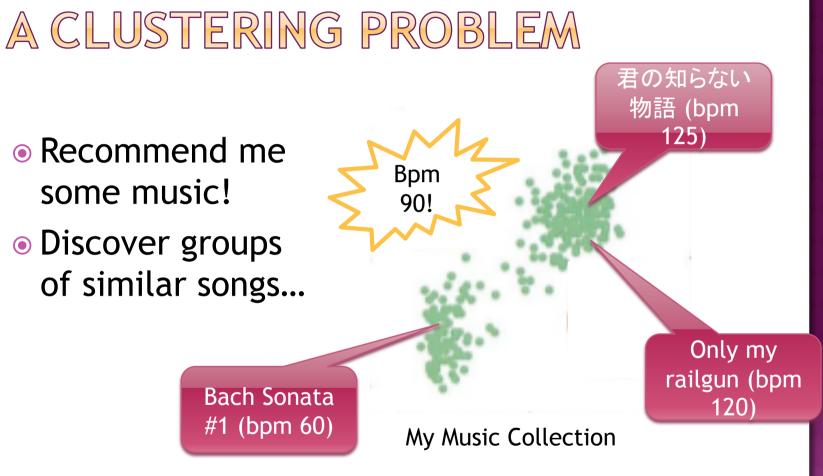
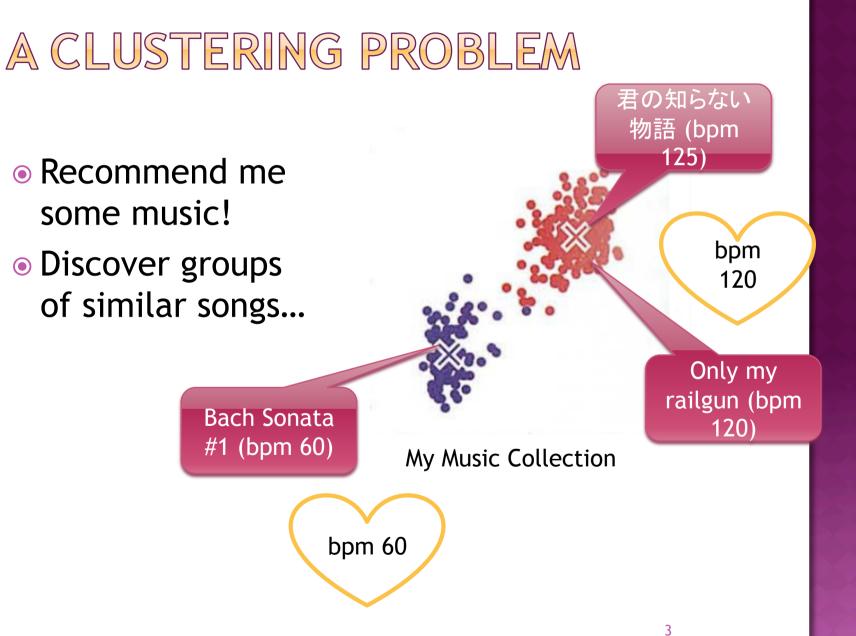
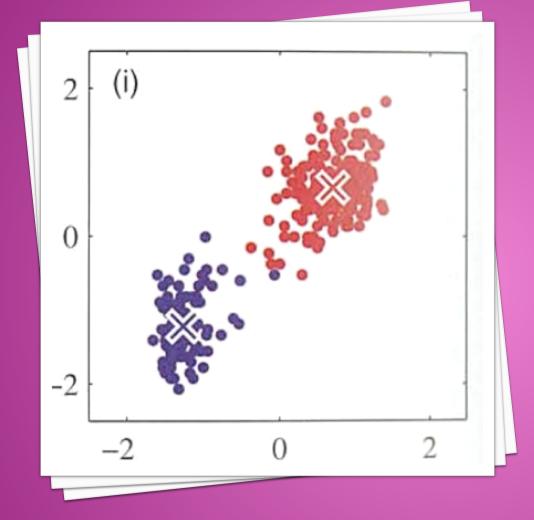
PRML: CHAPTER 9

