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1 Functions

Over the last few weeks we have seen examples of functions that are built-in in R, as well as a number of
scripts that defined new functions. Functions are the building blocks of computer programs - the bits of
code that we give a separate name so that we can reuse them again and again. Today, we are going to define
some new functions ourselves.

The structure of a function is given as follows

1 func name <− function ( arg1 , arg2 , . . . ) {
2 statement
3 return ( output )
4 }

where func name is the function’s name; arg1, arg2, etc. are the function’s arguments (i.e., function’s
inputs); and return(output) is to claim that the output of the function is the object output, which need
to be declared in the body of the function (i.e., statement).

Exercise 1.1: Write a function sigmoid that, for a given x calculates the y value. Recall that the
sigmoid function is defined as:

y =
1

1 + e−x

Check that the function works equally well with x a scalar (a single value of x) as with x a vector.
Plot the function with:

1 x <− seq (−5 ,5 ,by=0.1) # crea te x = (−5 ,−4.9 ,−4.8 , . . . ,4 .9 ,5)
2 y <− s igmoid (x ) # compute y va lue s
3 plot (x , y , type=’ l ’ , col=’ blue ’ ) # draw the graph , us ing b lue co l o r

2 Scripts

Programming directly in an R console is a bad idea because we can’t bring our programs to another com-
puter. Therefore, we should store our source code in a file and execute it anytime we want by the function
source("file path").

Exercise 2.1: Store your code in Exercise 1.1 in a file “sigmoid.r” and execute it by typing
source("sigmoid.r") in an R console. (If the error “cannot open file” occurs, you change your working
directory.)
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3 Control Structures

3.1 Conditional Execution

Think about what would happen if our languages lack the words ‘if’, ‘else’, ‘otherwise’, etc. and you will see
why any programming language has to have conditional execution. In R, conditional execution is given by
the following structure

1 i f ( cond i t i on ) {
2 statement
3 } else {
4 a l t e r n a t i v e
5 }

The condition is a logical expression which may contain one of the following operations

• x == y “x is equal to y”

• x! = y “x is not equal to y”

• x > y “x is greater than y”

• x < y “x is less than y”

• x <= y “x is less than or equal to y”

• x >= y “x is greater than or equal to y”

or a combination of those using the & or && operators for AND, | or || are the operators for OR.
For instance, the following code will let us know, when we flip two fair coins, whether the results are

both ‘head’

1 x <− runif (2 ) # f l i p two f a i r co ins
2 print ( x )
3 # suppose t ha t ”> 0.5” means ”head”
4 # we check i f BOTH two va lue s > 0.5 or not
5 i f ( x [ 1 ] > 0 .5 && x [ 2 ] > 0 . 5 ) {
6 # both > 0.5
7 print ( ” bingo ! ! ! ” )
8 } else {
9 # at l e a s t one o f them <= 0.5

10 print ( ”boooo ! ! ! ” )
11 }

(Note: the “else” part is not necessary, you can omit it freely if you have nothing to do with it.)

Exercise 3.1: Modify the code above to check whether at least one result is ‘head’.

3.2 Loops

Suppose that we have a fair coin, and we flip it 1000 times and count how many times the coin turns head.
To do that, we use the for statement like this way:

1 x <− runif (1000) # f l i p a f a i r coin 1000 times
2 count <− 0
3 # suppose t ha t ”> 0.5” means ”head”
4 # note t ha t 1:1000 c r ea t e s an array (1 , 2 , 3 , . . . , 1 000 )
5 for ( i in 1 :1000) {
6 i f ( x [ i ] > 0 . 5 ) {
7 count <− count + 1
8 }
9 }

10 print (count )

Code 1: Using the for loop to count how many times a fain coin turns head.
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The for loop above iterates each element in the array (1,2,...,1000). Firstly, the first element is assigned to
i, and hence we check the value x[1]: if x[1] > 0.5 then we increase the count by 1. Then, the second element
is assigned to i, and hence we check the value x[2]. And so on until the last element is assigned to i, and
hence we check the value x[10000].

