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Statistical inference
Bayesian inversion
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Local optimum
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Maximum Likelihood (ML) Hypothesis:

argmaxh P(hypothesis|data) ≈
argmaxh P(data|hypothesis)

Bayesian Maximum A Posteriori (MAP) Hypothesis:

argmaxh P(hypothesis|data) =

argmaxh
P(data|hypothesis)P(hypothesis)

P(data
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•
• The cat saw the mouse.
• The cat heard a mouse.
• The mouse heard.
• A mouse saw.
• A cat saw.
• A cat heard the mouse.

(Langley & Stromsten, 2000)
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0→the 1
0→a 1
1→cat 2
1→mouse 2
2→saw
2→heard
2→saw 3
2→heard 3
3→the 4
3→a 4
4→cat
4→mouse

• Grammar Description Length: 32
symbols

• Prior Probability Grammar: 2−32
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•
• The cat saw the mouse.

1/2× 1/2× 1/4× 1/2× 1/2 = 1/64
• The cat heard a mouse. 1/64
• The mouse heard. 1/2× 1/2× 1/4 = 1/16
• A mouse saw. 1/16
• A cat saw. 1/16
• A cat heard the mouse. 1/64

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .×
Data Likelihood = 2−30

(Langley & Stromsten, 2000)
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• Data Description Length: 11
• Data Likelihood: 2−11

• Grammar Description Length: 54
• Grammar Prior: 2−54
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Context-free Grammar
S →NP VP
NP→Art N
Art→the
Art→a
N →cat
N →mouse

VP→V
V →saw
V →heard
VP→V NP

• Data Description Length: 30
• Data Likelihood: 2−30

• Grammar Description Length: 21
• Grammar Prior: 2−21
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Outline

Statistical Inference

Bayesian Model Merging

Implementation

Unsupervised induction

Unsupervised labeling

Slides derived from slides of Gideon Borensztajn.
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PCFG induction by Bayesian Model Merging

• Goal: unsupervised induction of PCFG from flat text.
• Earlier methods (e.g., 1990) use parameter search (and

EM).
• In Bayesian Model Merging (BMM) (Stolcke, 1994) it is

assumed that neither parameters, nor structure are known.
• Stochastic hill-climbing search through space of possible

grammars.
• Maximizing posterior probability (rather than likelihood of

data).
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Merging and chunking in BMM

In BMM, two learning operators (successor functions) involved
in hill-climbing search: merging and chunking operators
• The merging operator creates generalizations by forming

disjunctive groups (categories) of patterns that occur in the
same contexts. It replaces two existing non-terminals X1
and X2 with a single new non-terminal Y .

• The chunking operator concatenates or chunks repeating
patterns. It takes a sequence of two nonterminals X1 and
X2 and creates a new nonterminal Y that expands to X1X2.
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Steps in BMM

• Initialization of grammar by incorporating sentences as flat
rules.

• Iterated merging and chunking in alternating phases.

The merge/chunk that scores best on an evaluation function is
selected.
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Bayesian learning and MAP hypothesis

Maximum a Posteriori (MAP) hypothesis, MMAP is the
hypothesis that maximizes the posterior probability (with given
data). With Bayes Law:

MMAP ≡ argmaxMP(M|X ) = argmaxM
P(X |M) · P(M)

P(X )
=

= argmaxMP(X |M) · P(M)

P(X |M) is likelihood
P(M) is the prior probability, or ‘prior’.
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Bayesian learning and MAP hypothesis - ctd

• Prior is constructed such that it expresses the designer’s a
priori preferences for the model: this is a probabilistic form
of bias (e.g. Occam’s Razor).

• The maximization of P(X |M) · P(M) is equivalent to
minimizing

−logP(M)− logP(X |M) ≈ GDL + DDL = DL (1)

• In information theory: estimation by Minimum Description
Length (MDL).

