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Last week we studied two famous biological neuron models, Fitzhugh-Nagumo model and Izhikevich
model. This week, we will firstly explore another one, which is, though less biological, very computationally
practical and widely used, namely perceptron. Then, we will see how to combine many neurons to build
complex neural networks called multi-layer perceptrons.

Required Library We’ll use the library RSNNS1, which is installed by typing install.packages("RSNNS").

Required R Code At http://www.illc.uva.nl/LaCo/clas/fncm14/assignments/computerlab-week3/
you can find the R-files you need for this exercise.

1 Classification and Regression

In supervised learning a training dataset {(x1, y1), (x2, y2), ..., (xn, yn)} is given, and the task is to find a
function y = f(x) such that the function is applicable to unknown patterns x. Based on the nature of y, we
can classify those tasks into two classes:

Classification is to assign a predefined label to an unknown pattern. For instance, given a picture of an
animal, we need to identify if that picture is of a cat, or a dog, or a mouse, etc. If there are two categories
(or two classes), the problem is called binary classification; otherwise, it is multi-class classification. For the
binary classification problem, there is a special case, where patterns of the two classes are perfectly separated
by a hyper-plane (see Figure 1). We call the phenomenon linear separability, and the hyper-plane decision
boundary.

Figure 1: Example of linear separability.

1http://cran.r-project.org/web/packages/RSNNS/index.html
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Regression differs from classification in that what we need to assign to an unknown pattern is a real
number, not a label. For instance, given the height and age of a person, can we infer his/her weight?

2 Perceptron

A perceptron is a simplified neuron receiving inputs as a vector of real numbers, and outputing a real number
(see Figure 2). Mathematically, a perceptron is represented by the following equation

y = f(w1x1 + w2x2 + ...+ wnxn + b) = f(wTx + b)

where w1, ..., wn are weights, b is a bias, x1, ..., xn are inputs, y is an output, and f is an activation function.
In this section, we will use the threshold binary function (see Figure 3)

f(z) =

{
1 if z > 0
0 otherwise

Figure 2: Perceptron (from http://en.wikipedia.org/wiki/File:Perceptron.svg).

Figure 3: Threshold binary activation function.

2.1 Prediction

A new pattern x will be assigned the label ŷ = f(wTx+ b). The mean square error (MSE) and classification
accuracy on a sample {(x1, y1), ..., (xm, ym)} are respectively defined as

error =
1

m

m∑
i=1

(yi − ŷi)2 accuracy =
1

m

m∑
i=1

Iyi
(ŷi)

where Iu(v) is an identity function, which returns 1 if u = v and 0 otherwise.
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2.2 Training

Traditionally, a perceptron is trained in an online-learning manner with the delta rule: we randomly pick an
example (x, y) and update the weights and bias as follows

wnew ← wold + η(y − ŷold)x (1)

bnew ← bold + η(y − ŷold) (2)

where η is a learning rate (0 < η < 1), ŷold is the prediction based on the old weights and bias. Intuitively,
we only update the weights and bias if our prediction ŷold is different from the true label y, and the amount
of update is (negatively, in the case y = 0) proportional to x.

To see why it could work, let apply the weights and bias after being updated to that example

wT
newx + bnew = (wold + η(y − ŷold)x)Tx + bold + η(y − ŷold)

= wT
oldx + bold + η(y − ŷold)(‖x‖+ 1)

Here, let’s assume that ŷold = 0, then wT
oldx + bold < 0. If y = 0, nothing happens. Otherwise, η(y −

ŷold)(‖x‖ + 1) > 0, and therefore wT
newx + bnew > wT

oldx + bold. In other words, the update is to pull the
decision boundary to a direction that making prediction on the example is ‘less’ incorrect (see Figure 4).
? proves that if the training dataset is linearly separable, it is guaranteed to find a hyperplane correctly
separates the training dataset (i.e., error = 0) in a finite number of update steps. Otherwise, the training
won’t converge.

Figure 4: Example of weight update. The chosen example is enclosed in the green box. The update pulls
the plane to a direction that making prediction on the example is ‘less’ incorrect.

