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History

1980s

Algorithmic problem of parsing with context-free grammars
considered solved: CKY and Earley algorithms (dynamic
programming)

Handwritten grammars: struggling with coverage and
ambiguity

Theoretical linguistics: natural language syntax necessitates
trans-contextfree formalisms (Huybrechts, 1984; Shieber,
1985; Joshi, 1985)

Language acquisition & comparative linguistics: constructions
/ multi-word expressions can be building blocks
Computational linguistics: effective natural language
processing (translation, speech recognition, syntax?) requires
(corpus) statistics
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Scha 1990

Data-oriented Parsing (Scha, 1990)

e Use corpus statistics for syntactic disambiguation (Lari &
Young, 1990), instead of cleverly selected (semantic,
syntactic, pragmatic) features

e Parse with fragments from a corpus (“treebank grammars”,
Charniak, 1996), instead of handwritten grammars

e Use fragments of arbitrary size (“all-subtrees approach”,
Collins & Duffy, 2002), instead of the minimal contextfree
rewrite rules
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Phrase Structures
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Context Free Grammar (CFG)

S

— NPVP

NP — DT NNP NNP

DT — The

NNP — Free

NNP — French

VP — VBD NP

VBD — wore

NP — JINNNNS
—  black

NN — arm

Free French wore NS — bands

black arm bands
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Data Oriented Parsing (DOP)
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Data Oriented Parsing (DOP)
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Tree Substitution Grammars

Definition
A Tree Substition Grammar (TSG) is a 4-tuple (V,, V4, S, T),
where

e V, is the finite set of non-terminal symbols;

e V;is the finite set of terminal symbols;

e S e V, is the start symbol;

e T is afinite set of elementary trees, such that forevery r € T

¢ the unique root node r(7) € V,,
¢ the (possibly empty) set of internal nodes i(t) € V, and
o the set of leaf nodes I(t) C V,, U V;.
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Tree Substitution Grammars (ctd)

Theorem
(Joshi & Schabes, 1991) TSGs have the same weak generative
capacity as context-free grammars.

We can replace every elementary tree 7 by a context-free rewrite
rule that directly rewrites the root to the yield: r(t) — y(1).
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Tree Substitution Grammars (ctd)

Lemma
TSGs can generate more tree languages that CFGes, i.e. the strong
generative capacity of TSGs is larger than that of CFGs.

E.g., consider a TSG consisting of a single elementary tree:

S

A

X

xX— W

This grammar generates only this particular tree, but no possible
CFG can generate the exact same tree and no other.
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Tree Substitution Grammars (ctd)

The string language of a TSG G can be recognized in a time
polynomial (in fact, cubic) in the length of the sentences.

we can use standard CFG parsing techniques to find all
derivations of a given string licensed by G.

however, for finding the set of unique derived trees licensed
by G, we need to collapse derivations that yield the same
derived tree.

if G is a treebank grammar consisting only of subtrees of trees
in treebank, the set of derived trees will always be a subset of
the set of parses licensed by the treebank CFG.
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DOP1

First DOP-implementation presented by Bod (1992)
Extract all unique subtrees up to depth d from a corpus C:
bag of subtrees T

For every unique subtree t (upto depth d) in C, create an
elementary tree t with weight:

counT(t, C)

2 ROOT(r)=ROOT(+") COUNT(T’, C)

w(t) =

Probabilistic Tree Substitution Grammar
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Probabilistic Tree Substitution Grammar

A PTSG is a 5-tuple (V,, V4, S, T, w), where
e V, is the set of non-terminal symbols;
e V;is the set of terminal symbols; S € V,, is the start symbol;
e T is a set of elementary trees, such that for every v € T the

unique root node r(t) € V,, the (possibly empty) set of internal
nodes i(t) Cc V, and the set of leaf nodes I(t) ¢ V, U V4;

e w: T — [0,1]is a probability (weight) distribution over the

elementary trees, such thatforany r € T, 3 cpy W(T') = 1,
where R(7) is the set of elementary trees with the same root

label as 1.



History

00e00

The probability of a derivation d is defined as the product of
weights of the elementary trees involved:

Pd=<ti,....,00>) = [(w(@).
i=1

Multiple derivations can yield the same parse tree; the probability
of a parse tree p equals the sum of the probabilities of the different
derivations that yield that same tree:

P)= >, (P(@).
d:t(d)=p
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Theorem
(Bod, 1998) TSGs are stochastically richer than PCFGs, even for
PCFGs that generate the same tree languages.

