ULL'13

Lecture 9: Taking Statistical Learning to its Limits, and
Beyond

Jelle Zuidema

Learning a grammar

Choose a generative model
_ HMM, PCFG, PTSG, PTAG, ...

Choose an objective function
— Maximum Likelihood, Bayesian ...

Choose an optimization strategy
— Stochastic hillclimbing

Choose a dataset

Find the generative model that maximizes

the objective function on the dataset!

MoL'12

Modeling Language Learning

How can we learn the building blocks and rules of combina-
tion on natural language from (unlabeled) data?

Formal languages: form-meaning associations, finite-state
machines, context-free grammars, tree substitution gram-
mars, dependency grammars, lambda calculus

Statistical Models: Markov models, HMMs, PCFGs, PPBDG

Statistical Inference: EM, Maximum Likelihood, Sampling
methods, Posterior Mode

1. Taking statistical learning of grammars from unlabeled data
to its limits: Cohn et al. 2010

2. A step back: Iterated Learning: Zuidema 2003

3. Algorithmicly defined learning procedures: Seginer 2007

Bayesian inversion

D P(D|G)
s

Generative model

P(G|®)

ULLI10 Unsupervised Language Learning

Cohn et al. 2010

All tricks from the book:

e Probabilistic Tree Substitution Grammars (like DOP, “com-
mitment”)

e Pitman-Yor Chinese Restaurant Processes to define prior
over PTSGs (and likelihood of the corpus).

e DMV (like Klein & Manning, 2004)

e Split-head encoding (like Johnson)

(a) (b)

> S NP NP
NP VP NP VP George broccoli
NP \V/ NP \|/ NP
| | ! hates
George hates NP
|
broccoli
(c) (d)
S S Vv
/\ /\ |
NP VP NP VP hates
George V NP George V N|P
i | _
V broccoli broccoli
|
hates

Figure 1: Example derivations for the same tree, where arrows indichstitstion sites. The
left figures (a) and (c) show two different derivations and the rigitreés (b) and (d) show the
elementary trees used in the respective derivation.

COHN, BLUNSOM AND GOLDWATER

Figure 4. The Pitman-Yor process, illustrated as a labelled Chinese m@#tgquocess. In this
examplez_10=1(1,2,1,1,3,1,1,4,3) and each tablkis labelled with an elementary trég Black
dots indicate the number of occurrences of each tree=n({1,2,¢1,01,¢3,¢1,41,04,¢3). In this
illustration, which corresponds to the model given in (2), a single Pitmampiacess is used to

generate all elementary trees, so the trees do not necessarily fit togedperly. Our complete
model, defined in (5), would have a separate Pitman-Yor restaurardadbrreot category.

Equation 4 shows that, like other PYP and DP models, this model can be vieisechahe
mode] whereg can be generated in one of two ways: by drawing from the base distriboition
by drawing from a cache of previously generated elementary treesewine probability of any

v vt~ lAar AlAamAa A~ sty s A 1 o mvrmes s vdi s al FA Rl A AliAaAaAmT st~ A FoAaA AT A N Ao ~dldlon T laims v s~ ns v oA~

INDUCING TREE SUBSTITUTION GRAMMARS

@) (b)

S S
NP VP NP,1 VP,0
f N |
NP V NP George V.0 NP, 1
| | !
George hates NP hates broccoli
broccoli

Figure 5: Gibbs sampler state (b) corresponding to the example derivadigreproduced from
Figure 1a). Each node is labelled with its substitution variable.

4.1 Local Sampler

MCMC / Gibbs sampling:
 for a variable v with » components,

. Iteratively reestimate v, for every i=1...n
from P(vl. | v]...vl._],vl.ﬂ...vﬂ).

Converges to P(v).

