
1 Assignment

Download the Penn WSJ corpus (training set, all trees on one line) from the course website. Calculate the
word frequency distribution, the subject vs. object NP length distribution, and the phrasal rule frequency
distribution. Use the unix tools grep, sed, gawk and regular expressions to obtain the frequency counts
you need, and familiarize yourself with these tools.

Getting started Download the file ’treebanks.zip’ from http://www.illc.uva.nl/laco/clas/ull14/
Open a unix-shell (applications→ system tools→ terminal). Create a folder for your work (mkdir ull14)

and move the corpus to that folder (e.g., mv ~/Downloads/treebanks.zip ~/ull14). Then unzip it with
unzip treebanks.zip. Watch for the password on the whiteboard. If you don’t know grep, sed, awk
and other unix tools, find a unix cheat sheet online and start with the tutorial on regular expressions
(t1-regexp-ull12.pdf).

Word frequency distributions A very useful combination of the unix commands grep, sed, sort and
uniq will give you word frequency distributions in one go. First convince yourself that the following
regular expression matches all lexical items: [^]\+)

The following string of commands will then give you a word frequency distribution:

cat penn-wsj-line.txt | sed ’s/)/)\n/g’ | grep -o ’[^)]\+)’ | sed
’s/)//’ | sort | uniq -c | sort -g -r -k 1 | sed ’s/^ *//’ > wordfreqdistro

Make sure you understand all parts of this expression. You can plot the distribution with gnuplot,
using the commands:

set logscale xy
plot ’wordfreqdistro’ u ($0):($1)

Subject vs. object NP length distributions The key to solving this assignment is the fact that
subject NP’s tend to have an S as parent; object NP tend to have VP as parent. You may assume that
all subject NP are the first daughter of an S, and that all NP that aren’t the first daughter of an S or
a PP are object-NP’s. First remove the existing NP-subcategorizations as they are not consistent (i.e.,
NP-SBJ etc), and then add the parent label to all leftmost daughters:

cat penn-wsj-line.txt | sed ’s/(NP[^]* /(NP /g;s/(\([A-Z]\+\) (NP/(NP-\1 /g’ > tmp0

Regular expression cannot count brackets, but awk can. You can use these commands to put spaces
around brackets and then add a depth counter to every bracket:

cat tmp0 | sed ’s/(/(/g;s/)/)/g;s/ \+/ /g’ | sed ’s/%/PERCENT/g’ >tmp1
cat tmp1 | awk ’{j=0; for (i=1;i<=NF;i++) {printf " " $i; if ($i=="(")

printf ++j; else if ($i==")") printf j--; } printf "\n";}’ > tmp2

Then, if you have labeled all subject-NPs as ’NP-S the following grep command can find their complete
span (using ”perl-compatible” syntax and the perl construct *? that matches the shortest span rather
than the longest span, as is grep’s default):

cat tmp2 | grep -oP ’\(([0-9]+) NP-S.*?\)\1’

The final step is to replace all lexical elements (terminals) with a dummy symbol (e.g., x) and remove
all other annotations.

Phrasal rule frequency distribution Extracting phrasal rules with regular expressions is a bit of a
pain. To make life easier, the program PCFG extractor.jar is provided:

java -jar PCFG_extractor.jar penn-wsj-line.txt outputfile