E.g., consider a PTSG with the following elementary trees:

S S S
ANAN
a S b S b

a

where all elementary trees assign an equal weight of 1/3.

Proof The only PCFG that generates the same trees, is one that has the rules S — a and S — Sb. It must assign a
weight of 1/3 to the first rule, and hence 2/3 to the second. But then the PCFG generates the second tree with a
probability of 2/3 x 1/3 = 2/9, whereas the PTSG generates it with probability 1/3 + 1/3 x 1/3 = 4/9. l.e., there is no

choice of weights for this PCFG that will generate trees with the same probabilities as the PTSG.
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Empirical Results

Air Travel Information System (ATIS) corpus

depth of [arse accuracy
cOrpus— most probable most probable
subtrees parse derivation

1 47% 47%

oz 62K Sk

o3 79% B4k

o 23% 67

<5 g4y £7%

6 B4k 69
unbounded = Y 4

¢ Include all dependencies and “let the statistics decide”

e The “DOP hypothesis”: including larger fragments always
improves accuracy
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0eo

Finding Most Probable Parse is NP-Hard

¢ the problem of calculating tree probabilities under the PTSG
model cannot be solved using standard PCFG techniques.

o If we use PCFG parsing techniques to find all derivations of
sentences (analogous to the CFG-conversion) we need to
sum the probabilities of exponentially many derivations of
each distinct derived tree.

Theorem
(Sima’an, 1998, 2002) Finding the most probable parse under the
unrestricted PTSG model is NP hard.
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Solution

Most current models:

o either approximate the most probable parse based on the
100- or 1000-best derivations;

e or use a different objective, such as the parse with maximum
expected number of correct constituents (MCP).
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Exponential Growth

« Number of subtrees of a a tree t equals 2'V

e Total number of subtrees of the Penn WSJ treebank estimated
at 1048
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Solution

e Principled restriction on subtrees considered: Parsimonious
DOP & Double-DOP (Zuidema, 2007; Sangati & Zuidema,
2011)

e Goodman’s (1998,2003) reduction to PCFG
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» Treebank refinement: take non-terminal and split
according to contexts

» In the limit: each non-terminal becomes a particular
occurrence in a tree

A A

—— ®

B C B G

A —~BC (1Ja) A—-BC (1/(ad))
A — B C (by/q) A—By,C (b/(ad))
A —BC  (¢/q) A—BC (c¢/(ad))
A — B C (bre/a)) A— B C (brc/(aq))

» Polynomial time parsing.
» (Exact) disambiguation still NP-hard.



Challenges

@O0

Bias & Inconsistency

Johnson (2002) showed that the DOP1 estimator is biased and
inconsistent:

e Given a treebank of size n sampled from an arbitrary PTSG G

¢ the mean of weight distribution induced by DOP1 method is
not equal to the true distribution G (“bias”);

o the DOP1 method is not guaranteed to converge to the true
distribution in the limit of n — oo (“inconsistency”).

These properties are undesirable from a (frequentist) statistical
estimation perspective, but less relevant in practice although they
might be diagnostic for a serious empirical problem:

e Because a parse tree of size n has a number of subtrees
exponential in n, subtrees from the largest tree(s) in a corpus
dominate the probability calculations.
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Solution

Alternative estimators
e Equal weights estimate (Goodman, 2003)
e Backoff-DOP (Sima’an & Buratto, 2003)
e DOP* (Zollmann, 2004)
e Push-n-pull (Zuidema, 2007)
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Recent Developments: Double-DOP
°

Which fragments to extract?

I. All (Goodman reduction, Goodman 1996, Bod 2003, Bansal and Klein 2010)
2. A subset

* restriction on depth (Bod, 1998)

* random sample (Bod, 2001)

* only fragments with | word (Sangati and Zuidema, 2009)

= R. Bod. Beyond Grammar: An Experience-Based Theory of Language. CSLI, Stanford, CA., 1998.
= R. Bod. A Computational Model Of Language Performance: Data Oriented Parsing. COLING 1992.
= J. Goodman. Efficient algorithms for parsing the DOP model. 1996.

= R. Bod. What is the minimal set of fragments that achieves maximal parse accuracy? ACL 2001.
= R. Bod. An efficient implementation of a new DOP model. EACL 2003.

