
Week 4: Hopfield Network

Phong Le, Willem Zuidema

November 20, 2013

Last week we studied multi-layer perceptron, a neural network in which information is only allowed to
transmit in one direction (from input units to output units), for supervised learning. This week, we will
study another famous net, namely Hopfield net where information is allowed to transmit backward.

Required Library We use the library ‘png’ for reading and writing png files. Install it by typing
install.packages("png").

Required R Code At http://www.illc.uva.nl/LaCo/clas/fncm13/assignments/computerlab-week4/
you can find the R-files you need for this exercise.

1 Definition

Hopfield network is a recurrent neural network in which any neuron is an input as well as output unit, and

• each neuron i is a perceptron with the binary threshold activation function,

• any pair of neurons (i, j) are connected by two weighted links wij and wji.

Formally speaking, a neuron is characterized by

vi(t) = sign(ui(t)) =
{

1 if ui(t) ≥ 0
−1 otherwise (1)

where ui(t), the total input at time t, is computed by

ui(t) =
∑
j 6=i

vj(t− 1)wji + θi

A neuron i is called stable at time t if vi(t) = vi(t − 1) = sign(ui(t − 1)). A Hopfield net is called stable if
all of its neurons are stable. Here after, we drop the time t, and assume that all the biases are 0; i.e., we use
ui instead of ui(t), and θi = 0 for all i.

2 Activation

There are two ways to update a Hopfield net, asynchronous – where only one neuron, which is randomly
picked up, is updated at a time – and synchronous – where all neurons are updated at a time. It is proved
that, if the net is symmetric, i.e. wij = wji for all i, j, then it will definitely converge to a stable point (see
Theorem 2, page 51, Kröse and van der Smagt (1996)), which is a local minimum of the following energy
function

E = −1
2

∑
i,j

wijvivj = −1
2
vT Wv

1

Exercise 1: In this exercise, you will study how a Hopfield net updates its state. Let consider the
network given in Figure 1.

1. First of all, you need to load the file ‘hopfield.R’ (typing source("hopfield.R")).

2. Then, create a Hopfield net, by create a weight matrix and then put it in a list as follows

weights = matrix(c(
0, 1, -2,
1, 0, 1,
-2, 1, 0),

3, 3)
hopnet = list(weights = weights)

3. Set the initial state init.y = c(1,-1,1).

4. Next, activate the net by typing
run.hopfield(hopnet, init.y, stepbystep=T, topo=c(3,1)). You should see the below

weights =
[, 1] [, 2] [, 3]

[1 ,] 0 1 −2
[2 ,] 1 0 1
[3 ,] −2 1 0
input pattern = 1 −1 1

and a black-white plot illustrating the current state of the network (black represents -1, white 1).

5. Press Enter, you should see something like this

i t e r 1
p ick neuron 2
input to t h i s neuron 2
ouput o f t h i s neuron 1
new s t a t e 1 1 1

This means that, in the first iteration, we pick the neuron number 2. The total input to this
neuron is 2, and hence its output is 1.

6. Press Enter three or four times to see what happens next.

7. Now, do all the steps above again with your own weight matrix and initial state. Report what you
get (just copy what you see in your R console and paste it into your report).

Exercise 2: To see why symmetry is important for the convergence, let’s consider a 2-neuron Hopfield
net with the weight matrix

W =
(

0 1
−1 0

)
Your task is to examine whether the net converges or not if the initial state is v = (1,−1)T . To do so,

• load the R file ‘hopfield.R’ (source("hopfield.R")),

• create the corresponding Hopfield net by typing

hopnet = list(weights = matrix(c(0, 1, -1, 0), 2, 2))

2

Figure 1: A Hopfield net.

• set the initial state init.y = c(1,-1),

• activate the net by typing

run.hopfield(hopnet, init.y, maxit = 10, stepbystep=T, topo=c(2,1))

(note that maxit is the number of times we pick a neuron to activate it.)

Now, could you conclude anything about the convergence?

Set the weight matrix W =
(

0 1
1 0

)
and do all the steps above again. Does the net reach a stable

state?

3 Learning with Hebb’s rule

A Hopfield net is an associative memory in the sense that it could be used to store patterns and we can
retrieve a stored pattern with an incomplete input. The principle behind it is that, the weight matrix is set
such that the stored patterns correspond to stable points; and therefore, given an incomplete input pattern,
the net will iterate to converge to a stable point which corresponds to a stored pattern most ‘similar’ to the
input.