Expectation Maximization and Mixture of Gaussians



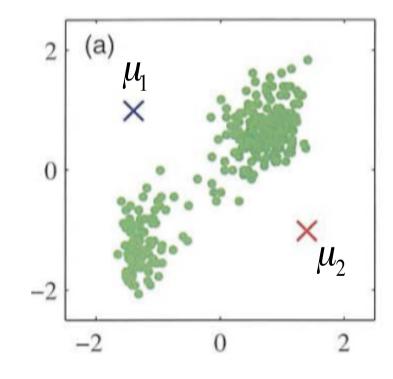


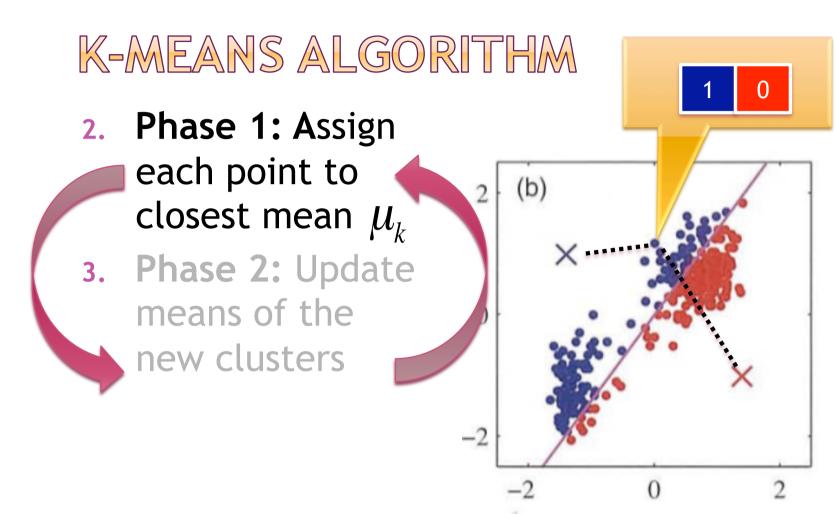


9.1 K-MEANS CLUSTERING

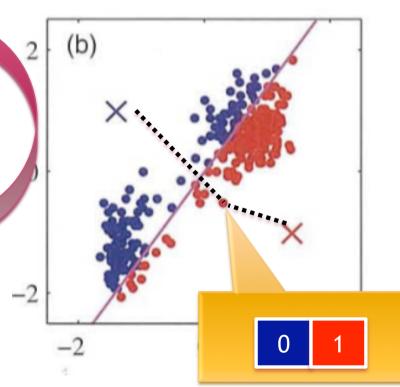
An unsupervised classifying method

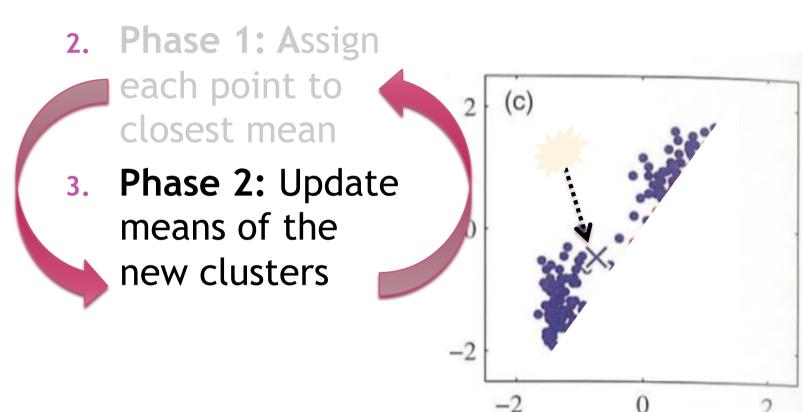
- 1. Initialize K "means" μ_k , one for each class
 - Eg. Use random starting points, or choose k random points from the set