= W. Zuidema. What are the productive units of natural language grammar?: a DOP approach to the
automatic identification of constructions. CoNLL-X 2006

= F. Sangati and W. Zuidema. Unsupervised Methods for Head Assignments. EACL 2009.
= M. Bansal and D. Klein. Simple, accurate parsing with an all-fragments grammar. ACL 2010.
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Seeking Recurring Fragments

* Criterion: a syntactic construction is linguistically
relevant if there is some empirical evidence about its
reusability in a representative corpus of language
productions.

* Use only the fragments that recur several times in the
treebank,i.e. 7| 3 ti,t;, i+, Tet; AT EL;
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Fragment Seeker
(Sangati et al., 2010)
¢ Based on Tree Kernels (Coliins and Duffy, 2001; Moschitti 2006)
* Dynamic programming

* Original idea: compute the similarity between two trees
as the number of fragments they have in common.

* Current idea: we are not only interested in a number, we
want to extract the shared fragments.

¢ Available at http:/staff.science.uva.nl/~fsangati/

= F. Sangati and W. Zuidema and R. Bod. Efficiently Extract Recurring Tree Fragments from Large
Treebanks. LREC 2010.

= M. Collins and N. Duffy. Convolution Kernels for Natural Language. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, NIPS, pages 625-632. MIT Press, 2001.

= A. Moschitti. Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In ECML,
pages 318-329, Berlin, Germany, September 2006. Machine Learning: ECML 2006, 17th European
Conference on Machine Learning, Proceedings.
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Fragment Seeker

TRE E BAN K Algorithm: ExtractFragments(T)
. Input: a corpus T of PS trees
Output: a set of fragments and partial fragments
@ begin
FragList: a set of fragments;
foreach tree t; € T do
foreach tree t5 € T where t; # t; do
foreach node N; € t; do
foreach node Nj € t; do
LLFragList.addAll(ExtractIv’axFragment:‘I, ,N5));

v

RECURRING [ F———
FRAGMENTS
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ragment
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| |
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|
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great promise
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Fragment Seeker
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* Treebank: WS) 02-21 (39,832 sentences)
* Recurring fragments types: 674,747
Depth Types Tokens
1 | 25378 1622713 200,000 2,000,000
2 | 79870 1,611,257 T
3 | 136,031 1,711,712 ypes
4 | 170,201 1,411,724 O Tokens
5 | 132393 804,009 150,000 1,500,000
6 | 75872 362,732
7 | 35585 147,830
8 | 13071 43864 «
@ c
o | Tos See & 100000 1,000,000 £
1 478 1,213 = el
12 111 260
13 57 135
1 2 s 50,000 500,000
15 7 17
16 8 18
17 3 7
18 1 2
19 2 4 0 o—0 0
21 1 2 Il 2 3 45 6 7 8 910
Total | 674,747 7,734,335

Depth



Depth

NN WD =

9
10
1
12
13
14
15
16
17
18
19
21

Total

Recent Developments: Double-DOP

Very Big Fragments

Types Tokens

25,378 1,622,713

79,870 1,611,257
136,031 1,711,712
170,201 1,411,724
132,393 804,099

75,872 362,732

35,585 147,830

13,071 43,864

4,343 13,056
1,313 3,639

478 1,213
m 260
57 135
22 51
7 17

8 18
3 7

1 2

2 4

1 2

674,747 7,734,335

The $ 2.85 billion package incorporates $ 500 million for
,$ | billion in highway construction funds ,and $ 1.35
billion divided between general emergency assistance and
a reserve to be available to President Bush to meet
unanticipated costs from the two disasters .

25
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Parsing Experiments

Berkeley
(Petrov, 2009)

Preprocess TB: unknown words, binarization, smoothing a—)
Extracting Recurring Fragments from Treebank

Add unseen CFG rules

Estimate frequencies of fragments

Convert Fragments to CFG rules

Parse (obtain 1,000 most probable derivations) =<3 (SCEJJ;EAZ’;O“)
Convert back the CFG rules to fragments

Post process trees (unknown words, binarization)

Maximize Objective (MPD, MPP, MCP)

¥ 0 N o Uk W DN

= S. Petrov. Coarse-to-Fine Natural Language Processing. PhD thesis, University of California at Bekeley, 2009.
= H. Schmid. Efficient parsing of highly ambiguous context-free grammars with bit vectors. In Proceedings of Coling 2004
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Unknown VWords

Every word in the train and in the test occurring
less than 5 times in the training set is replaced by a
set of features.

