Lecture 1: Generative Models & Statistical Inference

Jelle Zuidema ILLC, Universiteit van Amsterdam

Unsupervised Language Learning, 2014

Generative Models

Statistical Inference

Conclusions

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 二臣 - のへで

Introduction

Generative Models

Grammars, Probabilities, Tasks

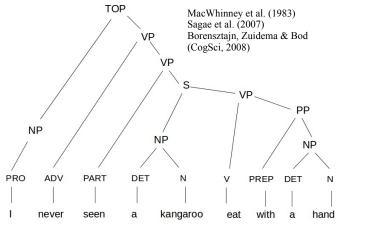
Statistical Inference

Conclusions

Introduction	Generative Models	Statistical Inference	Conclusions
2;5 *CHI:	seen one those .		
3;0 *CHI:	I never seen a watch.		
3;0 *CHI:	I never seen a watch.		
3;0 *CHI:	I never seen a bandana .		
3;0 *CHI:	I never seen a monkey train		
3;0 *CHI:	I never seen a tree dance .		
	I never seen a duck like that		
	I never seen (a)bout dat [: th	nat] .	
	I never seen this jet .		
	I never seen this jet .		
	I never seen a Sky_Dart .		
	I never seen this before .		
	yeah # I seen carpenters too		
	where had you seen carpent	ers do that ?	
	I never seen her .		
	I never seen people wear de		
	where have you seen a whal	le ?	
· · · · · · · · · · · · · · · · · · ·	I never seen a bird talk .		
	I never seen a kangaroo kn		
	I never seen dat [: that] to]		
· · · · · · · · · · · · · · · · · · ·	I never seen a dog play a p	2	
	I never seen a rhinoceros e		
4;7 *CHI:	I seen one in the store some	days .	

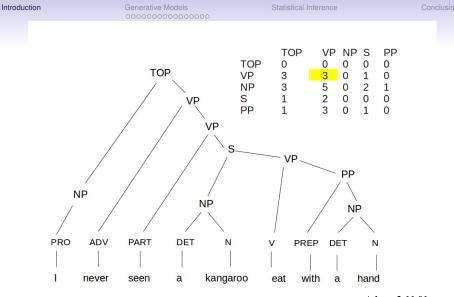
◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Brown corpora in Childes



Adam, 3;11.01

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで



Adam, 3;11.01

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Human vs. Animal Communication

- Border collie Rico (Kaminski et al. 2004, Science): 200 names for objects.
- Human infants (O'Grady, 2005): estimated to learn 10 words a day between age 2 and 6 (≈14,000 words at age 6, ≈60,000 words at age 12)
- Bonobo Kanzi (Savage-Rumbaugh & Lewin, 1994; Truswell, *in prep.*): knows the meanings of dozens of content words (verbs and nouns), but scores at chance when tested with coordination structure as in "Put the coke and the milk in the fridge".

```
Time flies like an arrow.
الرقت الذباب یشبه السهم.
time-DEF flies-DEF resemble arrow-DEF
"Time flies like arrow."
```

```
Fruit flies like a banana.
ذياب الفاكية مثل المرز.
Flies-N fruit-N resemble banana-N
"Fruit flies like bananas."
```

Steedman, 2008, CL

イロト (母) (ヨト (ヨト) ヨー の()

Statistical Inference

Conclusions

イロト (母) (ヨト (ヨト) ヨー の()

This is the bank that bought the company. وهذا البنك هو ان اشترت الشركة. "This is the bank that bought the company."

This is the company that the bank bought. هذه هي الشركة التي اشترت البنك. "This is the company that bought the bank."

This is the bank that wants to buy the company. هذا هو المصرف الذي يريد لشرا، الشركة. "This is the bank, which wants to buy the company."

This is the company which the bank wants to buy. هذه هي الشركة التي تريد شراء البنك. "This is the company that wants to buy the bank."

イロト (母) (ヨト (ヨト) ヨー の()

This is the company that said the bank bought bonds. هذه هي الشركة التي قال البنك بشراء السندات. "This is the company that said the bank bought the bonds."

This is the company that the bank said bought bonds. هذه هي الشركة التي قال البنك بشراء السندات. "This is the company that said the bank bought the bonds."

