
ULL’13

Lecture 9: Taking Statistical Learning to its Limits, and

Beyond

Jelle Zuidema

MoL'12 Modeling Language Learning

Learning a grammar

• Choose a generative model
– HMM, PCFG, PTSG, PTAG, …

• Choose an objective function
– Maximum Likelihood, Bayesian …

• Choose an optimization strategy
– Stochastic hillclimbing

• Choose a dataset
• Find the generative model that maximizes

the objective function on the dataset!

• How can we learn the building blocks and rules of combina-

tion on natural language from (unlabeled) data?

• Formal languages: form-meaning associations, finite-state

machines, context-free grammars, tree substitution gram-

mars, dependency grammars, lambda calculus

• Statistical Models: Markov models, HMMs, PCFGs, PPBDG

• Statistical Inference: EM, Maximum Likelihood, Sampling

methods, Posterior Mode

1. Taking statistical learning of grammars from unlabeled data

to its limits: Cohn et al. 2010

2. A step back: Iterated Learning: Zuidema 2003

3. Algorithmicly defined learning procedures: Seginer 2007

ULL10 Unsupervised Language Learning

MAP

P(G|D)

Bayesian inversion

Generative model

P(D|G)

Cohn et al. 2010

All tricks from the book:

• Probabilistic Tree Substitution Grammars (like DOP, “com-

mitment”)

• Pitman-Yor Chinese Restaurant Processes to define prior

over PTSGs (and likelihood of the corpus).

• DMV (like Klein & Manning, 2004)

• Split-head encoding (like Johnson)

COHN, BLUNSOM AND GOLDWATER

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivatione and yield(t) returns the string of
terminal symbols at the leaves oft.

Estimating a PTSG requires learning the sufficient statistics forP(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable treefor a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, thechoice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
knowa priori how many there are, and secondly labels that appear high in a tree (e.g., anScategory

3058

COHN, BLUNSOM AND GOLDWATER

S

NP VP . . .
S

NP VP

VP

V NP

broccoli

PP

IN

in

NP

Figure 4: The Pitman-Yor process, illustrated as a labelled Chinese restaurant process. In this
example,z−10= (1,2,1,1,3,1,1,4,3) and each tablek is labelled with an elementary treeℓk. Black
dots indicate the number of occurrences of each tree ine = (ℓ1, ℓ2, ℓ1, ℓ1, ℓ3, ℓ1, ℓ1, ℓ4, ℓ3). In this
illustration, which corresponds to the model given in (2), a single Pitman-Yorprocess is used to
generate all elementary trees, so the trees do not necessarily fit togetherproperly. Our complete
model, defined in (5), would have a separate Pitman-Yor restaurant for each root category.

Equation 4 shows that, like other PYP and DP models, this model can be viewed as acache
model, whereei can be generated in one of two ways: by drawing from the base distributionor
by drawing from a cache of previously generated elementary trees, where the probability of any
particular elementary tree is proportional to the discounted frequency of that tree. This view makes
it clear that the model embodies a “rich-get-richer” dynamic in which a few elementary trees will
occur with high probability, but many will occur only once or twice, as is typical of natural language.

In the model just defined, a single PYP generates all of the elementary treesin e. Notice,
however, that these elementary trees might not tile together properly to create full syntax trees. For
example, in Figure 4,e1 = (S NP VP) ande2 = (PP (IN in) NP), where the first substitution site in
e1 is an NP, but the root ofe2 is a PP, soe2 cannot be used to expande1. To solve this problem,
we modify the model so that there is a separate PYP for each non-terminal categoryc, with a base
distribution conditioned onc. The distribution over elementary trees with root categoryc is defined
as

Gc|ac,bc,PE ∼ PYP(ac,bc,PE(·|c))

e|c,Gc ∼ Gc , (5)

wherePE(·|c) is a distribution over the infinite space of elementary trees rooted withc, andac and
bc are the PYP hyper-parameters for non-terminalc. We elect not to tie together the values of these
hyper-parameters as these control the tendency to infer larger or smallersets of elementary trees
from the observed data; we expect the distribution over productions to differ substantially between
non-terminals. To generatee, we now drawe1 from GS, giving us an elementary tree with frontier
nodesc1 . . .cm. We then drawe2 . . .em in turn fromGc1 . . .Gcm. We continue in this fashion until a
full tree is generated, at which point we can start again with a draw fromGS.