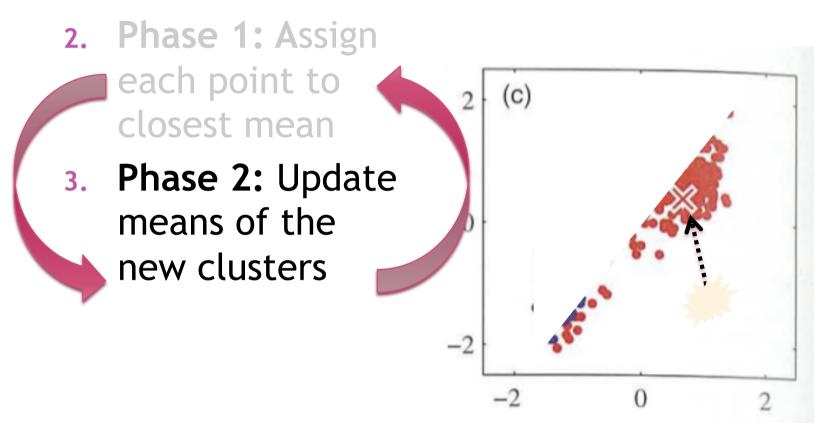


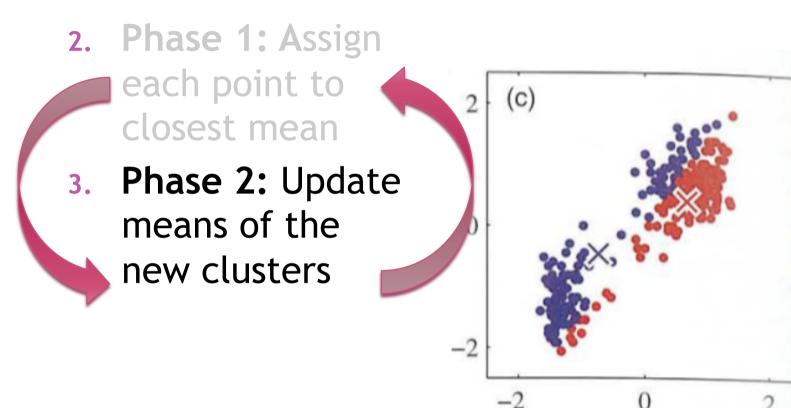


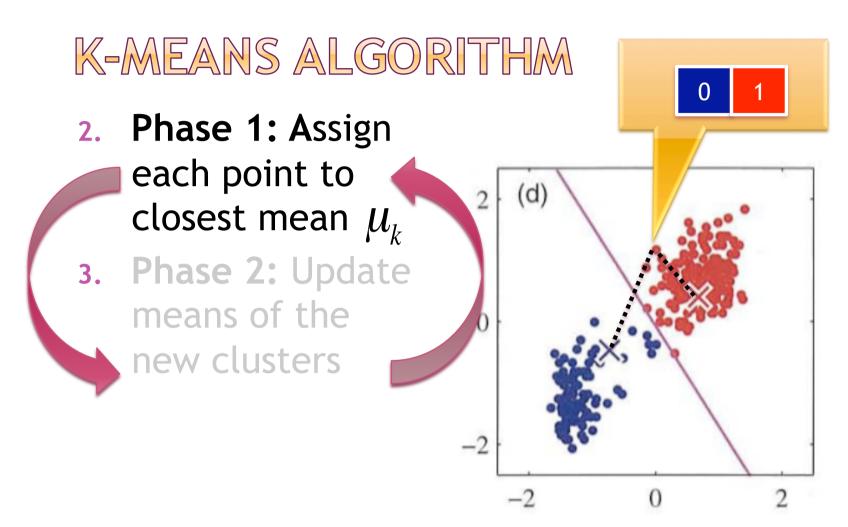
2. Phase 1: Assign each point to closest mean μ_k 3. Phase 2: Update means of the new clusters