Given m patterns pk = (pk,1, ..., pk,n)T , k = 1..m, the Hebbian learning rule can be used to set up the
weights as follows

wij =
{∑m

k=1 pk,ipk,j if i 6= j
0 otherwise

which could be written compactly:

W =
m∑

k=1

pkpT
k −mI

Unfortunately, the learning rule above is not perfect. In order to decide when to apply that rule and which
net structure to use, let’s claim a store pattern, says p1, and see when the net converges to that pattern.
Recall that the net is stable at p1 when all neurons are stable, i.e. v = sign(u) = sign

(
Wp1

)
= p1.

Analysing u we have

u = Wp1

= (p1pT
1 + ... + pmpT

m −mI)p1

= p1pT
1 p1 + ... + pmpT

mp1 −mIp1

= (n−m)p1 +
∑
j>1

αjpj

3

where n is the number of neurons, αj could be considered as the ‘similarity’ between p1 and pj . From this,
we can see that, in order to have sign(u) = p1, n > m and αj are small. Intuitively, the number of neurons
must be greater than the number of patterns we want to store, and those patterns must be distinguishable.

Exercise 3: In this exercise, you will study how to use the Hebbian learning rule to update a Hopfield
net’s weights, and its effect.

1. Let’s create two 10× 10 images, namely pattern1, pattern2, and the matrix weight as follows

pattern1 = rep(1, 10*10)
pattern2 = rep(-1, 10*10)
weights = matrix(rep(0,10*10*10*10),10*10, 10*10)

2. Then, use the Hebbian learning rule to update the weight matrix

weights = weights + pattern1 %o% pattern1 + pattern2 %o% pattern2 - 2*diag(10*10)

3. Examine whether the net with that weight matrix stores those two patterns by executing

run.hopfield(list(weights=weights), pattern1,
stepbystep=T, topo=c(10,10), replace=F)

and

run.hopfield(list(weights=weights), pattern2,
stepbystep=T, topo=c(10,10), replace=F)

4. Create other two patterns, which are pattern1 but some lines are filled with -1

pattern3 = matrix(pattern1, 10, 10)
for (i in 1:3)

pattern3[i,] = -1
dim(pattern3) = NULL

pattern4 = matrix(pattern1, 10, 10)
for (i in 1:5)

pattern4[i,] = -1
dim(pattern4) = NULL

If these patterns are set as the initial state for the net, which patterns will the net retrieve?

5. Now, use the Hebbian learning rule to store pattern3, by updating the weight matrix as follows

weights = weights + pattern3 %o% pattern3 - diag(10*10)

Does the net now remember this pattern?

6. If pattern4 is set as the initial state for the net, which patterns will the net retrieve?

7. One interesting property of the Hebbian learning rule is that we can use its reverse (i.e,. addition
becomes subtraction and vice versa) to ‘erase’ a pattern out of the memory. To make the net
‘forget’ pattern3, execute

weights = weights - pattern3 %o% pattern3 + diag(10*10)

Now, check if the net still remembers pattern3. Check if pattern4 is set as the initial state for
the net, which patterns will the net retrieve?

4

Exercise 4: In this exercise, you will train a Hopfield net to store some digits. The files you need
are ‘hopfield.R’ for training a Hopfield net, ‘hopfield digit.R’ for the whole experiment, and ‘0.png’,
‘1.png’,..., ‘9.png’ which are images of the ten digits.

1. First of all, execute the file ‘analyse digit.R’ to examine the similarities between the digits. Which
pair is the most similar? Which is the least? Which digit is the most distinguishable from the
others? (Note the digit 0 is indexed 10.)

2. Open ‘hopfield digit.R’ and set digits to a set of digits you want to store in a Hopfield net. First
try with all ten digits. Then with all odd digits, and finally with all even digits. After executing
the ‘hopfield digit.R’ file, you should see a plot, in which the first row contains input images, the
second row output images, and the third row expected output images. What do you see? Can you
explain?

3. Find the largest set of digits that the net can store.

4. Now, we consider only even digits. The parameter noise rate decides the probability that a pixel
is flipped, e.g. noise rate = 0.1 means any pixel is flipped with the probability 0.1. The higher
noise rate is, the more noisy the input is. Gradually increase the value of noise rate from 0 to
1, report the maximum value that the network correctly retrieves all inputs.

5. In some cases, the retrieved digit looks quite good, but not perfect. Can you explain why?

4 Submission

You have to submit a file named ‘your name.pdf’. The deadline is 15:00 Monday 25 Nov. If you have any
questions, contact Phong Le (p.le@uva.nl).

References

Kröse, B. and van der Smagt, P. (1996). An introduction to neural networks.

5