Integrating overGc, we obtain the following distribution overei , now conditioned on its root
category as well as the previously generated table labels and assignments:

P(ei = e|c,z−i , ℓ(z−i)) =
n−e −K−

e ac+(K−
c ac+bc)PE(e|c)

n−c +bc
, (6)

whereK−
c = ∑e:root(e)=cK−

e is the total number of tables for nonterminalc, n−e is the number of
timesehas been used to rewritec andn−c = ∑e:root(e)=cn−e is the total count of rules rewritingc. As

3062

INDUCING TREE SUBSTITUTION GRAMMARS

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP,1

George

VP,0

V,0

hates

NP,1

broccoli

Figure 5: Gibbs sampler state (b) corresponding to the example derivation (a) (reproduced from
Figure 1a). Each node is labelled with its substitution variable.

4.1 Local Sampler

Thelocal sampler is designed specifically for the supervised scenario, and samplesa TSG derivation
for each tree by sampling local updates at each tree node. It uses Gibbs sampling (Geman and
Geman, 1984), where random variables are repeatedly sampled conditioned on the current values of
all other random variables in the model. The actual algorithm is analogous to the Gibbs sampler used
for inference in the Bayesian model of word segmentation presented by Goldwater et al. (2006);
indeed, the problem of inferring the derivationse from t can be viewed as a segmentation problem,
where each full tree must be segmented into one or more elementary trees. Toformulate the local
sampler, we associate a binary variablexd ∈ {0,1} with each non-root internal node,d, of each
tree in the training set, indicating whether that node is a substitution point (xd = 1) or not (xd = 0).
Each substitution point forms the root of some elementary tree, as well as a frontier nonterminal
of an ancestor node’s elementary tree. Conversely, each non-substitution point forms an internal
node inside an elementary tree. Collectively the training trees and substitution variables specify the
sequence of elementary treese that is the current state of the sampler. Figure 5 shows an example
tree with its substitution variables and its corresponding TSG derivation.

Our Gibbs sampler works by sampling the value of thexd variables, one at a time, in random
order. If d is the node associated withxd, the substitution variable under consideration, then the
two possible values ofxd define two options fore: one in whichd is internal to some elementary
treeeM, and one in whichd is the substitution site connecting two smaller trees,eA andeB. In the
example in Figure 5, when sampling the VP node,eM = (S NP (VP (V hates) NP)),eA = (S NP VP),
andeB = (VP (V hates) NP). To sample a value forxd, we compute the probabilities ofeM and
(eA,eB), conditioned one−: all other elementary trees in the training set that share at most a root or
frontier nonterminal witheM,eA, or eB. These probabilities are easy to compute because the PYP is
exchangeable, meaning that the probability of a set of outcomes does not depend on their ordering.
Therefore we can treat the elementary trees under consideration as the last ones to be sampled, and
apply Equation (6). We then sample one of the two outcomes (merging or splitting)according to the
relative probabilities of these two events. More specifically, the probabilitiesof the two outcomes,

3065

ULL10 Unsupervised Language Learning

MCMC / Gibbs sampling:
• for a variable v with n components,

• iteratively reestimate vi for every i=1...n

from P(vi | v1...vi-1,vi+1...vn).

Converges to P(v).

Sampling techniques

COHN, BLUNSOM AND GOLDWATER

S

{S-NP-{VP-{V-hates}-NP}}

NP

George

{VP-{V-hates}-NP}

{V-hates}

hates

NP

broccoli

S

S’

NP

George

VP’

V’

hates

NP

broccoli

Figure 7: Example trees under the grammar transform, which both encode thesame TSG deriva-
tion from Figure 1a. The left tree encodes that theS→ NP (VP (V hates) NPelementary tree was
drawn from the cache, while for the right tree this same elementary tree was drawn from the base
distribution (the count and base terms in (11), respectively).

site,xd = 1, otherwise it is an internal node,xd = 0. For example, both trees in Figure 7 encode that
both NP nodes are substitution sites and that the VP and V nodes are not substitution sites (the same
configuration as Figure 5).

The time complexity of the constrained inside algorithm is linear in the size of the treeand the
length of the sentence. The local sampler also has the same time complexity, however it is not im-
mediately clear which technique will be faster in practise. It is likely that the blocked sampler will
have a slower runtime due to its more complicated implementation, particularly in transforming
the grammar and inside inference. Although the two samplers have equivalent asymptotic com-
plexity, the constant factors may differ greatly. In Section 6 we compare thetwo training methods
empirically to determine which converges more quickly.