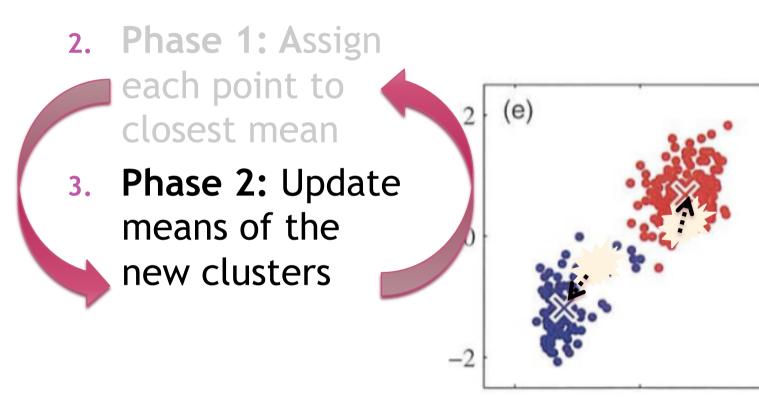


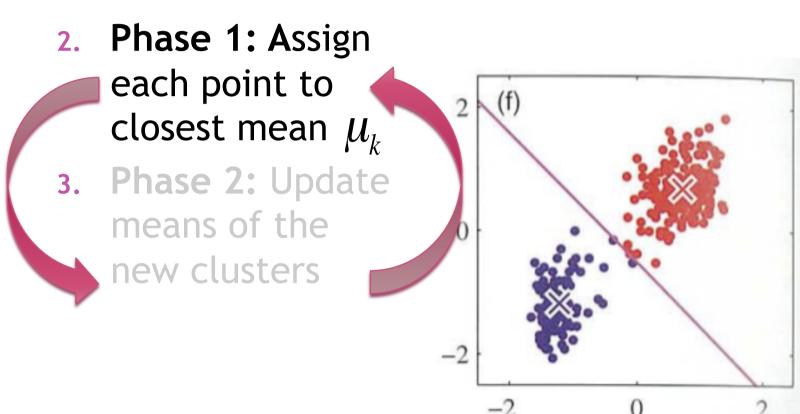


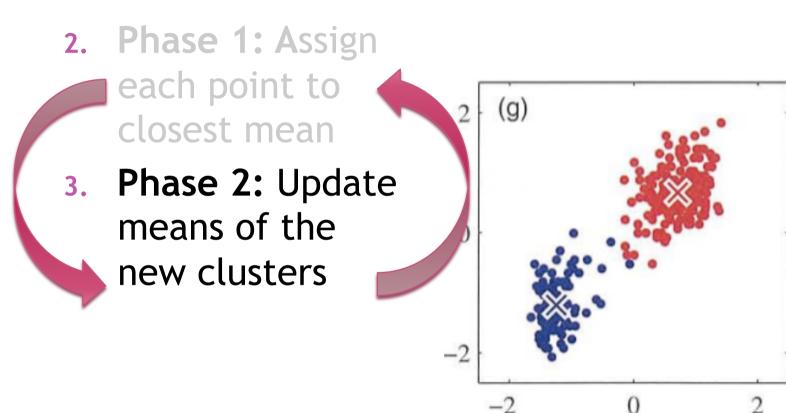




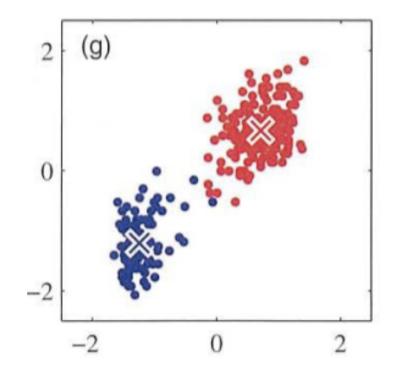








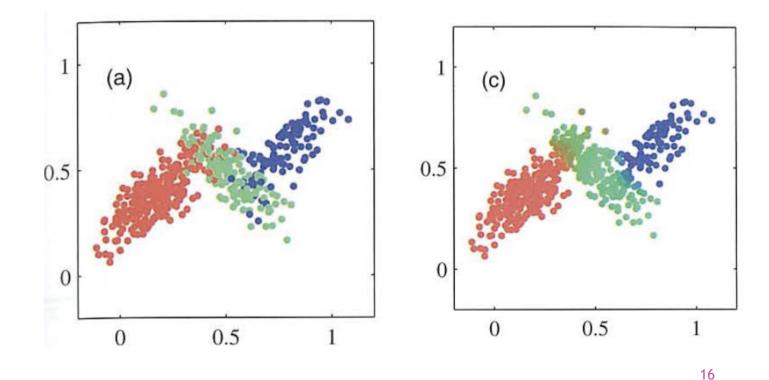
4. When means do not change anymore \rightarrow clustering DONE.

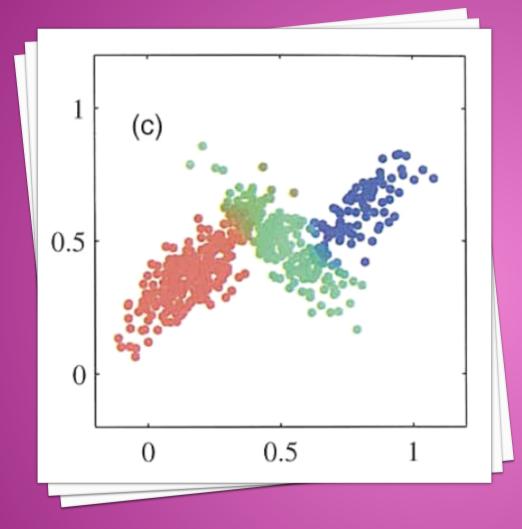


15

PROBLEM WITH K-MEANS

In K-means, a point can only have 1 class
But what about points that lie in between groups? eg. Jazz + Classical





