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We are curious about some events or things (such as a language) and want to study their hidden
mechanisms (grammar) Gtrue. A proper way to do is to collect a lot of data (sentences, dialogues)
D = {x1, x2, ..., xn} and then find a model Ĝ that best fits (or explains) D. In this way, you expect
that Ĝ is a ‘good’ estimate of Gtrue.

In this lab, firstly, we will study one quality metric to measure the ‘degree of belief’ that a model G is a
good estimate of Gtrue given observed data D: the posterior probability P (G|D), and how to compute it by
using Bayesian inference. Then, we will examine two widely used estimation methods: Maximum Likelihood
estimation (MLE) and Maximum A Posteriori estimation (MAP).

Required R Code At http://www.illc.uva.nl/LaCo/clas/fncm13/assignments/computerlab-week7/
you can find the R-files you need for this exercise.

1 Bayesian Inference

In statistics, according to Wikipedia, Bayesian inference

is a method of inference in which Bayes’ rule is used to update the probability estimate for a
hypothesis as additional evidence is acquired.

In other words, Bayesian inference is to compute the posterior probability P (G|D) based on the Bayes’ rule

P (G|D) =
P (D|G)P (G)

P (D)
(1)

where P (G) is the prior probability of G and D is additional evidence. In order to illustrate the method,
let’s examine the toy example below.

Toy Example: Murder in Dam Square

A man was found dead in Dam Square and two people, namely A and B, are suspected. After 24h inves-
tigating, the police found four witnesses, one of them reported that he saw A shooting the victim whereas
the others said B. However, because it was foggy at that time, the police estimate that those witnesses only
80% correctly distinguished the two suspects. Our task is using Bayesian inference to help the police find
out which one is the murderer, A or B.

First of all, we need to model the problem mathematically. Let’s denote

• P (X) the prior probability that X is the murderer (note: P (X = B) = 1− P (X = A))

• P (Wi|X) (i = 1..4) the confidence of the i-th witness’ vision. Here, P (Wi = X|X) = 0.8.

• P (X|W1,2,3,4) the posterior probability that X is the murderer based on the evidence given by all the
four witnesses.

Our goal is to compute the posterior probability P (X = A|W1 = A,W2 = B,W3 = B,W4 = B) by updating
the posterior probability when additional evidence is given as follows
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• Step 0: when we don’t have any evidence, we can only judge based on the prior probability P (X).

• Step 1: after the first witness reports, we update the posterior probability

P (X|W1 = A) =
P (W1 = A|X)P (X)

P (W1 = A)

where P (W1 = A) =
∑

X∈{A,B} P (W1 = A|X)P (X).

Exercise 1.1: We set up the experiment as follows

1 p . p r i o r = c ( 0 . 5 , 0 . 5 ) # P(X=A) = P(X=B) = 0.5
2 l i k e l i h o o d = matrix (c ( 0 . 8 , 0 . 2 , 0 . 2 , 0 . 8 ) , 2 , 2 ) # P(W i = X | X) = 0.8
3 wi tnes s = c ( 1 , 2 , 2 , 2 ) # W1 = A, W2 = W3 = W4 = B

where we represent the likelihood-function as a matrix that gives for each actual killer (A,B) the likeli-
hood of obtaining a witness-report incriminating A or B. Calculate (in R) the probability that A or B
is the killer before and after hearing witness 1.

we then continue with incorporating the information from witnesses 2, 3 and 4. Note that the posterior
after witness 1 becomes the prior for caclulating the posterior after witness 2!

• Step 2: after the second witness reports, we update the posterior probability

P (X|W1 = A,W2 = B) =
P (W2 = B|X)P (X|W1 = A)

P (W2 = B|W1 = A)

where P (X|W1 = A) is computed in step 1. (Note: because Wi,Wj with i 6= j are independent given
X, P (W2 = B|X, W1) = P (W2 = B|X).)

• Step 3: after the third witness reports, we update the posterior probability

P (X|W1 = A,W2 = B,W3 = B) =
P (W3 = B|X)P (X|W1 = A,W2 = B)

P (W3 = B|W1 = A,W2 = B)

where P (X|W1 = A,W2 = B) is computed in step 2.