4.3 Sampling Hyperparameters

In the previous discussion we assumed that we are given the model hyperparameters,(a,b,s). While
it might be possible to specify their values manually or fit them using a development set, both
approaches are made difficult by the high dimensional parameter space. Instead we treat the hyper-
parameters as random variables in our model, by placing vague priors over them and infer their
values during training. This is an elegant way to specify their values, although it does limit our
ability to tune the model to optimise a performance metric on held-out data.

For the PYP discount parametersa, we employ independent Beta priors,ac ∼ Beta(1,1). The
prior is uniform, encoding that we have no strong prior knowledge of what the value of eachac

should be. The conditional probability ofac given the current derivationsz, ℓ is

P(ac|z, ℓ) ∝P(z, ℓ|ac)×Beta(ac|1,1) .

We cannot calculate the normaliser for this probability, howeverP(z, ℓ|ac) can be calculated using
Equation 3 and thusP(ac|z, ℓ) can be calculated up to a constant. We use the range doubling slice
sampling technique of Neal (2003) to draw a new sample ofa′c from its conditional distribution.13

We treat the concentration parameters,b, as being generated by independent gamma priors,
bc ∼Gamma(1,1). We use the same slice-sampling method forac to sample from the conditional

13. We used the slice sampler included in Mark Johnson’s Adaptor Grammar implementation, available at
http://web.science.mq.edu.au/ ˜ mjohnson/Software.htm .

3070

INDUCING TREE SUBSTITUTION GRAMMARS

iteration

F
1

sc
or

e

64
66

68
70

72
74

tr
ai

ni
ng

 lo
g

po
st

er
io

r

−
36

00
00

−
34

00
00

−
32

00
00

−
30

00
00

1 10 100 1000 10000

Figure 10: Likelihood and generalisation F1 are highly correlated. The black circles show the
development F1 score (left axis) and the red line shows the training log-likelihood (right axis) dur-
ing a Gibbs sampling run. The parsing results were obtained using Viterbi parsing with the MAP
approximation grammar.

0 1 2 3 4 5 6 7 8 9 10

value

to
ta

l c
ou

nt
 o

f r
ul

es

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

height
nodes
lexemes
vars

Figure 11: Grammar statistics for a TSG model trained on the full Penn treebank training set, show-
ing the aggregate count for elementary trees of given height, number of nodes, terminals (lexemes)
and frontier nonterminals (vars). An insignificant fraction of the rules had a height or number of
nodes> 10; these have been truncated for display purposes.

3079

COHN, BLUNSOM AND GOLDWATER

≤ 40 all

Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for sentences
of up to 40 words, and for all sentences. The results of several treebank parsers are also shown (as
reported in the literature, hence the missing values), representing a baseline (PCFG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Reranking parser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simplified preprocessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragments.The grammar
sizes are not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAPPCFG, in which
non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is clear: our model produces
similar results to a state-of-the-art parser, and does so using a similar sizedgrammar. With additional
rounds of split-merge training the Berkeley grammar grows exponentially larger (200K rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammar induced from this
data set, which extracts every possible TSG rule from the training set with nosize limit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, usingsections 2–21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged model from the end of
a sampling run on the small data set and run the blocked Metropolis Hastings sampler for 20,000
iterations. The MAP PCFG approximation had 156k productions and training took 1.2 million
seconds in total or 61 seconds per iteration.18 We repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skippingthe internal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This would mean that each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choice of parsing algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.

3076

COHN, BLUNSOM AND GOLDWATER

Model Viterbi MPD MPP MER # rules

PCFG 60.20 60.20 60.20 - 3500
TSG PYP 74.90 76.68 77.17 78.59 25746
TSG DP 74.70 75.86 76.24 77.91 25339
Berkeley parser (τ = 2) 71.93 71.93 - 74.32 16168
Berkeley parser (τ = 5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Penn treebank, showing labelled
constituent F1 and the grammar size. For the TSG models the grammar size reported is the number
of CFG productions in the transformed MAP PCFG approximation. Unknown word models are
applied to words occurring less than two times (TSG models and Berkeleyτ = 2) or less than five
times (Berkeleyτ = 5).

the TSG can make a large difference. Surprisingly, the MPP technique is only slightly better than
the MPD approach, suggesting that derivational ambiguity is not as much ofa problem as previously
thought (Bod, 2003). Also surprising is the fact that exact Viterbi parsing under the MAP approx-
imation is much worse than the MPD method which uses an approximate search technique under
the true model. The MER technique is a clear winner, however, with considerably better F1 scores
than either MPD or MPP, with a margin of 1–2 points. This method is less affectedby sampling
variance than the other MC algorithms due to its use of smaller tree fragments (CFG productions at
each span).