These are the bonds that the company said that the bank bought. هذه هي سندات الشركة أن البنك اشترى. "These are the bonds that the bank bought the company."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Grammar in other NLP domains

- E.g., speech recognition
 - please, right this down
 - write now
 - who's write, and who's wrong
- E.g., anaphora resolution
 - Mary didn't know who John was married to. He told her, and it turned out, she already knew her.
- E.g., machine translation

Annotated/unannotated data

- Syntactically Annotated corpora
 - Penn WSJ Treebank

trainset: 38k sentences, ~1M words

- Tuebingen spoken/written English/German
- Corpus Gesproken Nederlands
- Unannotated corpora
 - the web ...
 - Google's ngram corpora

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



www.culturomics.org

Penn WSJ: 0 counts.

Generative Models

Statistical Inference

Conclusions

www.culturomics.org

Penn WSJ: 0 counts.

÷		
	ucti	

Generative Models

Statistical Inference

Conclusions

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

www.culturomics.org

Penn WSJ: 0 counts.

Generative Models

Statistical Inference

Conclusions

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

This course (I)

- We discuss the recent advances in computational methods to learn language from unlabeled data;
- Focus on grammar;
- Relevance for cognitive science and language technology in the back of our minds.

Generative Models

Statistical Inference

Conclusions

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

This course (II)

- Part of the Natural Language Processing and Learning track of the MSc A.I.; optional course for students in Logic, Brain & Cognitive Science;
- Introduction to current research; setup of a research seminar
- Requires active participation!

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

This course (III)

- 8 reading assignments (8 supportive lectures presence required)
 - For Thursday, read Griffiths & Yuille (2007)
- 4 practical assignments (8 supportive lab sessions presence recommended)
- Miniproject (week 5-7)
- Workshop with presentations (exam week, 24 & 25/3, 13-17h
 - or some other day presence required)

Generative Models

Statistical Inference

Conclusions

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

This course (IV)

Assessment

- Forum posts & discussions (25%) come prepared to class!
- Practical assignments (25%)
- Final report & presentation (50%; literature review 20%, practical work 30%)

 Statistical Inference

Conclusions

Formalisms to describe language

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

Chomsky finds Finite-state Automata inadequate

(Chomsky, 1957)

Let S_1 , S_2 , S_3 , S_4 be simple declarative sentences in English.

- 1. If S_1 , then S_2 .
- 2. Either S_3 or S_4 .
- 3. The man who said that S_5 , is arriving today

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Extended Chomsky Hierarchy

language	grammar	automaton
	Set	Look-up table
Locally testable	ngram	
Regular	Left-linear	Finite-state
Context-free	Context-free	Pushdown
Tree-Adjoining	Tree-Adjoining	Embedded pushdown
Mildly context-sens.	Range Concatenation	Thread
Recursively enum.	Unrestricted	Turing Machine

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Extended Chomsky Hierarchy

language	grammar	rules
{a,b,cbabb}	Set	E
(ab) ⁿ	ngram	$\langle a,b\rangle,\langle b,a\rangle,\langle ab,a\rangle$
a ⁿ ba ^m	Left-linear	$S \rightarrow AB, B \rightarrow bA$
a ⁿ b ⁿ	Context-free	$S \rightarrow aSb, S \rightarrow ab$
$a^n b^n c^n d^n 1 \le n$	Tree-Adjoining	
	Range Concatenation Unrestricted	$S[abc] \rightarrow A[a,c]B[b]$

Statistical Inference

Conclusions

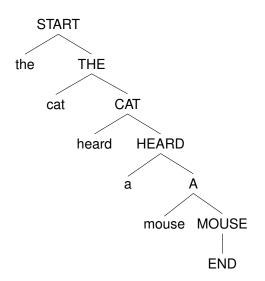
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Probabilistic Extensions

grammar	probabilistic grammar	
Set	Probability distribution	
ngram	Markov model	
Left-linear	Hidden Markov (HMM)	
Context-free	PCFG	
Tree-Adjoining	PTAG	
Range Concatenation	PLCRS	
Unrestricted		

▲□▶ ▲圖▶ ▲匡▶ ★匡▶ = 臣 - のへで

Relation between PCFGs, HMMs and Ngrams



▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ○ の Q ()

Relation between PCFGs, HMMs and Ngrams

- · Class of ngrams is proper subset of class of HMMs
- Class of HMMs is proper subset of class of PCFGs.
- Ngrams can be implemented as PCFGs with nonterminals corresponding to history of length *n* − 1
- rules are right-linear, trees produced are right-branching.