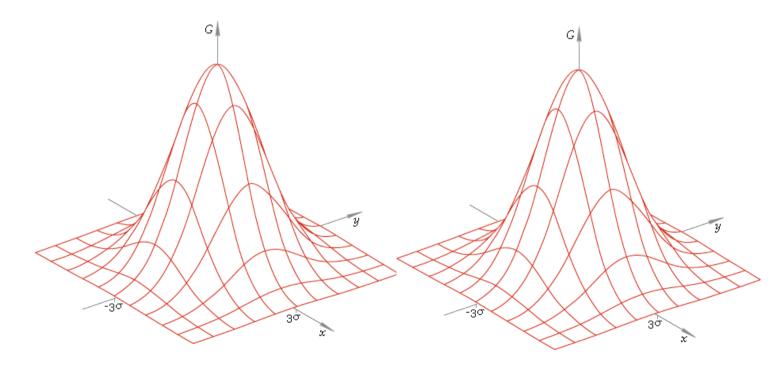
9.2 MIXTURE OF GAUSSIANS

The Famous "GMM": Gaussian Mixture Model

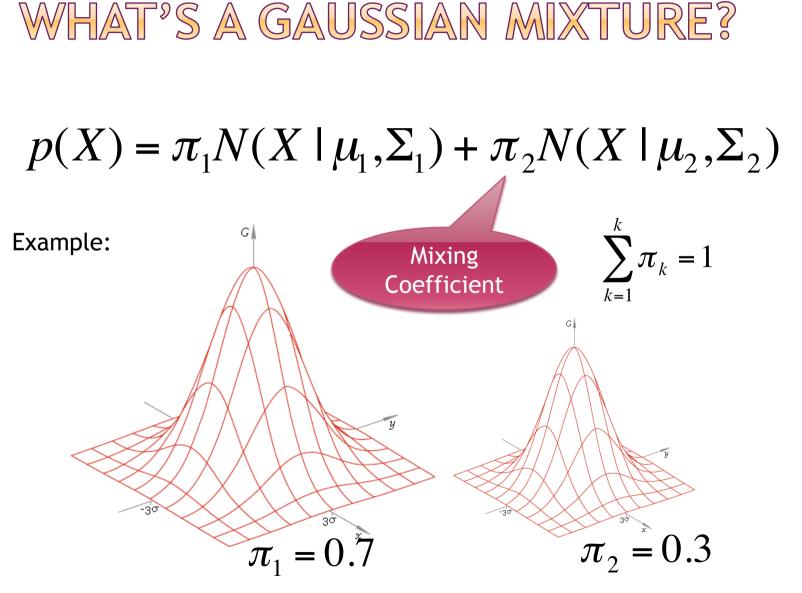


WHAT'S A GAUSSIAN MIXTURE?

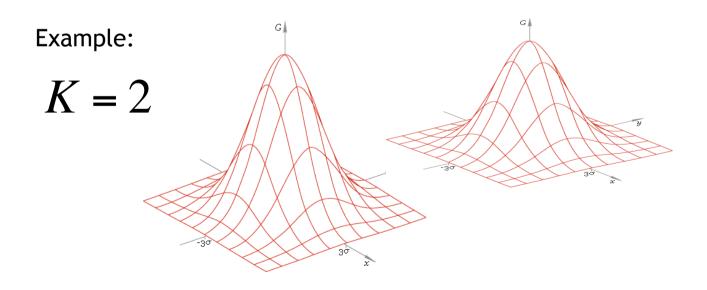
$p(X) = N(X \mid \mu, \Sigma) + N(X \mid \mu, \Sigma)$



WHAT'S A GAUSSIAN MIXTURE? $p(X) = N(X \mid \mu_1, \Sigma_1) + N(X \mid \mu_2, \Sigma_2)$ G Example: Variance



GAUSSIAN MIXTURE DEFINITION $p(X) = \sum_{k=1}^{K} \pi_k N(X \mid \mu_k, \Sigma_k)$



22

$\mathsf{K}\text{-}\mathsf{MEANS} \twoheadrightarrow \mathsf{GAUSSIAN} \mathsf{MIXTURE}$

 K-means is a classifier Mixture of Gaussians is a probability model

• We can USE it as a "soft" classifier

$\mathsf{K}\text{-}\mathsf{MEANS} \twoheadrightarrow \mathsf{GAUSSIAN} \mathsf{MIXTURE}$

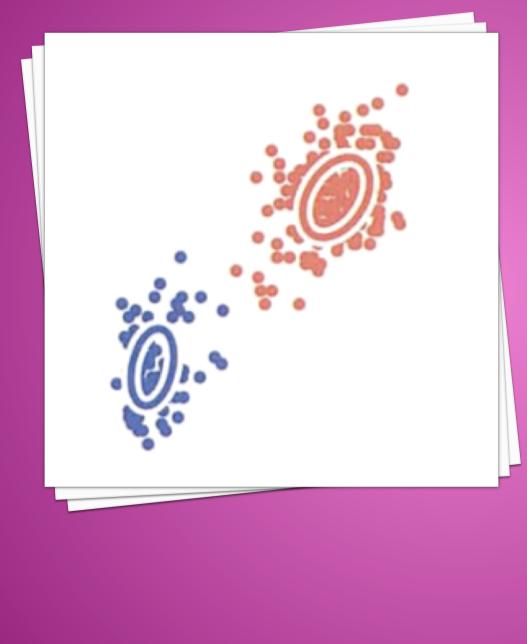
 K-means is a classifier Mixture of Gaussians is a probability model
 We can USE it as a "soft" classifier

$\mathsf{K}\text{-}\mathsf{MEANS}\twoheadrightarrow\mathsf{GAUSSIAN}\ \mathsf{MIXTURE}$