We also consider the difference between using a Dirichlet process prior(DP) and a Pitman-Yor
process prior (PYP). This amounts to whether thea hyper-parameters are set to 0 (DP) or are allowed
to take on non-zero values (PYP), in which case we sample their values as described in Section 4.3.
There is a small but consistent gain of around 0.5 F1 points across the different parsing methods
from using the PYP, confirming our expectation that the increased flexibility of the PYP is useful
for modelling linguistic data. Figure 8a shows the learned values of the PYP hyperparameters after
training for each nonterminal category. It is interesting to see that the hyper-parameter values mostly
separate the open-class categories, which denote constituents carryingsemantic content, from the
closed-class categories, which are largely structural. The open classes (noun-, verb-, adjective- and
adverb-phrases: NP, VP, ADJP and ADVP, respectively) tend to have highera andb values (towards
the top right corner of the graph) and therefore can describe highly diverse sets of productions. In
contrast, most of the closed classes (the root category, quantity phrases, wh-question noun phrases
and sentential phrases: TOP, QP, WHNP and S, respectively) have lowa andb (towards the bottom
left corner of the graph), reflecting that encoding their largely formulaicrewrites does not necessitate
diverse distributions.

The s hyper-parameter values are shown in Figure 8b, and are mostly in the mid-range (0.3–
0.7). Prepositions (IN), adverbs (RB), determiners (DT) and some tenses of verbs (VBD and VBP)
have very lows values, and therefore tend to be lexicalized into elementary trees. This is expected
behaviour, as these categories select strongly for the words they modifyand some (DT, verbs) must
agree with their arguments in number and tense. Conversely particles (RP),modal verbs (MD) and
possessive particles (PRP$) have highs values, and are therefore rarely lexicalized. This is rea-
sonable for MD and PRP$, which tend to be exchangeable for one another without rendering the
sentence ungrammatical (e.g., ‘his’ can be substituted for ‘their’ and ‘should’ for ‘can’). However,

3074

INDUCING TREE SUBSTITUTION GRAMMARS

(a) TSG-DMV representation. Large bold nodes indicate substitution points.

S

LV BZ

L
1

V BZ

LDT

DTl

DT MV BZ∗

DT R

DT R
1

DT∗MJJ

DT R
∗

DTr

LJJ

JJl

JJR

JJr

L
∗

V BZ

VBZl

V BZR

V BZR
1

V BZ∗MNN

V BZR
∗

VBZr

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NNR

NN R
1

NN∗MIN

NNR
∗

NNr

LIN

INl

IN R

INR
1

IN∗MNN

IN R
∗

INr

LNN

L
1

NN

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NN MNN∗

NNR

NNR
1

NN∗MCC

NNR
∗

NNr

LCC

CCl

CCR

CCr

L
∗

NN

NNl

NN R

NNr

(b) Dependency tree representation. The red links below the sentence show where the treebank reference analysis differs
from the predicted tree.

The above represents a triumph of either apathy or civility

ROOT

Figure 14: An example induced tree, shown as an elementary tree (a) and as a dependency tree (b).
The sentence was taken from the development set:"The DT above JJ represents VBZ aDT triumph NN

of IN either DT apathy NN or CC civility NN" .

3089

INDUCING TREE SUBSTITUTION GRAMMARS

Directed Attachment Accuracy
% on Section 23

Model Initialiser |w| ≤ 10 |w| ≤ 20 |w| ≤ ∞

Attach-Right - 38.4 33.4 31.7

EM (Klein and Manning, 2004) Harmonic 46.1 39.9 35.9
Dirichlet (Cohen et al., 2009) Harmonic 46.1 40.6 36.9

LN (Cohen et al., 2009) Harmonic 59.4 45.9 40.5
SLN, TIE V&N (Cohen and Smith, 2009) Harmonic 61.3 47.4 41.4

DMV (Headden III et al., 2009) Random 55.7σ=8.0 - -
DMV smoothed(Headden III et al., 2009) Random 61.2σ=1.2 - -
EVG smoothed(Headden III et al., 2009) Random 65.0σ=5.7 - -
L-EVG smoothed(Headden III et al., 2009) Random 68.8σ=4.5 - -

Less is More WSJ15(Spitkovsky et al., 2010) Harmonic 56.2 48.2 44.1
Leap Frog WSJ45(Spitkovsky et al., 2010) Harmonic 57.1 48.7 45.0

Adaptor Grammar(Cohen et al., 2010) Harmonic 50.2 - -

TSG-DMV Harmonic 65.9σ=2.4 58.3σ=2.3 53.1σ=2.4

TSG-DMV WSJ15 Harmonic 66.4σ=1.7 58.5σ=1.7 53.4σ=1.8

Supervised MLE(Cohen and Smith, 2009) - 84.5 74.9 68.8

Table 10: Head attachment accuracy for our two TSG-DMV models (highlighted), and many other
high performing models.