Probabilistic Context Free Grammars

s: The woman seesthe man with the binoculars

1.0

0.2

0.2

0.2

0.2

0.2

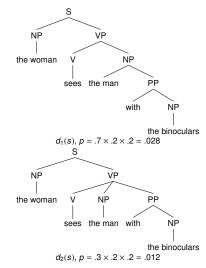
0.7

0.3

1.0

1.0

 $\begin{array}{l} G: \\ S \rightarrow NP \ VP \\ NP \rightarrow the \ woman \\ NP \rightarrow the \ woman \\ NP \rightarrow the \ binoculars \\ NP \rightarrow the \ binoculars \\ NP \rightarrow the \ dress \\ NP \rightarrow VP \\ VP \rightarrow V \ NP \\ VP \rightarrow V \ NP \\ PP \\ PP \rightarrow \ with \ NP \\ V \rightarrow sees \end{array}$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

Generative Models

Statistical Inference

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conditioning context & History

Generative Models

Statistical Inference

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Conditioning context & History

History-based Grammars

S→NP VP	event	conditioning context
NP→it	NP VP	S
NP→the dog	the dog	NP
VP→V NP	V NP	VP
V→chases	chases	V
	it	NP

Generative Models

Statistical Inference

Conclusions

▲□▶ ▲圖▶ ▲匡▶ ★匡▶ = 臣 - のへで

Conditioning context & History

History-based Grammars

S→NP VP	event	conditioning context
NP→it	NP VP	S, BEGIN
NP→the dog	the dog	NP, S
VP→V NP	V NP	VP, S
V→chases	chases	
	it	NP, VP

Generative Models

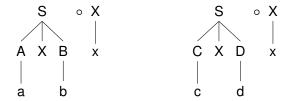
Statistical Inference

Conclusions

Commitment

Consider the language YXY', where $Y, Y' \in \{a, b, c, d\}$ and Y predicts Y'.

Tree Substitution Grammars



Computational Tasks

Recognition $s \in L_G = \{s | \exists d(y(d) = s) \& \forall r \in d(r \in G)\}$ Parsing $D(s) = \{d | y(d) = s \& \forall r \in d(r \in G)\}$ Disambiguation $\arg \max_{d \in D(s)} P(d) = \arg \max_{d \in D(s)} \prod_{r \in d} P(r)$ Inference $\arg \max_{\vec{p}} P(\vec{s} | G, \vec{p})$

Statistical Inference

Conclusions

Computational Tasks

Recognition Earley's and CYK algorithms: charts with function returning true/false Parsing function returning list of partial parse Disambiguation Viterbi: functioning returning maximum probability (and partial parse)

Inference Expectation-Maximization (Thursday)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Transducers / Synchronous Grammars

grammar	transducer	
Set	Мар	$\langle m_1, w_1 \rangle, \langle m_2, w_2 \rangle, \ldots$
ngram		
Left-linear	Finite-state transducer	
Context-free	SCFG	
Tree-Adjoining	STAG	
Range Concatenation		
Unrestricted	(lambda calculus)	

Generative Models

Statistical Inference

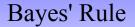
Conclusions

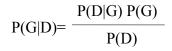
A very brief tour of statistical learning

