PRML: CHAPTER 9

Expectation Maximization and
Mixture of Gaussians
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9.1 K-MEANS
CLEUSTERING

An unsupervised classifying method




K=MEANS ALGORITIHIM

1. Initialize K
“means” U, , one
for each class

Eg. Use random
starting points, or
choose k random
points from the set
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K=MEANS ALGORITIHIM
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K=MEANS ALGORITIHIM

2. Phase 1: Assign
each point to
closest mean [,

13



K=MEANS ALGORITIHIM
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K=MEANS ALGORITIHIM

4. When means do
not change
anymore -
clustering DONE.
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PROBL

EM WITH K=

EANS

@ In K-means, a point can only have 1 class
® But what about points that lie in between

groups?

eg. Jazz + Classical
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9.2 MIXTURE OF
GAUSSIANS

The Famous “GMM”’:

Gaussian Mixture Model




WHAT’S A GAUSSIAN?

p(X)=N(X | Mf@) W
/




WHAT’S A GAUSSIAN MIXTURE?

p(X)=NXI1u2)+N(XIu2)




WHAT’S A GAUSSIAN MIXTURE?

p(X) = N(X 11,2 + N(X 11y, 3,)

Example:



WHAT’S A GAUSSIAN MIXTURE?

p(X)=aN(X lu,2) +2N(X lu,,2,)

Example: Mixing

Coefficient




GAUSSIAN MIXTURE DEFINITION

p(X) = Eﬂ:kN(X e ,2)0)
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K-MEANS = GAUSSIAN MIXTURE

® K-means is a ® Mixture of
classifier Gaussians is a
probability model

O]
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K=MEANS = GAUSSIAN MIXTUR
® K-means is a ® Mixture of
classifier Gaussians is a

E

probability model
®We can USE it as a

“soft” classifier
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K-MEANS = GAUSSIAN MIXTUR

® K-means is a

classifier
Parameter to fit to data:
* Mean U,
g J

® Mixture of
Gaussians is a
probability model

®We can USE it as a
“soft” classifier

E

-

Parameters to fit to data:
* Mean W,
- Covariance 2,
 Mixing coefficient T,

\_

~N

J
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9.2.2 EXPECTATION
MAXIMIZATION FOR
GAUSSIAN MIXTURES

EM for GMM 3




K=MEANS ALGORITHM REMINDER

i. Initialize means u, | 1 0]
E Step: Assign each point to a cluster
M Step: Given clusters, refine mean W, of ea@
cluster k

4. Stop when change in means is small
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EXPECTATION MAXIMIZATION (EM)
FOR GAUSSIAN MIXTURES

1. Initialize Gaussian* parameters: means u, ,
covariances 3 and mixing coefficients 7,

( E Step: Assign each point X an assignment\

score y(z,,) for each cluster k
M Step: Given scores, adjust t, T, .2, g
for each cluster k

4. Evaluate likelihood. If likelihood or
parameters converge, stop.

*There are k Gaussians
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EM FOR GAUSSIAN MIXTUR

1. Initialize U, , 2,

7T, , one for each
Gaussian k

Tip! Use K-means
result to initialize:

W <= Wy
2, < cov(cluster(K))

J'l,'k <— Number of points in k
Total number of points

ES

7@2
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EM FOR GAUSSIAN MIXTURES

Latent variable

2. E Step: For each
point X, determine
its assignment score
to each Gaussian k:

~ Wk‘N(anl-l'ka El‘:)
A/"(Z'nk) %

miN (Xn ‘Uja %)

=1

)’(Z ) is called a “responsibility”: how much is this Gaussian k
nk responsible for this point X ?
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EM FOR GAUSSIAN MIXTURES

3. M Step: For each
Gaussian k, update | , _, -

parameters using ¥
new 7(z,) j .
L .

- | . i
,_L}i“ " — N E 7 (:nk )xn ’ :
Nj. N = g Y(2nk)

n=1

Find the mean that “fits” the assignment scores best
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EM FOR GAUSSIAN MIXTURES

3. M Step: For each
Gaussian k, update |
parameters using
new v(z,)

Covariance matrix
of Gaussian k

: . : TP
2}:0“ — Xy Z A,»"'(':nk) (X,, — l‘l’]l.]'o“ ) (X,, - I-‘Lll\“ 4 )

Just calculated this!




EM FOR GAUSSIAN MIXTURES

3. M Step: For each
Gaussian k, update |
parameters using
new v(z,)

Mixing Coefficient
for Gaussian k

"N‘r }‘ .
N

new .
/" L S

WV

:)

Total # of

points




EM FOR GAUSSIAN MIXTURES

4. Evaluate log likelihood. If likelihood or

parameters converge, stop. Else go to Step
2 (E step).

N [~ K v

Inp(X|p, 2, 7) = Z In < Z TN (Xn |, 2k) 2

n=1 \ k=1 /

Likelihood is the probability that the data X
was generated by the parameters you found.
ie. Correctness! . - 1 ]
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GENERAL EM ALGORITIHIM

1. Initialize parameters 9" variables
E Step: Evaluate p(Z | X,0°Y)

M Step: Evaluate
variables

0" = arg max Q(0, 8°'%)
0

H1dden

Likelihood
where

Q(0,0°%) = Z p(Z|X, 0% Inp(X,Z|6).
Z

4. Evaluate log likelihood. If likelihood or
parameters converge, stop. Else 8 <— 0""

and go to E Step.
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EM [N MANY FORMS

® K-means can be formulated as EM
® EM for Gaussian Mixtures
® EM for Bernoulli Mixtures
@ EM for Bayesian Linear Regression
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EXPECTATION MAXIMIZATION
SUMMARY

® “Expectation”

Calculated the fixed, data-dependent
parameters of the function Q.

® “Maximization”

Once the parameters of Q are known, it is fully
determined, so now we can maximize Q.

Q(6,6”%) =Y p(Z|X,6°¢) Inp(X, Z|6)
Z
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CHAPTER 9 SUMMARY

® We learned how to cluster data in an
unsupervised manner

® Gaussian Mixture Models are useful for
modeling data with “soft” cluster
assignments

® Expectation Maximization is a method used
when we have a model with latent variables
(values we don’t know, but estimate with

each step)
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QUESTIONS?

(b)

® My question: What other applications could
use EM? How about EM of GMMs?
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