3087

A step back: how I got into all this

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

ULL10 Unsupervised Language Learning

If the languages we will ever have to learn (i.e. the set of

possible targets) are shaped by the learning procedure, perhaps

it makes sense to try to focus on finding elegant/simple

learning procedure rather than elegant/simple sets of formal

languages.

Miniprojects

Parsing trees

Willem Zuidema

February 28, 2011

Consider the following PCFG and two parses of the string ’aaa’:

S→ A B 1.0
A → A A 0.3
A → a 0.7
B→ B B 0.8
B→ a 0.2

S

A

a

B

B

a

B

a

S

A

A

a

A

a

B

a

The left tree has probability.7×.8×.2×.2 = .0224, while the right tree has probability.3×.7×.7×
.2 = .0294. In a standard PCFG-parser (e.g., BitPar), we can easily getthose parses of ’aaa’ and their
probabilities. However, if we only want to know the probability of a given parse tree, we are waisting
computing time by calculating all parse trees and their probabilities. We like ’trick’ an off-the-shelf
parser into computing the parse probability of only a specific parse.

The approach is based on definining a transform of the original grammar, and feeding the parser an
entire tree. In bracket notation, the left tree is:[S[Aa][B[Ba][Ba]]].

The transform should thus be such, that the transformed grammar G′ generates this entire string,
including the brackets and the nonterminals. Moreover,G′ should use the same number of productions to
generate a treet as the original grammarG needed to generate the parse, and with the same probabilities.
Hence, forS → A B whereG replaces theS, G′ should generate a string that includes the brackets and
theS:

S′
→ [SA′B′]

and similarly for all rules in the original grammar. The prime inS′ (andA′, B′) is here used to distinguish
betweenS as a terminal ofG′ (occurring in the string presented to the parser) andS′ as a nonterminal
of G′.

In BitPar, one additional difficulty is that it uses separatelexicon and grammar files, with a different
format, and doesn’t allow mixing terminal and nonterminalson the right-hand side of rules. The easiest
way to deal with this is to create a unique, dummy nonterminalfor every terminal symbol. For the
grammar above, we then arrive at the following transformed grammar and dummy lexicon file:

S”→ [’ S’ A” B”]’ 1.0
A” → [’ A’ A” A”]’ 0.3
A” → [’ A’ a’]’ 0.7
B” → [’ B’ B” B”]’ 0.8
B” → [’ B’ a’]’ 0.2

[’ [
]’]
S’ S
A’ A
B’ B
a’ a

We can automatically generate the transformed grammar and dummy lexicon file from the original
BitPar-grammar and lexicon using the unix utitilities ’sed’ and ’awk’. Instead of the prime, we will use
the symbol ’@’.

First, transform the lexicon file format into the grammar fileformat (assuming, for the moment, a
single preterminal per word, and replacing spaces within terminals):

1

Parsing trees

Willem Zuidema

February 28, 2011

Consider the following PCFG and two parses of the string ’aaa’:

S→ A B 1.0
A → A A 0.3
A → a 0.7
B→ B B 0.8
B→ a 0.2

S

A

a

B

B

a

B

a

S

A

A

a

A

a

B

a

The left tree has probability.7×.8×.2×.2 = .0224, while the right tree has probability.3×.7×.7×
.2 = .0294. In a standard PCFG-parser (e.g., BitPar), we can easily getthose parses of ’aaa’ and their
probabilities. However, if we only want to know the probability of a given parse tree, we are waisting
computing time by calculating all parse trees and their probabilities. We like ’trick’ an off-the-shelf
parser into computing the parse probability of only a specific parse.

The approach is based on definining a transform of the original grammar, and feeding the parser an
entire tree. In bracket notation, the left tree is:[S[Aa][B[Ba][Ba]]].