ULLI10 Unsupervised Language Learning

COHN, BLUNSOM AND GOLDWATER

S S
{S—NP{VP—{\|/—hate§»—NP}} s|,
/\ |
NP {VP-{V-hateg-NP} NP VP
| /\

| /\ '
George f\-hated NP George V NP

| | .
hates broccoli hates broccoli

Figure 7: Example trees under the grammar transform, which both encodartteTSG deriva-
tion from Figure la. The left tree encodes that ghe NP (VP (V hates) NRelementary tree was
drawn from the cache, while for the right tree this same elementary treeraas drom the base
distribution (the count and base terms in (11), respectively).

site,Xg = 1, otherwise it is an internal nodey = 0. For example, both trees in Figure 7 encode tha
both NP nodes are substitution sites and that the VP and V nodes are sitiLgion sites (the same

configuration as Figure 5).

Tho timoa ~ramnlavithys afF tha ~rAanctrainad incidoa alanrithm 1ie linaar 1in tha ci7vo Af thesird Ao

INDUCING TREE SUBSTITUTION GRAMMARS

70 72 74
|
I I
—-320000 —-300000

F1 score

68
training log posterior

I
—-340000

66

64

o -
I I I I I
1 10 100 1000 10000

-360000

iteration

Figure 10: Likelihood and generalisation F1 are highly correlated. Thekldacles show the

COHN, BLUNSOM AND GOLDWATER

<40 all
Par ser F1 EX Fl1 EX
MLE PCFG 64.2 7.2 631 6.7
TSG PYP Viterbi 83.6 246 827 229
TSG PYP MPD 84.2 27.2 83.3 254
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8
DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact matahaag for sentences
of up to 40 words, and for all sentences. The results of severakinkgiarsers are also shown (as
reported in the literature, hence the missing values), representing a b4B€lIRG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Rengnarser). Berkeley (restricted)

COHN, BLUNSOM AND GOLDWATER

M odel Viterbi MPD MPP MER #rules
PCFG 60.20 60.20 60.20 - 3500
TSG PYP 7490 76.68 77.17 7859 25746
TSG DP 7470 75.86 76.24 77.91 25339
Berkeley parsern(=2) 71.93 71.93 - 74.32 16168
Berkeley parserni(=5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Pebamieeshowing labelled
constituent F1 and the grammar size. For the TSG models the grammar siZzedepdine number
of CFG productions in the transformed MAP PCFG approximation. Unknoardwnodels are
applied to words occurring less than two times (TSG models and Berkele®) or less than five
times (Berkeleyt = 5).

the TSG can make a large difference. Surprisingly, the MPP techniqudyislaghtly better than
the MPD approach, suggesting that derivational ambiguity is not as mucproblem as previously
thought (Bod, 2003). Also surprising is the fact that exact Viterbsioar under the MAP approx-

imation ic miich worce than the MPD method which 1icec an annrovimate ceancimimmechnder

(a) TSG-DMV representation

. Large bold nodes indicate substitution points

S

iNn-MnNN NNR
PN |
INR® LynN NN,

)
IN, Ly

T

LyNN NNMpypn*

| N

L}VN NNR L?VN

e 1 1

Directed Attachment Accuracy
% on Section 23

M odel Initialiser |w| <10 |w|<20 |w|<o
Attach-Right - 38.4 33.4 31.7
EM (Klein and Manning, 2004) Harmonic 46 1 399 359
DiriChlet (Cohen et al., 2009) Harmonic 46.1 40.6 36.9
LN (cohen etal., 2009) Harmonic 59.4 45.9 40.5
SLN, TIE V&N (Cohen and Smith, 2009) Harmonic 613 47.4 41.4
DMV (Headden Ill et al., 2009) Random 55.70:8.() - -
DMV SmOOthedHeadden 1l et al., 2009) Random 61.2)-:1.2 - -
EVG SmOOththeadden 1l et al., 2009) Random 65.Q)-:5_7 - -
L-EVG SmOOthedHeadden 1l et al., 2009) Random 68.80-:4'5 - -
Less is More WSJlépitkovsky etal, 2010) Harmonic 56.2 48.2 44.1
Leap Frog WSJ45pitkovsky etal., 2010) Harmonic 571 487 450
Adaptor Grammaygconen etal. 2010) Harmonic 50.2 - -
TSG-DMV Harmonic 65.%-924 58.3_-23 53.15-24
TSG-DMV WSJ15 Harmonic 66.4,—-17 5855;-17 53.45-138
SuperVised M L Ecohen and smith, 2009) - 84.5 74.9 68.8

A step back: how I got into all this

ldentification in the limit

(Gold, 1967)

“A class of language will be called identifiable in the limit [...] if there
is an effective learner [..] with the following property: Given any
language of the class and given any allowable training sequence for
this language, the language will be identified in the limit.”