Feature Set :

No kAW

suffix
isFirstWord
isCapitalized
hasDash
hasForwardSlash
hasDigit
hasAlpha

Lex Smoothing :

Low counts (€ = 0.01) to
open-class (word, PoS-tag)
pairs not encountered in the
training corpus.

37
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|eft Binarization
(P=1,V=1)

A
A —
A@D|A E|A
TR -_—
B CDE A@C|A D|A

—_—

NN AQ@B|A CJA
B|A

= K. Sima’an. Tree-gram parsing lexical dependencies and structural relations. ACL 2000.

= D. Klein and C. D. Manning. Accurate unlexicalized parsing. ACL 2003.

= T. Matsuzaki, Y. Miyao, and J. Tsuijii. Probabilistic cfg with latent annotations. ACL 2005.

= M. Bansal and D. Klein. Simple, accurate parsing with an all-fragments grammar. ACL 2010.
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|eft Binarization
(P=1,V=1)

/\ 5
/\

B C D E NP[S VPIS

LN N T — T

SN Aw' NP|SG@NNP|NP  NNP|NP VBD|VP NP|VP

— . i N
A@DI|A E|A DT|NP NNP|NP  French wore  NP|[VP@GNN|NP NNS|NP

—_—
A@C|A DJA The Free JJINP NN|NP  bands

—_—

AGBJA CJA

black  arm

BJA

= K. Sima’an. Tree-gram parsing lexical dependencies and structural relations. ACL 2000.

= D. Klein and C. D. Manning. Accurate unlexicalized parsing. ACL 2003.

= T. Matsuzaki, Y. Miyao, and J. Tsuijii. Probabilistic cfg with latent annotations. ACL 2005.

= M. Bansal and D. Klein. Simple, accurate parsing with an all-fragments grammar. ACL 2010.

References
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Fragment Extraction

Preprocessed Treebank:WS§J 02-21 (39,832 sent.)
Recurring fragments: 1,029,342

Additional Unseen CFG rules: 17,768 (total 40,613)
Additional smoothing [unseen (word, PoS-tag) pairs] : 398,445

Total CFG rules in the final grammar: 1,476,941
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From fragments to CFG rules

S
/\
NP VP
/\
NP PP

— T T
DT JJ NN IN NP

| I~
a of DT NN

f=11
A significant portion of the order
will be placed...
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From fragments to CFG rules

S
/\
NP VP
/\
NP PP S
DT JJ NN IN NP a JJ NN of DT NN VP
| | PN
a of DT NN

f=11
A significant portion of the order
will be placed...
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Ambiguous Fragments

—
JJ S
| |
VP
—
TO VP
| S
NP
N
f=13

e.g. Likely to trigger an
opposition from people

—
JJ S
| |
VP
—
TO VP
| — T
f=11

e.g. Likely to need help in
the meantime

43
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Ambiguous Fragments

VP : \"l’
ke e
| T T e
L NP
. N
NODEQ1

NODE@2

f=13 f=I1
e.g. Likely to trigger an e.g. Likely to need help in
opposition from people

the meantime
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Probability Estimates

* RFE: Relative Frequency Estimate on the actual counts of frags.

« EWE: EquaI Weights Estimate (Goodman, 2003) = J. Goodman. Efficient parsing
of DOP with PCFG-reductions.

count(f,t) In Data-Oriented Parsing.
University of Chicago Press,

wEWF:(f) = YT
s S et} Chicago, IL, USA, 2003.

wr;wu(f)

pewe(f) = ——— 5~
e Zf'eme(f) wewe(f")

* MLE: Maximum Likelihood Estimate
p = argmax,, Likelihood(treebank,p)

Likelihood (treebank, p) = 1 7®

tetreebank

[Tp()

tetrecbank  ded(t) Ted
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Probability Estimates
Evaluation

(development set)

Estimate | Fi

Rel Freq. Est. (RFE) 87.2
Equal Weights Est. (EWE) | 86.8
Max Likelihood (ML) 86.6

48
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Why RFE works well?
Double-DOP vs DOPI

[
=]

15

Recﬁrring fragménts
All fragments

S o
— ™
S S
T T
. .