• Step 4: after the last witness reports, we update the posterior probability

P (X|W1 = A,W2 = B,W3 = B,W4 = B) =
P (W4 = B|X)P (X|W1 = A,W2 = B,W3 = B)

P (W4 = B|W1 = A,W2 = B,W3 = B)

where P (X|W1 = A,W2 = B,W3 = B) is computed in step 3.

Exercise 1.2. The script murder.R automatizes the calculations at step 0-4.

• Step 0:

1 # step 0
2 p . poste = p . p r i o r
3 print (p . poste )

• Step 1, 2, 3, 4:

1 # step i > 0
2 for ( i in 1 : length ( w i tnes s ) ) {
3 i f ( w i tnes s [ i ] == 1) # i f the wi tness saw A
4 p . poste = p . poste ∗ c (p . witness ,1−p . w i tnes s )
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5 else # i f the wi tness saw B
6 p . poste = p . poste ∗ c(1−p . witness , p . w i tnes s )
7 p . poste = p . poste / sum(p . poste ) # normalize
8
9 print (p . poste )

10 }

Is the posterior probability at step 2 the same step 0? Explain why?
Based on the posterior probability after step 4, who is the most suspected?

Exercise 1.3: In exercise 1, the prior distribution is uniform, because we haven’t had any evidence yet.
Now, assuming that B is a law-abiding citizen according to all records, whereas A has prior convictions
for violence and other crimes. It might therefore be reasonable to suspect A more than B. We adjust
the prior distribution as follows

1 p . p r i o r = c ( 0 . 9 , 0 . 1 ) # P(X=A) = 0.9 , P(X=B) = 0.1

while keeping other parameters unchanged. Compute the posterior distribution as in exercise 1 and
report what you get.

2 Parameter Estimation

In the previous section, we study how to use Bayesian inference to estimate a distribution. In this section,
we will study how to select the ‘best’ model given observed data.

Maximum Likelihood Estimation (MLE) is a method to find values for model’s parameters such
that the likelihood given the observed data, e.g. the probability of the observed data given the model, is
maximized

ĜMLE = max
G

P (D|G) (2)

Maximum A Posteriori (MAP) Estimation on the other hand, is to maximize the posterior probability

ĜMAP = max
G

P (G|D) (3)

According to the Bayes’ theorem, we can compute posterior probability based on prior probability and
likelihood, e.g. P (G|D) = P (D|G)P (G)

P (D) . Therefore

ĜMAP = max
G

P (D|G)P (G)
P (D)

= max
G

P (D|G)P (G) (4)

(because P (D) is a constant in this case, we freely drop it).
In order to easily compute P (D|G) in Equation 2 and 4, observed data are assumed to be independent

and identically distributed (i.i.d), e.g. examples are independently drawn from the same distribution. Hence

P (D = {x1, x2, ..., xn}|G) =
n∏

i=1

P (xi|G) (5)

Exercise 2.1. What are the MLE and MAP hypotheses in exercise 1.3 after 4 witness reports? And
what were they after the first 3 witness reports?
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Because probabilities can become very small and multiplication is a relatively expensive operation, it is
often convenient to work with the logarithm of probabilities.

Exercise 2.2. Confirm in R that : ∏
i

pi = exp
∑

i

log pi

Now, Equation 2 and 4 respectively become 1

ĜMLE = max
G

n∏
i=1

P (xi|G) = max
G

n∑
i=1

log P (xi|G) (6)

where the right hand side,
∑n

i=1 log P (xi|G), is called log-likelihood, and

ĜMAP = max
G

P (G)
n∏

i=1

P (xi|G) = max
G

(
log P (G) +

n∑
i=1

log P (xi|G)
)

(7)

Toy Example

In the following exercises, we will examine a very simple case: estimating the mean of a normal distribution
N(x;µ, σ2). The scenario is that, we draw a sample D = {x1, ..., xn} from N(x;µtrue, σ

2
true); then, we ask

you to estimate µtrue. (Note that, in order to adapt the above equations, we need to replace probability by
density.)