Positive evidence: Text

« Negative evidence: Informant sequence

16

Context-free grammars are not learnable from text

Infinite languages can nof be identified, because there exisis an infinite se-
quence of finite languages that are indistinguishable for any amount of train-
ing samples.. l.e. no matter how many examples you have seen, you'll
never know whether you've seen the whole language or whether you should
generalize to (infinitely) more.

infinite language | finite languages

5+ Sa 54
S5 a S aa
S +— gaa
S — aqaaa

S — gaagan

17

Frinciple & Parameter grammars are learnable from text

(Wexler & Culicover, 1980)

E.qQ., by identification through enumeration. The algorithm considers a finite
number of hypotheses; it sticks to an hypothesis until it receives a counter

example; it will always receive a counter example within a finite amount of
time. If it considers hypotheses in the right order, it will therefore always
arrive and stay at the correct hypothesis within a finite amount of time.

5 — .ﬁ'Si'.J 5 — H5|Hldl.
5 - |‘I|El' A — g‘ﬂ;i'.llb
aabb aabb
aaaabbbb aaaabbbb
aaaaaabbbbbb | aaaaaabbbbbb
aaaaabbbbb aabbbbb

18

“The basic results of the fieid [of learnability theory] include the for-
mal, mathematical demonstration that without serious constraints
on the nature of human grammar, no possible learning algorithm
can in fact learn the class of human grammars.”

(Wexler, 1999, “Innateness of Language”, MIT Encyclopedia of Cognitive
Science)

19

(Zuidema, 2003; Kirby 1999)

Ilterated Learning

20

Context-free grammars

Representation

¢ Rules of the forms: A — t, A +— BC, A — Bt

¢ Start symbol 5, terminal symbols (lexicon), non-terminal symbols

Lexical

IR

mary shouts
angry mary shouts

Combinatorial

< Z2 L ZW

| A A

NV
mary

angry mary

walks

Recursive

NV

AN
mary
beautiful

angry
walks

| A A A

PP ZZWN

21

Unsupervised learning: learning a grammar from a string set

Incorporation: extend the language, such that it includes the encountered
string

Compression: substitute frequent and long substrings with a nonterminal
(the grammar becomes smaller and the language remains unchanged)

Generalization: equate two nonterminals if they occur frequently in the same
context

Example

Training sentences: abcd, abcababcd, abcabcabcd

(a) Incorporation (b) Compression (c) Compression (d) Generalization
S — abcd S — abcd S Yd S Xd
S +— abcabcd S — Xd S Xd S +— Xabcd
S +~— abcabcabcd S — Xabcd S +— Xabcd X — XX
X — abcabc X — YY X ~— abc
Y — abc

Iterated Learning

Individuals in a chain learn from the previous individual and teach to the
next

G — L — G’ — L — G
production induction production induction
] 51 n":i 5" f'a'f
g SM f‘;u..- s, 'I

."|-'|” ."-.I i

Iterated Learning - results

1=L vkt LE ———

T Firvhit R ——

di

learnability

number of rules

number of sentences

Parameters: V; = {a,b,c,d}, Vyy = {5,X,Y,Z, A, B,C}, T=30, E=20, I;=3.

shown are the average values of 2 simulations.

Example

. "ada", "ddac”, "adba”, "bcbd”, "cdca”

. “dcac’”, "beac’, “caac’, "daac”

S —dcX,S5— bcX, 5— caX, 5— daX,and X — ac
. Y= b

. “decac”, “becac’, “caac”, "bch”, “cab”, “dab”,

Cultural Adaptation
1. Languages are transmitted culturally and are subject to change
2. Languages will change more if they are difficult to learn
3. Over time, languages that are easy to learn are more likely to occur

— "poverty of stimulus” arguments that postulate extensive innate “knowl-
edge of language” in addition to a “language acquisition device” loose much
of their force.

