
Expectation Maximization and  
Mixture of Gaussians 
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 Recommend me 
some music! 

 Discover groups 
of similar songs… 

君の知らない
物語 (bpm 

125) 

Bach Sonata 
#1 (bpm 60) 

Only my 
railgun (bpm 

120) 
My Music Collection 

Bpm 
90! 
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An unsupervised classifying method 
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1.  Initialize K 
“means”     , one 
for each class 

 Eg. Use random 
starting points, or 
choose k random 
points from the set  

K=2 

€ 

µk

€ 

µ2€ 

µ1
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2.  Phase 1: Assign 
each point to 
closest mean 

3.  Phase 2: Update 
means of the 
new clusters 

1 0 

€ 

µk
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4.  When means do 
not change 
anymore  
clustering DONE. 
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 In K-means, a point can only have 1 class 
 But what about points that lie in between 

groups? eg. Jazz + Classical 
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The Famous “GMM”:  
Gaussian Mixture Model 
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€ 

p(X) = N(X |µ,Σ)

Gaussian == 
“Normal” 

distribution 

Mean 

Variance 
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€ 

p(X) = N(X |µ,Σ) + N(X |µ,Σ)
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€ 

p(X) = N(X |µ1,Σ1) + N(X |µ2,Σ2)

Variance 

Example:  
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€ 

p(X) = π1N(X |µ1,Σ1) + π 2N(X |µ2,Σ2)

€ 

π k
k=1

k

∑ =1Mixing 
Coefficient 

€ 

π1 = 0.7

Example:  

€ 

π 2 = 0.3
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€ 

p(X) = π kN(X |µk,Σk )
k=1

K

∑

€ 

K = 2
Example: 
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 K-means is a 
classifier 

 Mixture of 
Gaussians is a 
probability model 

 We can USE it as a 
“soft” classifier 
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Parameter to fit to data:  
•  Mean 

 K-means is a 
classifier 

 Mixture of 
Gaussians is a 
probability model 

 We can USE it as a 
“soft” classifier 

Parameters to fit to data: 
•  Mean  
•  Covariance 
•  Mixing coefficient 

€ 

π k

€ 

Σk

€ 

µk

€ 

µk
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EM for GMM 
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1.  Initialize means 
2.  E Step: Assign each point to a cluster 
3.  M Step: Given clusters, refine mean       of each 

cluster k 

4.  Stop when change in means is small 
€ 

µk 1 0 

€ 

µk
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1.  Initialize Gaussian* parameters: means    , 
covariances      and mixing coefficients 

2.  E Step: Assign each point Xn an assignment 
score          for each cluster k  

3.  M Step: Given scores, adjust     ,     ,  
 for each cluster k 

4.  Evaluate likelihood. If likelihood or 
parameters converge, stop. 

€ 

µk

€ 

Σk

€ 

π k

0.5 0.5 

€ 

γ(znk )

€ 

Σk

€ 

µk
€ 

π k

*There are k Gaussians 
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1.  Initialize     ,   
         , one for each 

Gaussian k 

 Tip! Use K-means 
result to initialize: € 

µk

€ 

µ2

€ 

Σk

€ 

π k

€ 

Σ2

€ 

π 2

€ 

µk ← µk

€ 

Σk ← cov(cluster(K))

€ 

π k ← Number of points in k 
Total number of points 
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2.  E Step: For each 
point Xn, determine 
its assignment score 
to each Gaussian k: 

.7 .3 

is called a “responsibility”: how much is this Gaussian k   
responsible for this point Xn? 

€ 

γ(znk )

Latent variable 
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3.  M Step: For each 
Gaussian k, update 
parameters using 
new   

€ 

γ(znk )

Responsibility 
for this Xn 

Mean of Gaussian k 

Find the mean that “fits” the assignment scores best 
31 



3.  M Step: For each 
Gaussian k, update 
parameters using 
new   

€ 

γ(znk )

Covariance matrix 
of Gaussian k 

Just calculated this! 
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3.  M Step: For each 
Gaussian k, update 
parameters using 
new   

€ 

γ(znk )

Mixing Coefficient  
for Gaussian k  

Total # of 
points 

eg. 105.6/200 
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4.  Evaluate log likelihood. If likelihood or 
parameters converge, stop. Else go to Step 
2 (E step). 

Likelihood is the probability that the data X 
was generated by the parameters you found. 
ie. Correctness! 
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1.  Initialize parameters  
2.  E Step: Evaluate  
3.  M Step: Evaluate   

4.  Evaluate log likelihood. If likelihood or 
parameters converge, stop. Else 

 and go to E Step.  

€ 

θ old

€ 

p(Z | X,θ old )

where 

€ 

θ old ←θ new

Observed 
variables 

Hidden 
variables 

Likelihood 

36 



 K-means can be formulated as EM 
 EM for Gaussian Mixtures 
 EM for Bernoulli Mixtures 
 EM for Bayesian Linear Regression 
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 “Expectation”  
Calculated the fixed, data-dependent 

parameters of the function Q. 
 “Maximization”  
Once the parameters of Q are known, it is fully 

determined, so now we can maximize Q. 
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 We learned how to cluster data in an 
unsupervised manner 

 Gaussian Mixture Models are useful for 
modeling data with “soft” cluster 
assignments 

 Expectation Maximization is a method used 
when we have a model with latent variables 
(values we don’t know, but estimate with 
each step) 0.5 0.5 
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 My question: What other applications could 
use EM? How about EM of GMMs? 
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