Generative Models

Statistical Inference

Conclusions



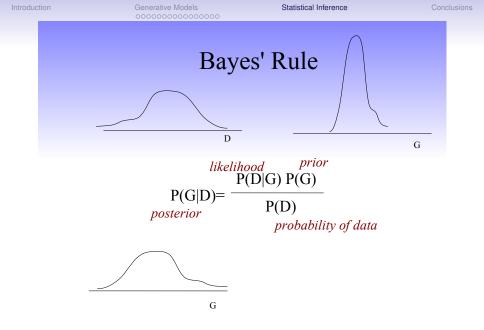


Statistical Inference

Conclusions

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで



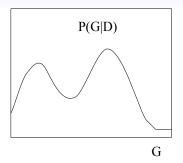


▲□▶▲圖▶▲≣▶▲≣▶ 差 のへで

Statistical Inference

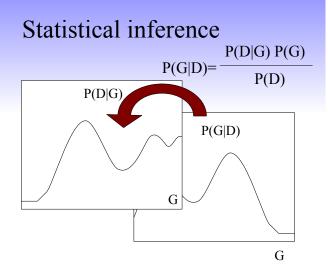
Conclusions

Statistical inference



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

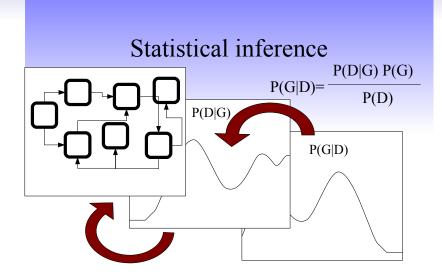
Statistical Inference



◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Statistical Inference

Conclusions

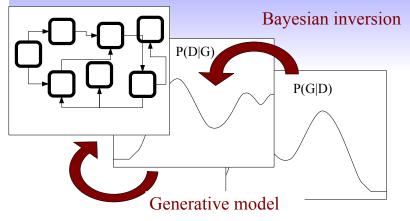


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Statistical Inference

Conclusions

Statistical inference

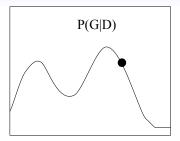


・ロト・日本・日本・日本・日本・日本

Statistical Inference

Conclusions

Stochastic hillclimbing

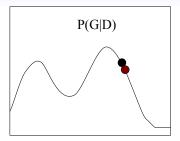


▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日 - のへの

Statistical Inference

Conclusions

Stochastic hillclimbing

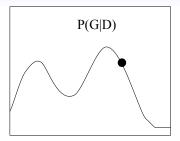


◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□ ◆ ◆

Statistical Inference

Conclusions

Stochastic hillclimbing

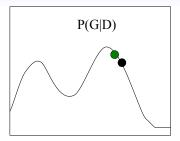


▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日 - のへの

Statistical Inference

Conclusions

Stochastic hillclimbing

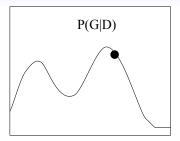


◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□ ◆ ◆

Statistical Inference

Conclusions

Stochastic hillclimbing

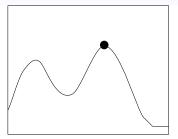


うしつ 前 ふかく ボット 間 くらく

Statistical Inference

Conclusions

Stochastic hillclimbing

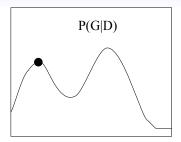


▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - 釣A♡

Statistical Inference

Conclusions

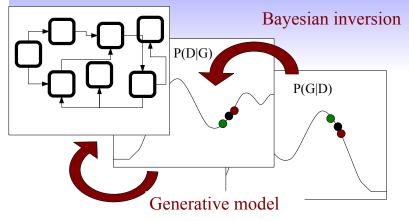
Local optimum



Statistical Inference

Conclusions

Statistical inference

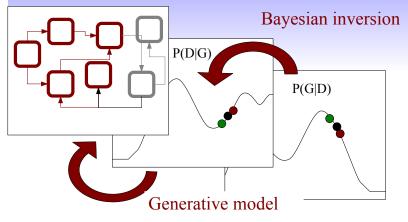


・ロト・日本・ヨト・ヨー シック

Statistical Inference

Conclusions

Statistical inference

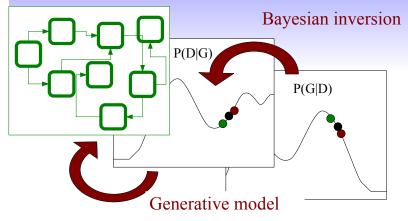


・ロト・日本・モート モー シスの

Statistical Inference

Conclusions

Statistical inference



・ロト・日本・モート モー シスの

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

- Generative models can be used to define probability distributions over possibly infinite sets of complex structures (e.g. phrase-structure trees);
- Bayesian inversion allows us to express the posterior *P*(*G*|*D*) in terms of the likelihood *P*(*D*|*G*) and prior *P*(*G*).
- If the prior is uniform, the most probable posterior (MAP) grammar is also the maximum likelihood grammar (ML).