Note that, by the definition of a normal distribution, if x is distributed according to a normal distribution
with mean µ and standard deviation σ (i.e., x ∼ N(µ, σ2)) then

p(x|µ) =
1

2σ
√

π
exp

(
− (x− µ)2

2σ2

)
(8)

which can be rewritten as

log p(x|µ) = − (x− µ)2

2σ2
+ U (9)

where U is a constant independent from µ (and can often be, conveniently, ignored). Now, Equation 6 and
7 respectively become

µ̂MLE = max
µ

−
n∑

i=1

(xi − µ)2 (10)

µ̂MAP = max
µ

(
log p(µ)−

n∑
i=1

(xi − µ)2
)

(11)

Exercise 2.3: The file ‘estimate mu.R’ provides you with a visualization tool for the estimation
problem (with both MLE and MAP): each time you press the Enter key, the program will draw an
example from the true model and use it to update µ̂MLE and µ̂MAP ; after that, it will show a plot
containing graphs of log-likelihood and log posterior probability over µ and another plot containing
graphs of µ̂MLE and µ̂MAP over sample size.

In this exercise, we assume that the prior distribution is also a normal distribution p(µ) =
N(µ;µµ, σ2

µ)

1. First of all, you need to set values for parameters and draw a sample

1Note that because log is a monotonically increasing function, max(a, b) = max
`
log(a), log(b)

´
.
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1 mu. t rue = 3 # mean
2 sigma . t rue = 10 # standard dev i a t i on
3 n = 100 # sample s i z e
4 data = rnorm(n , mean = mu. true , sd = sigmoid . t rue )
5
6 mean .mu = 2 .5 # mean of mu ( p r i o r i )
7 sd .mu = 1 # standard dev i a t i on o f mu ( p r i o r i )

2. Before executing the file, try to predict how the graph of log-likelihood over µ looks like, and how
the graph of log-posterior-probability over µ looks like when (i) observed data are ignored and (ii)
observed data are used.

3. Load the file (source("estimate mu.R")), and then execute
estimate.mu(data, sigma.true, mean.mu, sd.mu, plot=T)
(note: the black lines are of MLE, the blue lines MAP). Report what you get.

4. It can be shown that µ̂MLE = 1
n

∑n
i=1 xi. Confirm that by computing the sample average

sum(data)/n. (Note: µ̂MLE computed by the program is rounded.)

5. Change the prior p(µ) to have mean.mu = -2, sd.mu = 1 then execute estimate.mu(...) again.
Now set mean.mu = -2, sd.mu = 1000 then execute estimate.mu(...). Do you have any con-
clusion about the effect of the prior distribution?

Exercise 2.4 (optional): In this exercise, we will compare MLE to MAP by computing mean squared
errors over sample size.

1. First, we set up the experiment as in exercise 1

1 n = 100
2 mu. t rue = 3
3 sigma . t rue = 10
4 mean .mu = 2 .5
5 sd .mu = 1

Then, we compute mean squared errors of m runs

1 mse . mle = rep (0 , n ) ; mse .map = rep (0 , n )
2 m = 100
3
4 for ( i in 1 :m) {
5 data = rnorm(n , mean = mu. true , sd = sigma . t rue )
6 mu. e s t = est imate .mu(data , sigma . true , mean .mu, sd .mu, plot=F)
7 mse . mle = mse . mle + (mu. e s t$mu. mle − mu. t rue ) ˆ2
8 mse .map = mse .map + (mu. e s t$mu.map − mu. t rue ) ˆ2
9 }

10
11 mse . mle = sqrt (mse . mle ) / m
12 mse .map = sqrt (mse .map) / m

And finally plot the errors

1 plot ( 1 : n , mse . mle , type=’ l ’ , yl im=c (min(min(mse . mle ) ,min(mse .map) ) ,max(
max(mse . mle ) ,max(mse .map) ) ) , x lab = ’ sample s i z e ’ , y lab = ’MSE’ )

2 l ines ( 1 : n , mse .map , col=’ blue ’ )

(Don’t forget our notation: black is of MLE and blue MAP.)

2. Set n = 3000 and rerun the above.
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3. Based on what you have done so far, draw conclusions about MLE vs MAP and when MAP is
useful.

3 Submission

You have to submit a file named ‘your name.pdf’. The deadline is 15:00 Monday 16 Dec. If you have any
questions, contact Phong Le (p.le@uva.nl).
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