• Grammar Description Length (GDL): the length needed to
encode the model

• Data Description Length (DDL): the bits needed to describe
the data given the model.
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Priors

The prior can be decomposed into a structure prior and a
parameter prior:

P(M) = P(MS) · P(ΘM |MS) (2)

• The structure prior P(MS) is the inverse exponential of the
code length of the model: logP(MS) = −DL(MS). I.e., the
minimal number of bits required to transmit the grammar.

• In the simplest case, parameter prior ignored (i.e. uniform).
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e-Grids

• Because of computational complexity not feasible to apply
the Stolcke algorithm on real natural language corpora

• e-Grids (Petasis et al., 2004): reduces the complexity of
the computations by forecasting description length change
from merge or chunk operation → no need to construct a
grammar for every search operator.

• complexity of chunk reduced from O(N2) to O(N)
complexity of merge reduced from O(N3) to O(N2)
(where N is the number of non-terminals)
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Evaluation

OVIS: a treebank containing 10040 annotated Dutch sentences
from a public transport information system.
WSJ10-POSTAGS: 7422 POSTAG sequences of length <= 10
extracted from Wall Street Journal (WSJ) (Klein & Manning,
2002).

OVIS WSJ10
Sentences 10040 7422
Sentences> 1 word 6892 7263
Words 31697 52089
Av. sentence length 4.60 7.17
Vocabulary 946 35
Av. token frequency 33.5 1488
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Experimental results

Evalutation using a version of PARSEVAL (Klein & Manning,
2005). (Poisson, µ = 2.5)

OVIS UP UR F
R-B 68.91 66.30 67.58
BMM 71.70 66.56 69.03
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Experimental results (ctd)

WSJ-10 UP UR F
CCM (Klein & Manning, 2002) 64.2 81.6 71.9
DMV+CCM (Klein & Manning, 2004) 69.3 88.0 77.6
U-DOP (Bod, 2006) 70.8 88.2 78.5
R-B 70.0 55.12 61.68
BMM 57.57 42.65 49.00

• For WSJ-10 the scores are disappointing, compared to
previous work on unsupervised grammar induction, and
even to right branching (R-B).

• influence of parameter settings is minor.
• Follow-up experiments to explain disappointing results.
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Is failure due to objective function or search?

• Is the treebank grammar indeed a minimum of the
objective function?

• Test: BMM algorithm was initialized with the treebank
grammar.

• Priors: Poisson (µ = 3.0) and Dirichlet. Similar results for
alternative priors.

DL GDL DDL UP UR F
Treebank Initial 292515 66067 226448 90.10 88.64 89.36

Final 275807 40557 235250 64.31 74.78 69.15

Conclusion: BMM can still optimize the description length when
initialized with the treebank grammar → treebank grammar is
not even a local minimum of the objective function.



Statistical Inference Bayesian Model Merging Implementation Unsupervised induction Unsupervised labeling Summary

Is failure due to objective function or search?

• Is the treebank grammar indeed a minimum of the
objective function?

• Test: BMM algorithm was initialized with the treebank
grammar.

• Priors: Poisson (µ = 3.0) and Dirichlet. Similar results for
alternative priors.

DL GDL DDL UP UR F
Treebank Initial 292515 66067 226448 90.10 88.64 89.36

Final 275807 40557 235250 64.31 74.78 69.15

Conclusion: BMM can still optimize the description length when
initialized with the treebank grammar → treebank grammar is
not even a local minimum of the objective function.



Statistical Inference Bayesian Model Merging Implementation Unsupervised induction Unsupervised labeling Summary

Is failure due to objective function or search?

• Is the treebank grammar indeed a minimum of the
objective function?

• Test: BMM algorithm was initialized with the treebank
grammar.

• Priors: Poisson (µ = 3.0) and Dirichlet. Similar results for
alternative priors.

DL GDL DDL UP UR F
Treebank Initial 292515 66067 226448 90.10 88.64 89.36

Final 275807 40557 235250 64.31 74.78 69.15

Conclusion: BMM can still optimize the description length when
initialized with the treebank grammar → treebank grammar is
not even a local minimum of the objective function.