We can wrap Code 1 into a function like this

1 # func t ion count head
2 # input : num of f l i p s i s a number o f t imes we f l i p the coin
3 # output : the number o f t imes the coin turns head
4 count head <− function (num of f l i p s ) {
5 x <− runif (num of f l i p s ) # f l i p a f a i r coin
6 count <− 0
7 for ( i in 1 :num of f l i p s ) {
8 i f ( x [ i ] > 0 . 5 ) {
9 count <− count + 1

10 }
11 }
12 return (count )
13 }

Now, to flip a fair coin 10000 times and count how many times it turns head, we simply execute count <-
count head(10000) (instead of typing Code 1 again and again each time we need to perform the task).

4 Recursion

R also allows us to write recursive functions: functions that call themselves! This can be extremely useful,
but should be handled with care. Recursive functions always have (at least) two parts: a stop-condition
(to avoid infinite loops) and a recursive step. As an easy example, consider a function mysum that sums all
elements from row r1 until row r2 in a vector x (of course, we could easily do that with the built-in function
sum(), or write our own function with a for-loop, but a recursive solution is more fun):

mysum(x, r1, r2) =
{

x[r1] if(r1 == r2)
x[r1] + mysum(x, r1 + 1, r2) otherwise

Exercise 4.1: Implement this function in R, and test it on some example vectors.

We can use recursive function also to generate strings, using the framework of formal grammars. For
instance, we can generate the formal language (ab)n with the function below (that uses the built-in function
cat to print comments on the screen, and the built-in function paste(a,b,c,...) to glue subtrings a, b, c,
etc. together into one string):

1 abn <− function (n) {
2 cat (paste ( ” en t e r i ng abn with n=” ,n , ”\n” , sep=”” ) )
3
4 # STOP CONDITION
5 i f (n==0) {
6 r e s u l t <− ””
7 }
8 # RECURSIVE STEP
9 else {

10 in te rmed ia t e r e s u l t <− abn (n−1)
11 r e s u l t <− paste ( in t e rmed ia t e r e su l t , ”ab” , sep=”” )
12 }
13 # RETURN RESULT
14 cat (paste ( ” l e av ing abn with n=” ,n , ” , r e s u l t=” , r e su l t , ”\n” , sep=”” ) )
15 return ( r e s u l t )
16 }
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Exercise 4.2: Generate some string with this function for randomly chosen n’s. Make sure you
understand the messages on your screen about entering and leaving abn with a particular n.

Exercise 4.3: Write a recursive function to generate strings from anbn.

5 Recurrent networks

Recall from previous weeks that the input to a McCulloch-Pitts neuron is the weighted sum of the activations
of input neurons, which we can succinctly describe as vector multiplication. More generally, if we have a
network of neurons, we can describe their activations with one activation vector x, the weights between all
neurons with a weight matrix W, and the net input to all neurons with a vector y = x · W. When two
neurons i and j are not connected, the corresponding entry in the weight matrix Wij is simply 0.

To calculate the new activation vector xt+1 given the current xt and the weights W, all we have to do
is apply our threshold function of choice:

xt+1 = threshold(x · W)

For instance, if we use as threshold function the sign-function, we can describe a network that implements
XOR with the following weight matrix (where i1 and i2 are the two neurons that form the input layer, h1

and h2 are the two neurons that form the hidden layer, o the output neuron, and b the bias neuron).

x =


i1 1
i2 0
h1 0
h2 0
o 0
b 1

W =



i1 i2 h1 h2 o b
i1 0 0 1 −1 0 0
i2 0 0 1 −1 0 0
h1 0 0 0 0 1 0
h2 0 0 0 0 1 0
o 0 0 0 0 0 0
b 0 0 −0.5 1.5 −1.5 100


Recall that you can enter a matrix in R as follows:

1 W <− matrix (c (0 ,0 ,0 , 0 , 0 , 0 ,0 , 0 ,0 , 0 , 0 , 0 , 1 , 1 , 0 ,0 , 0 , −0 .5 , −1 ,
2 −1 ,0 ,0 ,0 , 1 .5 ,0 , 0 ,1 ,1 , 0 , −1 .5 ,0 ,0 , 0 ,0 ,0 , 100) , 6 , 6 )

and do matrix multiplication with %*%.
You can define the threshold function using

1 th r e sho ld <− function ( x ) { (x>0)+0 }

Exercise 5.1: Test whether this weight matrix indeed implements XOR by trying out all four relevant
input values (00,01,10,11) in the first two entries of vector x. Hint: the output node activation is in the
5th entry of x, and to compute its value you need to compute xt+2 (i.e., do the matrix-multiplication
and thresholding twice).