The transform should thus be such, that the transformed grammar G′ generates this entire string,
including the brackets and the nonterminals. Moreover,G′ should use the same number of productions to
generate a treet as the original grammarG needed to generate the parse, and with the same probabilities.
Hence, forS → A B whereG replaces theS, G′ should generate a string that includes the brackets and
theS:

S′
→ [SA′B′]

and similarly for all rules in the original grammar. The prime inS′ (andA′, B′) is here used to distinguish
betweenS as a terminal ofG′ (occurring in the string presented to the parser) andS′ as a nonterminal
of G′.

In BitPar, one additional difficulty is that it uses separatelexicon and grammar files, with a different
format, and doesn’t allow mixing terminal and nonterminalson the right-hand side of rules. The easiest
way to deal with this is to create a unique, dummy nonterminalfor every terminal symbol. For the
grammar above, we then arrive at the following transformed grammar and dummy lexicon file:

S”→ [’ S’ A” B”]’ 1.0
A” → [’ A’ A” A”]’ 0.3
A” → [’ A’ a’]’ 0.7
B” → [’ B’ B” B”]’ 0.8
B” → [’ B’ a’]’ 0.2

[’ [
]’]
S’ S
A’ A
B’ B
a’ a

We can automatically generate the transformed grammar and dummy lexicon file from the original
BitPar-grammar and lexicon using the unix utitilities ’sed’ and ’awk’. Instead of the prime, we will use
the symbol ’@’.

First, transform the lexicon file format into the grammar fileformat (assuming, for the moment, a
single preterminal per word, and replacing spaces within terminals):

1

cat toy.lex | sed -r ’s/ ([ˆ0-9])/_\1/g;s/(. *)\t(. *)
([0-9]\.[0-9] *)/\3 \2 \1/’ > /tmp/tp0.lex

Then, transform the entire original grammar (lexicon + grammar files) to the transformed grammar:

cat toy.gram | awk ’{printf("%s ",$1); printf("%s@@ [@ %s@ " ,$2,$2);
for (i=3; i<=NF; i++) printf("%s@@ ",$i);print "]@"}’ > tp. gram

cat /tmp/tp0.lex | awk ’{printf("%s ",$1); printf("%s@@ [@ %s@ ",$2,$2);
for (i=3; i<=NF; i++) printf("%s@ ",$i);print "]@"}’ >> tp. gram

And then generate the dummy lexicon file from the grammar file:

cat tp.gram | sed ’s/ /\n/g’ | grep -E ’[ˆ@]@’ | sort | uniq |
sed -r ’s/(. *)@/\1\t\1@ 1.0/’ > tp.lex

Now we can use a set of parses, as e.g. generated by the original grammar:

../src/bitpar -v -b 10 toy.gram toy.lex corpus > parses

replace brackets and put every (new) terminal symbol on a single line for BitPar:

less parses | sed -r ’s/ ?\(/\n[\n/g;s/\)/\n]/g;s/([a-z])
([a-z])/\1_\2/g;s/([a-z]) ([a-z])/\1_\2/g;s/ /\n/g’ > t p.corpus

And then parse the tp.corpus using the transformed grammar to obtain the same probabilities as with
the untransformed grammar.

(note: spurious empty lines in tp.corpus removed by hand).

../src/bitpar -vp -b 10 toy.gram toy.lex corpus original.r esults

../src/bitpar -vp -b 10 tp.gram tp.lex tp.corpus tp.result s

PTSGs Equivalence between PCFG-parsing and PTSG-parsetree-parsing

A ◦

A

B

x

C

y

=
A

B

x

C

y
A [A[Bx][Cy]] [A[Bx][Cy]]
A′

◦ A′
→ [A[Bx][Cy]] = ([A[Bx][Cy]])

A ◦

A

B

x

C

◦

C

y

=
A

B

x

C

y
A [A[Bx]C] [Cy] [A[Bx][Cy]]
A′

◦ A′
→ [A[Bx]C ′] ◦ C ′

→ [Cy] = ([A[Bx]([Cy])])
A ◦

A

B C

y

◦

B

x

=
A

B

x

C

y
A [A[Bx]C] [Bx] [A[Bx][Cy]]
A′

◦ A′
→ [AB′[Cy]] ◦ B′

→ [Bx] = ([A([Bx])[Cy]])

2

• Treeparsing & Berkeley-style state-splitting (reranking)

• Combining DOP & Berkeley-style state-splitting (reranking)

• DMV + fold-unfold + DOP (Cohn et al., 2010)

• (Compositional) Distributional Semantics for reranking con-

stituency parses (Le et al. 2013)