 K-means is a classifier Mixture of Gaussians is a probability model
 We can USE it as a "soft" classifier

Parameter to fit to data: • Mean μ_k Parameters to fit to data:

- Mean μ_k
- Covariance Σ_k
- Mixing coefficient π_k



9.2.2 EXPECTATION MAXIMIZATION FOR GAUSSIAN MIXTURES EM for GMM

K-MEANS ALGORITHM REMINDER

- 1. Initialize means μ_k
 - 2. E Step: Assign each point to a cluster
 - . M Step: Given clusters, refine mean μ_k of each cluster k
- 4. Stop when change in means is small

0

EXPECTATION MAXIMIZATION (EM) FOR GAUSSIAN MIXTURES

- 1. Initialize Gaussian* parameters: means μ_k , covariances Σ_k and mixing coefficients π_k
 - 2. E Step: Assign each point X_n an assignment score $\gamma(z_{nk})$ for each cluster k
 - 3. **M Step:** Given scores, adjust μ_k , π_k , Σ_k for each cluster k
- 4. Evaluate likelihood. If likelihood or parameters converge, stop.

*There are k Gaussians

0.5

0.5

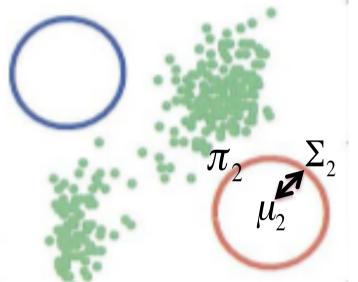
- Initialize μ_k , Σ_k 1. π_k , one for each Gaussian k
 - Tip! Use K-means result to initialize:

$$\mu_{k} \leftarrow \mu_{k}$$

$$\Sigma_{k} \leftarrow \operatorname{cov}(cluster(K))$$

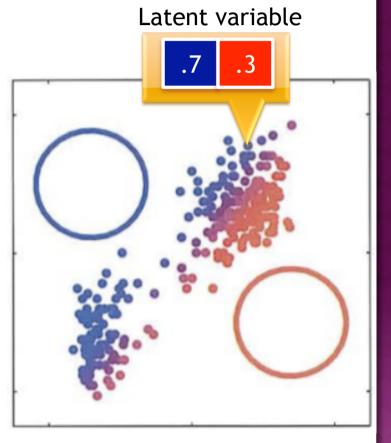
$$\pi_{k} \leftarrow \underline{\operatorname{Number of points in k}}$$
Total number of points

<u>Number of points in k</u> Total number of points



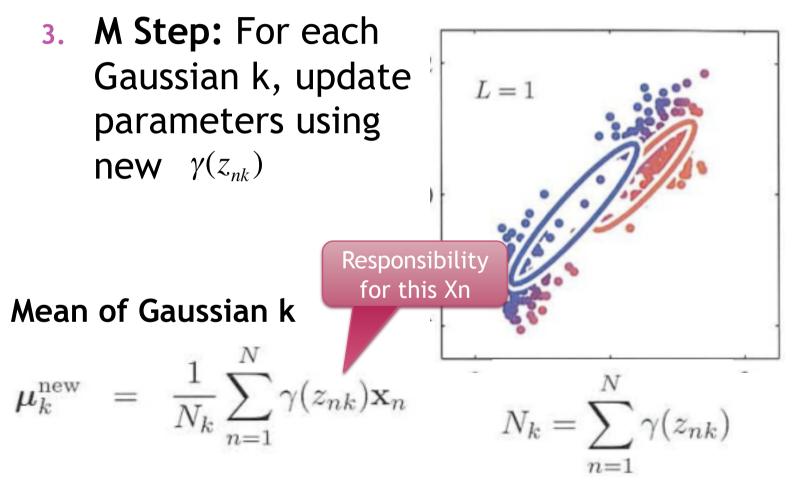
2. E Step: For each point X_n, determine its assignment score to each Gaussian k:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$



 $\gamma(z_{nk})$

is called a "responsibility": how much is this Gaussian k responsible for this point X_n ?



