hidden data): given a corpus of strings $w = (w_1, ..., w_n)$, which rule probabilities p makes w as likely as possible?

Parsing and language modeling

The probability $P_G(\psi)$ of a tree $\psi \in \Psi_G(w)$ is:

$$\mathbf{P}_G(\psi) = \prod_{r \in R} p(r)^{f_r(\psi)}$$

Suppose the set of parse trees $\Psi_G(w)$ is finite, and we can enumerate it.

Naive parsing/language modeling algorithms for PCFG *G* and string $w \in T^*$:

- 1. Enumerate the set of parse trees $\Psi_G(w)$
- 2. Compute the probability of each $\psi \in \Psi_G(w)$
- 3. Argmax/sum as appropriate

Chomsky normal form

A CFG is in *Chomsky Normal Form* (CNF) iff all productions are of the form $A \rightarrow B C$ or $A \rightarrow x$, where $A, B, C \in N$ and $x \in T$. PCFGs *without epsilon productions* $A \rightarrow \epsilon$ can always be put into CNF.

Key step: *binarize* productions with more than two children by introducing new nonterminals

Substrings and string positions

Let $w = w_1 w_2 \dots w_n$ be a string of length n

A *string position* for w is an integer $i \in 0, ..., n$ (informally, it identifies the position between words w_{i-1} and w_i)

٠	the	٠	dog	٠	chases	٠	cats	٠
0		1		2		3		4

A *substring* of *w* can be specified by beginning and ending string positions

 $w_{i,j}$ is the substring starting at word i + 1 and ending at word j.

 $w_{0,4} =$ the dog chases cats $w_{1,2} =$ dog $w_{2,4} =$ chases cats

Language modeling using dynamic programming

- *Goal:* To compute $P_G(w) = \sum_{\psi \in \Psi_G(w)} P_G(\psi) = P_G(S \Rightarrow^* w)$
- *Data structure:* A table called a *chart* recording $P_G(A \Rightarrow^* w_{i,k})$ for all $A \in N$ and $0 \le i < k \le |w|$
- *Base case:* For all i = 1, ..., n and $A \rightarrow w_i$, compute:

$$P_G(A \Rightarrow^* w_{i-1,i}) = p(A \to w_i)$$

• *Recursion:* For all k - i = 2, ..., n and $A \in N$, compute:

$$\begin{split} \mathbf{P}_{G}(A \Rightarrow^{*} w_{i,k}) \\ &= \sum_{j=i+1}^{k-1} \sum_{A \to B} \sum_{C \in R(A)} p(A \to BC) \mathbf{P}_{G}(B \Rightarrow^{*} w_{i,j}) \mathbf{P}_{G}(C \Rightarrow^{*} w_{j,k}) \end{split}$$

Inside-Outside

Dynamic programming recursion

 $P_G(A \Rightarrow^* w_{i,k})$ is called the *inside probability* of A spanning $w_{i,k}$.

Example PCFG string probability calculation

$$\begin{array}{lll} w & = & {\rm George\ hates\ John} \\ R & = & \left\{ \begin{array}{lll} 1.0 & {\rm S} \rightarrow {\rm NP\ VP} & & 1.0 & {\rm VP} \rightarrow {\rm V\ NP} \\ 0.7 & {\rm NP} \rightarrow {\rm George} & & 0.3 & {\rm NP} \rightarrow {\rm John} \\ 0.5 & {\rm V} \rightarrow {\rm likes} & & 0.5 & {\rm V} \rightarrow {\rm hates} \end{array} \right\}$$

Right string position

Intermediate Summary

- PCFGs define probability distributions over trees, subtrees and strings. These distributions can be viewed as *recursive mixtures*.
- The probability of a (sub)string can be calculated the naive way by summing the probabilities of all the trees that contain it;
- We can make use of the recursive nature of PCFG distributions to calculate string probabilities more efficiently: the inside algorithm.

Computational complexity of PCFG parsing

For each production $r \in R$ and each *i*, *k*, we must sum over all intermediate positions $j \Rightarrow O(n^3|R|)$ time

Estimating (learning) PCFGs from data

Estimating productions and production probabilities from *visible data* (corpus of parse trees) is straight-forward:

- the productions are identified by the local trees in the data
- *Maximum likelihood principle:* select production probabilities in order to make corpus as likely as possible
- Bayesian estimators often produce more useful estimates

Estimating production probabilities from *hidden data* (corpus of terminal strings) is much more difficult:

- The *Expectation-Maximization* (EM) algorithm finds probabilities that *locally maximize* likelihood of corpus
- The *Inside-Outside* algorithm runs in time polynomial in length of corpus
- Bayesian estimators have recently been developed

Estimating the productions from hidden data is an open problem.