If the languages we will ever have to learn (i.e. the set of
possible targets) are shaped by the learning procedure, perhaps
it makes sense to try to focus on finding elegant/simple
learning procedure rather than elegant/simple sets of formal
languages.

Miniprojects

Parsing trees

Willem Zuidema

February 28, 2011

Consider the following PCFG and two parses of the string’’aaa

S S
A—AA |03 A| B A '|3
N PN
A — a 0.7 2 B B A A 3
B—>a 02 a a a a

The left tree has probabilityr x .8 x .2 x.2 = .0224, while the right tree has probability x .7 x .7 x
2 = .0294. In a standard PCFG-parser (e.g., BitPar), we can easilthget parses of 'aaa’ and their
probabilities. However, if we only want to know the probdiilof a given parse tree, we are waisting
computing time by calculating all parse trees and their abdliies. We like 'trick’ an off-the-shelf
parser into computing the parse probability of only a spegiéirse.

The approach is based on definining a transform of the otigir@nmar, and feeding the parser an
entire tree. In bracket notation, the left tree|iS{Aa||B[Ba||Ball].

it tTvw: 11T VJIGAUuIZL L TTvvilutivig, tdiv i1vit LI\.;L:I_L\DtJ_.I.l,bJ I_.L} I-.L}(/(JJ I_.L}bbJJJ-

The transform should thus be such, that the transformed mgear®’ generates this entire string,
including the brackets and the nonterminals. Moreaw#éghould use the same number of productions t
generate a trekas the original grammai needed to generate the parse, and with the same probabilitie
Hence, forS — A B whered replaces theS, G’ should generate a string that includes the brackets ar
the S:

S" — [SA'B']
and similarly for all rules in the original grammar. The pdinS’ (andA’, B') is here used to distinguish
betweenS as a terminal ofy’ (occurring in the string presented to the parser) 8hds a nonterminal
of G'.

In BitPar, one additional difficulty is that it uses sepalatecon and grammar files, with a different
format, and doesn’t allow mixing terminal and nontermiratsthe right-hand side of rules. The easiest
way to deal with this is to create a unique, dummy nontermiaalevery terminal symbol. For the
grammar above, we then arrive at the following transformmaingnar and dummy lexicon file:

S"—[SAB] 1.0 [
A—-[AAA] 0.3 I 1]
A—-[TAa] 0.7 S S
B —[B'B"B"] 0.8 A A
B —['Bayl 0.2 B B
a a

We can automatically generate the transformed grammar amany lexicon file from the original
BitPar-grammar and lexicon using the unix utitilities 'sadd 'awk’. Instead of the prime, we will use
the symbol '@’.

First, transform the lexicon file format into the grammar fodemat (assuming, for the moment, a
single preterminal per word, and replacing spaces withimitgals):

PTSGs Equivalence between PCFG-parsing and PTSG-parsetrsmgar

A A
e B C
- <y
A [A[Bz][Cy]] [A[Bz][Cy]
A" o A — [A[Bz][Cy]] = ([A[Bz]|[Cy]])
4 A e A
B C y B C
! ‘< y
A [A[Bz|C] [Cy] [A[Bz][Cy]]
Ao A= [ABz|C'] o C'—[Cyl = ([A[Bz|([Cy])]
A A 5 =4
B C . B C
| |
y Xy
A [A[Bz]C] [Bz] [A[Bz][Cy]]
A" o A - [AB'[Cy]] o B —[Bx] = (JA([Bz])[CY]

Treeparsing & Berkeley-style state-splitting (reranking)

Combining DOP & Berkeley-style state-splitting (reranking)

DMV + fold-unfold + DOP (Cohn et al., 2010)

(Compositional) Distributional Semantics for reranking con-
stituency parses (Le et al. 2013)