Number of fragments
=)

0/ 1-10* 2:10* 310" % 410
Rank of tree from train set

o~ (Small Trees)
R I R N
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Maximizing Objectives

* MPD: most probable derivation (Viterbi-best)

* MPP: approximate most probable parse tree
* Get the 1,000 most probable derivations of the sentence
* Sum up the probability of those generating the same tree

» Obtain the parse tree with max probability

If we are interested in F| better try to select the parse
tree that is most likely to optimize this metric.

* MCP: maximum constituent parse (Goodman, 1996)

50
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Maximum Constituent Parse

Binary Case: max(Recall) = max(Precision)

S S
A e o P PN
- 25 A C A D
- AD .28
TEnoom AN AN A A S
- FB 02 X X X X X X X X N
o 0.25 0.25 A B
ooxx 10 S S /N /\
S xx 10 S P X X X X
- x x 1.0 E B F B
/N N\ VANRVAN
X X X X X X X X
0.25 0.25

= J. Goodman. Parsing algorithms and metrics. ACL 1996.
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52

Maximum Constituent Parse

n-ary branching case: max(Recall) # max(Precision)

* Max Recall
* # correct constituents / gold constituents 0
* risk: get as many correct constituents as possible

* prefers binary rules )\

* Max Precision
* # correct constituents / guessed constituents 0o :
» play safe: get as few correct constituents as possible

» prefers flat rules

= J. Goodman. Parsing algorithms and metrics. ACL 1996.
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87.5
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Recent Developments: Double-DOP

Parsing Results
(WS test set)

[ test (<40) ‘ test (all)

‘ Parsing Model | F1 EX F1 EX ‘

‘ PCFG Baseline |
PCFG (=1, P=1) 76 172 ‘ 765 159 ‘
PCFG (H=1, P=1) Lex smooth. | 78.5 17.2 | 77.4 16.0

‘ FRAGMENT-BASED PARSERS ‘
Zuidema (2007)* 83.8 269 - -
Cohn et al. (2010) MRS 854 272 | 84.7 258
Post and Gildea (2009) 82.6 - - -
Bansal and Klein (2010) MCP 88.5 33.0 | 87.6 308
Bansal and Klein (2010) MCP 88.7 33.8 | 88.1 31.7
+ Additional Refinement

\ THIS PAPER \

‘ Double-DOP ‘ 87.7 33.1 ‘ 86.8 31.0 ‘
Double-DOP Lex smooth. 87.9 33.7 | 87.0 31.5

‘ REFINEMENT-BASED PARSERS ‘

‘ Collins (1999) ‘ 886 - ‘ 882 - ‘
Petrov and Klein (2007) 90.6 39.1 | 90.1 37.1
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Berkeley State Splitting (Sp)

6 levels of refinements

S-4
/\ Category | Words
NP-44 VP-7 DT-17__| The, A
NNP-26 Commission, Committee,
A Association, Department,
QNP-43 NNP-26 VBD-11 NP-7 Museum, Revolution, Of-

fice, ...

/\ VBD-11

DT-17 NNP-63 French wore @NP-51 NNS-0

sent, exercised, received,
retained, completed, fol-

N e

The Free JJ-2 NN-3 bands

black arm

ceramic, young, daily, im-
perial, full, ...

= S. Petrov. Coarse-to-Fine Natural Language Processing. PhD thesis, University of California at Bekeley, 2009.




Berkeley State Splitting (Sp)
Evaluating Double-DOP on the 6 levels

Double-DOP Grammar Size

Recent Developments: Double-DOP

45M

40M r
35M
30M
25M
20M
I5M +
10M +
05M r

!
S~
NP Vit
P NNP2s VBDAL N7
PN | \ N
T P61 Fronch aNFsL NNS0
[ N
I TERRTI
Bk arm

mmmmm Recurring Fragments
— CFG-rules (smoothing)

1 2 3 4 5 6
Berkeley treebank refinement level
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Berkeley State Splitting (Sp)
Evaluating Double-DOP on the 6 levels

Double-DOP ——
Berkeley —>—

1 2 3 4 5 6
Berkeley grammar/treebank refinement level

1 2 3 4 5 6
Berkeley treebank refinement level



Disco-DOP

Conclusions

e Recurring Fragments (Fragment Seeker)
* Versatile for different applications
* Easy to extend to other representations
* Double-DOP
* Good results with parsing
* EXpliCit fragments (complementary to other approaches)

* Software publicly available
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Disco-DOP

DOP has mostly been evaluated on English, which is
highly configurational.