Exercise 2.1: We have set up an experiment for the logic operation OR in the file ‘percep-
tron logic opt.R’. You should see

x <- t(matrix(c(

0,0,

0,1,

1,0,

1,1),

2,4))

# OR #

y <- matrix(c(

0,
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1,

1,

1),

4, 1)

which are mathematically written

x1 = (0, 0) y1 = 0

x2 = (0, 1) y2 = 1

x3 = (1, 0) y3 = 1

x4 = (1, 1) y4 = 1

and parameters

maxit = 25 # number of iterations

learn.rate = 0.1 # learning rate

stepbystep = TRUE # the program will output intermediate results on R console

animation = TRUE

Now, typing source("perceptron logic opt.R") to execute the file. Firstly, you will see the below in
your R console

------ init -----

weights 0 0

bias 0

learning rate: 0.1

pick x[ 1 ] = 0 0

then compute yourself

• true target y: ..............

• prediction ŷ: ..............

• weights after update: ..............

• bias after update: ..............

Press Enter to see if your computation is correct or not. At the same time, a plot will appear to inform
you which example (black circle) is being taken, and how the current decision boundary looks like.
Repeat that until the program finishes.

Exercise 2.2: Repeat the exercise 2.1 for the XOR operation. Before that, you need to open the file
‘perceptron logic opt.R’ to change y such that the dataset expresses the XOR operation. What could
you conclude about the convergence of the training? Explain why.

Exercise 2.3: In this exercise, you will build a perceptron for a EEG data classification task. A
dataset is provided in the file ‘leftright.dat’ which contains 2048 rows (i.e., cases) with the following
format

1 f e a tu r e 1 f e a tu r e 2 . . . f e a t u r e 96 l a b e l
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This dataset contains data from one subject instructed to imagine either repetitive self-paced left
hand movements (left, class ‘2’) or repetitive self-paced right hand movements (right, class ‘3’). The
dataset represents measurements on 8 channels, split out by 12 frequency components each, yileding
96 columns. (For a description of the data, see http://bbci.de/competition/iii/desc_V.html; our
data is the training data for subject 1 using classes 2 and 3 and the ’precomputed features’ option).

Have a look at this data to see how easily you can recognize the brain signatures of imagining a
movement of the left or on the right. You can make scatter plots with 2 features (here ’5’ and ’6’) at a
time using a command like:

plot(x[,5],x[,6],col=c("green","red")[y+1])

You can now play with the file ‘perceptron EEG classifier.R’.

• Open the file and set values for maxit (say 100) and learn.rate (say 0.1).

• Execute the file (source("perceptron EEG classifier.R")).

• Report what you get.

• Train the perceptron and report what you get again. Do you get the same results? Why or why
not?

• Look at the graph showing the error at each iteration, explain why there are many peaks.

3 Multi-layer Perceptron

The perceptron model presented above is very limited: it is theoretically applicable only to linearly separable
data. In order to handle non-linearly separable data, perceptron is extended to a more complex structure,
namely multi-layer perceptron (MLP). A MLP is a neural network in which neuron layers are stacked such
that the output of a neuron in a layer is only allowed to be an input to neurons in the upper layer (see
Figure 5).

It turns out that, if the activation functions of those neurons are non-linear, such as the sigmoid function
(or logistic function) (see Figure 6)

sigm(z) =
1

1 + e−z

MLP is capable to capture high non-linearity of data: ? proves that we can approximate any continuous
function at an arbitrary small error by using complex-enough MLPs.

Let’s denote the weight of the link from the i-th neuron in the l-th layer to the j-th neuron in the (l+1)-th
layer wli,(l+1)j , then we can formalize the i-th neuron in the l-th layer by the equation

yli = fli(zli) ; zli =

nl−1∑
j=1

w(l−1)j,liy(l−1)j + bli (3)

where yli, fli, bli are respectively its output, activation function, and bias; nl is the number of neurons in the
l-th layer. (Note that for the convenience, we denote y0i ≡ xi .) Informally speaking, a neuron is activated
by the sum of weighted outputs of the neurons in the lower layer.