Find the mean that "fits" the assignment scores best

3. **M Step:** For each Gaussian k, update parameters using new $\gamma(z_{nk})$

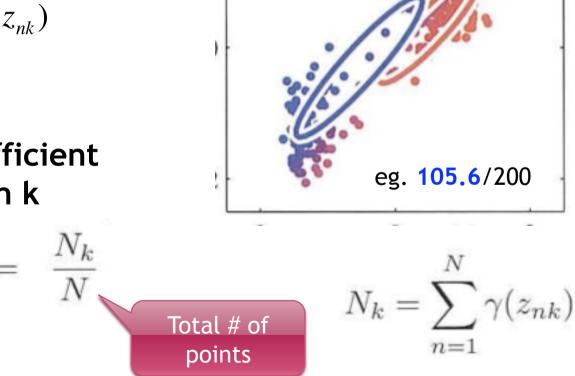
Covariance matrix of Gaussian k

$$\boldsymbol{\Sigma}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}} \right) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}} \right)^{\text{T}}$$
Just calculated this!

3. **M Step:** For each Gaussian k, update L = 1 parameters using new $\gamma(z_{nk})$

Mixing Coefficient for Gaussian k

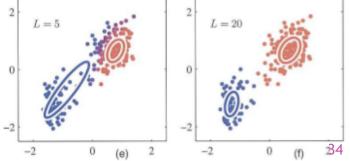
 π_k^{new}



4. Evaluate log likelihood. If likelihood or parameters converge, stop. Else go to Step 2 (E step).

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \underline{\pi_k} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Likelihood is the probability that the data X was generated by the parameters you found. ie. Correctness!



9.4 THE GENERAL EM ALGORITHM

GENERAL EM ALGORITHM

- 1. Initialize parameters θ^{old} Hidden variables
 - 2. E Step: Evaluate $p(Z \mid X, \theta^{old})$
 - 3. M Step: Evaluate

$$\boldsymbol{\theta}^{\mathrm{new}} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}})$$

Likelihood

where

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).$$

4. Evaluate log likelihood. If likelihood or parameters converge, stop. Else $\theta^{old} \leftarrow \theta^{new}$ and go to E Step.

Observed

variables

EM IN MANY FORMS

- K-means can be formulated as EM
- EM for Gaussian Mixtures
- EM for Bernoulli Mixtures
- EM for Bayesian Linear Regression

EXPECTATION MAXIMIZATION SUMMARY

• "Expectation"

Calculated the fixed, data-dependent parameters of the function *Q*.

• "Maximization"

Once the parameters of Q are known, it is fully determined, so now we can maximize Q.

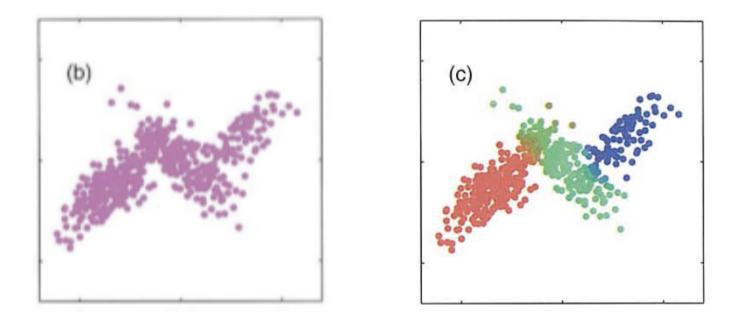
$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).$$

CHAPTER 9 SUMMARY

- We learned how to cluster data in an unsupervised manner
- Gaussian Mixture Models are useful for modeling data with "soft" cluster assignments
- Expectation Maximization is a method used when we have a model with latent variables (values we don't know, but estimate with each step)

0.5 0.5

QUESTIONS?



• My question: What other applications could use EM? How about EM of GMMs?