Word-order variation presents a problem:

Have fragment for "a b", but this is useless to parse

variant "b a".

Fundamental problem: allowing all possible-orders
results in O(n!) permutations.

ldea: recognize variants from freebank; derive rules.

But: no direct evidence for this.
= dlfernation vs. change in meaning.




Disco-DOP

Most DOP models are based on constituency
structures (or LFG, HPSG)

Could there be a Data-Oriented Dependency
model?

Dependency structures are labelled, directed graphs.
All nodes are terminals; i.e., no phrases.




Disco-DOP

Definition of discontinuity: A discontinuous constituent is a
group of words that form a constituent while being
non-contiguous

Discontinuous phenomena:
» Cross-serial dependencies
» Extraposition: topicalization, wh-extraction
» Word-order freedom: scrambling




Disco-DOP

ART NN VMFIN PIS  VVINF
| | | | |
Die Versicherung kann man sparen

The Insurance can one save

Figure: A discontinuous tree from the Negra corpus.
Translation: As for the insurance, one can save it.




Disco-DOP

Disco-DOP:

» Mildly-context sensitive grammar (LCFRS) as treebank
grammar

» Encode Goodman reduction in it
» Parse using coarse-to-fine




coarse
derivations

Prune pop derivations with k-best pLcFRs derivations

Disco-DOP

coarse  fine stage
items white list
NP(11000)
[ NP@2(11000)
NP(11000) 4 \p@s(11000)
Npmmnm

NP(1100) § Npas(11100)

vp(um 0)
C

i

¥
[
&

VP@1(00011)
P@10(00011)

APT 10000)
ART@3(10000)

ART(10000) { ART@9(10000)

N@e)




Disco-DOP

mark heads of constituents

head-outward binarization (parse head first)
no parent annotation: v =1

horizontal Markovization: h € {1,2, 00}

X




Disco-DOP

coarse; cpu fime
coarse; edges

fine (pruned); cpu time
fine (pruned); edges

Number of words




Disco-DOP

NEGRA

EX

COV.

ppPsG Pla2004*
PLCFRS KaoMa2010"
Disco-popr v=1, h=1

73.16
81.27
84.56

39.0

54.68

96.04

99.90

PLCFRS KOMa20107
PLCFRS V=1, h=2
Disco-pop v=1, h=2

73.25
75.98
78.81

36.79
39.60

99.45
98.90
98.90

PLCFRS Mai2010* <30
PLCFRS V=1, h=co <30
Disco-pop v=1, h=co <30

71.52
72.34
73.98

31.27
34.96

97.00
96.59
96.59

Disco-pop cFe-CTF, v=1 h=1 <40

74.27

34.26

100.0

Table: Discontinuous parsing on the Negra corpus.
Function tags discarded; Gold POS tags given to parser.

Source code: http://github.com/andreasvc/disco-dop




Disco-DOP

» We can speed up fragment extraction by sorting
nodes of frees:

» = Aligns potentially equal nodes, allowing us to skip
the rest! (Moschitti 2006)

Time (hr:min)
Implementation CPU Wallclock # fragments

Quadratic (Sangati, 2012) 160 10:00 1,023,092
Quadratic (my impl.) 93 6:15 1,032,568
Fast (my impl.) 2.3 0:09 1,023,880

Table: Performance comparison. Wall clock time is when using
16 cores.




Conclusions

» Parse known texts with off-the-shelf parser

» Classify author of unknown text by counting common
fragments w/known fexts
Author corpus with maximal fragment overlap is
probably the author.

20 sents frigrams  fragments combined

Conrad 89.00 91.00 95.00
Hemingway 77.00 58.00 78.00
Huxley 74.74 66.32 76.84
Salinger 95.00 91.00 98.00
Tolstoy 84.00 82.00 92.00
average: 84.04 77.78 88.08

100 sents avg 97.98 92.93 98.99

Table: Accuracy in % for authorship attribution of literary texts.
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Conclusions

Conclusions

e Data-oriented parsing was one of the first proposals for
modern, wide-coverage parsing - radical at the time, but the
main innovations have become standard in the field;

e Work on generative, data-oriented grammars continues, with
competitive results on English and other languages (but less
attention internationally than around 2000)

¢ Remains one of the few approaches to syntactic structure that
combines engineering success with aspirations as a cognitive
model
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