Statistical Inference Bayesian Model Merging Implementation Unsupervised induction Unsupervised labeling Summary

Is failure due to objective function or search?

• Is the treebank grammar indeed a minimum of the
objective function?

• Test: BMM algorithm was initialized with the treebank
grammar.

• Priors: Poisson (µ = 3.0) and Dirichlet. Similar results for
alternative priors.

DL GDL DDL UP UR F
Treebank Initial 292515 66067 226448 90.10 88.64 89.36

Final 275807 40557 235250 64.31 74.78 69.15

Conclusion: BMM can still optimize the description length when
initialized with the treebank grammar → treebank grammar is
not even a local minimum of the objective function.



Statistical Inference Bayesian Model Merging Implementation Unsupervised induction Unsupervised labeling Summary

Is failure due to objective function or search?

• Is the treebank grammar indeed a minimum of the
objective function?

• Test: BMM algorithm was initialized with the treebank
grammar.

• Priors: Poisson (µ = 3.0) and Dirichlet. Similar results for
alternative priors.

DL GDL DDL UP UR F
Treebank Initial 292515 66067 226448 90.10 88.64 89.36

Final 275807 40557 235250 64.31 74.78 69.15

Conclusion: BMM can still optimize the description length when
initialized with the treebank grammar → treebank grammar is
not even a local minimum of the objective function.



Statistical Inference Bayesian Model Merging Implementation Unsupervised induction Unsupervised labeling Summary

Temporal dynamics of BMM

Merges and chunks of OVIS and WSJ are initially linguistically
relevant, but soon after fail to be so. Is this behavior reflected in
the PARSEVAL scores?
After 10 out of 60 chunks the F-score reaches maximum, At the
same time, DL continues decreasing monotonically → objective
function gives no good stopping criterion!
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Conclusions on BMM

• Contrary to received wisdom (Klein, 2005, Clark, 2001)
BMM can be evaluated on large corpora.

• Although good results on artificial grammars, BMM (still)
disappointing on real languages.

• Probably not a search problem, but objective function
doesn’t fit natural languages

• Too much noise: merging errors are carried over to the
chunking phase and vice versa, causing a snow ball effect.
Better for single algorithm not to deal at the same time
both with bracketing and with labeling
→ new approach: unsupervised labeling with BMM.
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Unsupervised Labeling

• Semi-supervised induction in two stages:
• use bracketed sentences from the treebank, or specialized

unsupervised bracketing algorithm.
• give the brackets as input to the BMM algorithm adapted for

unsupervised label induction.

• Treebank bracketings of WSJ10 were used as input; for
pilot experiments 5000 (declarative) POSTAG sequences
were selected having S non-terminal as their root.

• We use the BMM algorithm as before, but without
chunking. The initial grammar consists of the rules read off
from the target bracketings, but with a unique label for
every non-terminal. Non-terminals with the same
descendants are given equal names.
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Results on WSJ
Evaluation: greedy remapping of the experimental labels onto
the treebank labels (Haghighi and Klein, 2006)
since # experimental labels >> # treebank labels we also
compute scores remapping the other way round.

LP LR F
BMM (uniform) 87.3 31.9 46.7
BMM (3000) 76.3 84.3 80.1
BMM (5000) 75.3 82.3 78.7
Haghighi & Klein ’06 64.8 78.7 71.1

• BMM performs better than state-of-the-art labeling
algorithms.

• High F-scores on categories TOP, NP, and VP (77% of all
brackets) are responsible for good result. F-scores on PP,
ADVP, ADJP considerably less.

• Adaptation of e-Grids for PCFG (‘non-uniform distribution’)
significantly improves the scores.
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Conclusions and future directions

• BMM performance worse than state-of-the-art on
bracketing ...

• ... but better than state-of-the-art on labeling.
• bracketing and labeling processes should perhaps be

separated, and there are cognitive arguments to do so.
• or we should think about a different generative model!
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