3.1 Prediction

Prediction is very fast thanks to the feedforward algorithm (Figure 7-left). The algorithm says that, given x,
we firstly compute the outputs of the neurons in the first layer; then we compute the outputs of the neurons
in the second layer; and so on until we reach the top layer.

5



Figure 5: A 3-layer perceptron with 2 hidden layers (from http://www.statistics4u.com/fundstat_eng/

cc_ann_bp_function.html.)

Figure 6: Sigmoid activation function.

3.2 Training

Training a MLP is to minimize an objective function w.r.t. its parameters (i.e., weights and biases) which
is related to the task that the MLP is used for. For instance, for the binary classification task, the following
objective function is widely used

E(θ) =
1

n

∑
(x,y)∈D

(
y − ŷ)2

where D is a training dataset, ŷ is the output of the MLP given an input x, and θ is its set of weights
and biases. In order to minimize the objective function E(θ), we will use the gradient descent method (see
Figure 8) which says that an amount of update for a parameter is negatively proportional to the gradient at
its current value.
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Figure 7: Feedforward (left) and backpropagation (right).

Figure 8: Illustration for the gradient descent method. The blue line is the tangent at the current value of
the parameter w. If we update w by subtracting an amount proportional to the gradient at that point, the
value of E will be pushed along the arrow and hence decrease. However, this method only guarantees to
converge to a local minimum.

The center point of the gradient descent method is to compute the gradient ∂E
∂w for all w ∈ θ which is

easily done with the chain rule:
∂E

∂zLi
=

∂E

∂yLi

∂yLi

∂zLi
(4)

∂E

∂zli
=
∑
j

∂E

∂z(l+1)j

∂z(l+1)j

∂zli
=
∑
j

∂E

∂z(l+1)j
wli,(l+1)j

∂yli
∂zli

(5)

∂E

∂wli,(l+1)j
=

∂E

∂z(l+1)j

∂z(l+1)j

∂wli,(l+1)j
=

∂E

∂z(l+1)j
yli (6)

That’s the main idea of the back-propagation algorithm (see Figure 7-right).

Exercise 3.1(!): You can realize that none of the formula above mentions about how to compute
∂E/∂bli for all l, i. That’s your task.
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Exercise 3.2(!): Compute yli by using the feedforward algorithm, and wli,(l+1)j , bli by using the
backpropagation algorithm for all l, i, j, for the 2-layer MLP shown in Figure 9 which all biases are 0.5
and all the neurons have the sigmoid activation function, with x = (−0.5, 0.2), y = 1.

The RSNNS library provides us with a function named mlp for training a MLP. (You may want to read
the description for that function in the library document http://cran.r-project.org/web/packages/

RSNNS/RSNNS.pdf because you will use it in the next exercise). Note that, its arguments x,y are similar to
the ones of the perceptron function above. If learnFunc="Std Backpropagation" (which is default), then
learnFuncParams plays the role as learn.rate. The default values for other parameters are almost perfect
for us, you might not change them.

Figure 9: MLP for Exercise 3.2. All the biases are 0.5. All the neurons have the sigmoid activation function.

Exercise 3.3: Use the file ‘mlp logic opt.R’ for Exercise 2.1 and 2 (OR and XOR) (you don’t need to
compute by yourself anything).

• Open the file and set values for x and y (training dataset).

• Set values for maxit (says 100) and learn.rate (says 0.1), and size (says c(5), i.e. one hidden
layer with 5 neurons).

• Execute the file (source("mlp logic opt.R")).

Find a value for maxit such that the accuracy is 1. What is weighted SSE?

Exercise 3.4: Use the file ‘mlp EEG classifier.R’ for Exercise 2.3

• Open the file and set values for maxit (says 100) and learn.rate (says 0.1), and size (says c(5),
i.e. one hidden layer with 5 neurons).

• Execute the file (source("mlp EEG classifier.R")).

4 Submission

Submit a file named ‘ass3 your name.pdf’ for those exercises requiring explanations and math solutions.
Note that exercises marked with (!) do not need to be submitted.
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