Exercise 5.2: Write a recursive function with an argument T that computes the vector xt at time
t = T .

In the example weight matrix, the weights from each layer to itself are all zero. We can easily make the
network recurrent by making these weights non-zero. If we allow nonzero weights between all hidden layer
nodes we have a simple recurrent network, which has been calimed to be able to implement a contextfree
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grammar. We cannot investigate that claim in detail here, but to sharpen our intuitions let’s try to design
a simple recurrent network that processes strings like aabb, aaabbb, aaaaabbbbb etc. by receiving one
character at a time and predicting the next character. For this, we need a network with two input neuron
and two output neurons (where we let 00 mean “beginning of the string”, 01 ’a’, 10 ’b’ and 11 “end of
string”).

Exercise 5.2: Implement a recurrent network with 2 input, 2 hidden and 2 output neurons that
processes “aaabbb”. Encode the strings as a matrix, and write a function that presents every row of the
matrix to the network at each timestep.

6 Towers of Hanoi

Now that you understand recursive programming, we can analyze the optimal solution to Towers of Hanoi
problems. First load the package ref

1 in s ta l l . packages ( ” r e f ” )
2 require ( ” r e f ” )

Set some variables:

1 n=4
2 Tower <− l i s t (Tower = l i s t ( a = n : 1 , b = numeric ( ) , c = numeric ( ) ) )
3 class (Tower ) <− ”HanoiTower”

Then define the function to move a tower:

1 move . HTower <− function (Tower , print=FALSE, plot=TRUE, n = 1 , from = 1 , to = 1)
{

2
3 i f (n == 1) {
4 nfrom <− length (Tower$Tower [ [ from ] ] )
5 Tower$Tower [ [ to ] ] [ length (Tower$Tower [ [ to ] ] ) + 1 ] <− Tower$Tower [ [ from ] ] [

nfrom ]
6
7 length (Tower$Tower [ [ from ] ] ) <− nfrom − 1
8 i f ( print ) print . HanoiTower (Tower )
9 i f ( plot ) plot . HanoiTower (Tower )

10 }
11 else {
12 f r e e <− ( 1 : 3 ) [−c ( from , to ) ]
13 Tower <− move . HTower(Tower , print , plot , n − 1 , from , f r e e )
14 Tower <− move . HTower(Tower , print , plot , 1 , from , to )
15 Tower <− move . HTower(Tower , print , plot , n − 1 , f r e e , to )
16 }
17
18 Sys . s l e e p ( 0 . 5 ) #read l i n e ()
19 Tower
20 }

Experiment with different moves by executing e.g.:

1 move . HTower(Tower , n=n , from = 1 , to = 2)

Exercise 6.1: Explain how the function move.HTower works.

7 Submission

You have to submit a file named ‘your name.pdf’.
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A More control structures

Suppose we want to flip the coin until it turns head. We can’t use the for statement because we don’t know
how many times we need to flip the coin. Here, we need another loop statement, namely while:

1 while ( cond i t i on ) {
2 statement
3 }

The while loop will execute the statement as long as the condition is correct (i.e., TRUE). Therefore, our
problem is solved by the following code

1 # suppose t ha t ”> 0.5” means ”head”
2 x <− runif (1 ) # f l i p the coin
3 print ( x )
4 while ( x <= 0 . 5 ) {
5 x <− runif (1 ) # f l i p the coin
6 print ( x )
7 }
8 print ( ” bingo ! ! ! ” )

B Indexing

We can get an element by using the operator []. For instance, vec[i] points to the i-th element of a vector
vec, mat[i,j] points to the element on the i-th row, the j-th column of a matrix mat.

The operator [] can do further than that: we can get a set of elements. For instance, a[c(1,3)]
and a[c(TRUE,FALSE,TRUE)] point to the first and the third elements of vector a; A[1,c(2,3)] and
A[1,c(FALSE,TRUE,TRUE)] point to the second and the third elements on the first row of matrix A, and
A[,2] points to the second column.
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