Reca 0 0 0

Estimating PCFGs from visible data

Data: A *treebank* of parse trees $\Psi = \psi_1, \ldots, \psi_n$.

$$L(p) = \prod_{i=1}^{n} P_{G}(\psi_{i}) = \prod_{A \to \alpha \in R} p(A \to \alpha)^{f_{A \to \alpha}(\Psi)}$$

Introduce |N| Lagrange multipliers $c_B, B \in N$ for the constraints $\sum_{B \to \beta \in R(B)} p(B \to \beta) = 1$:

$$\frac{\partial \left(L(p) - \sum_{B \in N} c_B \left(\sum_{B \to \beta \in R(B)} p(B \to \beta) - 1 \right) \right)}{\partial p(A \to \alpha)} = \frac{L(p)f_r(\Psi)}{p(A \to \alpha)} - c_A$$

Setting this to 0, $p(A \to \alpha) = \frac{f_{A \to \alpha}(\Psi)}{\sum_{A \to \alpha' \in R(A)} f_{A \to \alpha'}(\Psi)}$

Visible PCFG estimation example

Estimating production probabilities from hidden data

Data: A corpus of sentences $w = w_1, \ldots, w_n$.

$$L(\boldsymbol{w}) = \prod_{i=1}^{n} P_G(w_i). \qquad P_G(\boldsymbol{w}) = \sum_{\boldsymbol{\psi} \in \Psi_G(\boldsymbol{w})} P_G(\boldsymbol{\psi}).$$
$$\frac{\partial L(\boldsymbol{w})}{\partial p(A \to \alpha)} = \frac{L(\boldsymbol{w}) \sum_{i=1}^{n} E_G(f_{A \to \alpha} | w_i)}{p(A \to \alpha)}$$

Setting this equal to the Lagrange multiplier c_A and imposing the constraint $\sum_{B \to \beta \in R(B)} p(B \to \beta) = 1$:

$$p(A \to \alpha) = \frac{\sum_{i=1}^{n} \mathbb{E}_G(f_{A \to \alpha} | w_i)}{\sum_{A \to \alpha' \in R(A)} \sum_{i=1}^{n} \mathbb{E}_G(f_{A \to \alpha'} | w_i)}$$

This is an iteration of the *expectation maximization* algorithm!

The EM algorithm for PCFGs

Input: a corpus of strings $w = w_1, \ldots, w_n$

Guess initial production probabilities $p^{(0)}$

For t = 1, 2, ... do:

1. Calculate *expected frequency* $\sum_{i=1}^{n} E_{p^{(t-1)}}(f_{A \to \alpha} | w_i)$ of each production:

$$\mathbf{E}_p(f_{A\to\alpha}|w) = \sum_{\psi\in\Psi_G(w)} f_{A\to\alpha}(\psi)\mathbf{P}_p(\psi)$$

2. Set $p^{(t)}$ to the *relative expected frequency* of each production

$$p^{(t)}(A \to \alpha) = \frac{\sum_{i=1}^{n} \mathbb{E}_{p^{(t-1)}}(f_{A \to \alpha}|w_i)}{\sum_{A \to \alpha'} \sum_{i=1}^{n} \mathbb{E}_{p^{(t-1)}}(f_{A \to \alpha'}|w_i)}$$

It is as if $p^{(t)}$ were estimated from a visible corpus Ψ_G in which each tree ψ occurs $\sum_{i=1}^{n} P_{p^{(t-1)}}(\psi|w_i)$ times.

Calculating "outside probabilities"

Construct a table of "outside probabilities" $P_G(S \Rightarrow^* w_{0i} A w_{kn})$ for all $0 \le i < k \le n$ and $A \in N$ Recursion from *larger to smaller* substrings in *w*. Base case: $P(S \Rightarrow^* w_{0,0} S w_{n,n}) = 1$ *Recursion:* $P(S \Rightarrow^* w_{0,i} C w_{k,n}) =$ $\sum_{i=0}^{j-1} \sum_{A,B \in N} \Pr(S \Rightarrow^* w_{0,i} A w_{k,n}) p(A \to B C) \Pr(B \Rightarrow^* w_{i,j})$ + $\sum_{n=1}^{\infty} \sum_{j=1}^{n} P(S \Rightarrow^* w_{0,j} A w_{l,n}) p(A \to C D) P(D \Rightarrow^* w_{k,l})$ l=k+1 $A.D\in N$ $A \rightarrow C D \in R$

Recursion in $P_G(S \Rightarrow^* w_{0,i} A w_{k,n})$

$$P(S \Rightarrow^* w_{0,j} C w_{k,n}) = \sum_{i=0}^{j-1} \sum_{\substack{A,B \in N \\ A \to B C \in R}} P(S \Rightarrow^* w_{0,i} A w_{k,n}) p(A \to B C) P(B \Rightarrow^* w_{i,j}) + \sum_{\substack{I=k+1 \\ A \to C D \in R}} P(S \Rightarrow^* w_{0,j} A w_{l,n}) p(A \to C D) P(D \Rightarrow^* w_{k,l})$$

Example: The EM algorithm with a toy PCFG

Initial rule probs						
rule	prob					
• • •	• • •					
$VP \to V$	0.2					
$VP \to V NP$	0.2					
$VP \to NP V$	0.2					
$VP \to V NP NP$	0.2					
$VP \to NP NP V$	0.2					
$Det \to the$	0.1					
$N \to the$	0.1					
$V \rightarrow the$	0.1					

"English" input the dog bites the dog bites a man a man gives the dog a bone ...

"pseudo-Japanese" input the dog bites the dog a man bites a man the dog a bone gives

Inside-Outside

Probability of "English"

Rule probabilities from "English"

Inside-Outside

Probability of "Japanese"

Rule probabilities from "Japanese"

Learning in statistical paradigm

- The likelihood is a differentiable function of rule probabilities
 - \Rightarrow learning can involve small, incremental updates
- Learning structure (rules) is hard, but ...
- · Parameter estimation can approximate rule learning
 - start with "superset" grammar
 - estimate rule probabilities
 - discard low probability rules
- Non-parametric Bayesian estimators combine parameter and rule estimation