Assignment 1: Drawing functions

Foundations of Neural and Cognitive Modelling

1-11-2013

Exercise 1 Draw (qualitatively) the solutions to the following two equations:

$$
-\frac{1}{c}(x-a+b y)=0 \quad c\left(x-\frac{1}{3} x^{3}+y+i\right)=0
$$

where you may assume that all parameters a, b, c and i are larger than 0 (or, if you prefer concrete numbers, assume $a=0.7, b=0.8, c=3, i=1.6)$.

Hints:

- Because $-\frac{1}{c} z$ can only be 0 if $z=0$, you can drop the $-\frac{1}{c}$ term.
- Because $(x-a+b y)$ is only 0 when $x-a=-b y$, you know that the first function to draw is the linear function $y=-\frac{1}{b} x+\frac{a}{b}$.
- For more complicated functions, remember that a 2 nd degree polynomial yields a parabola (decreasing first, increasing later, or vice versa), and a third degree polynomial a 'cubic parabola' (with parabola as derivative: if it starts increasing, the increase will gradually become less (possibly become a decrease for a while), before growing again).
- Reason about what the functions will to when x goes to $-\infty$ and $+\infty$.

Exercise 2 Check your solutions by plotting the functions in R, with parameters $a=0.7, b=0.8, c=3, i=$ 1.6.

Hints:

- R is installed on most university computers. You can install it on your own machine by downloading it from www.r-project.org/.
- The easiest way to plot a function is by first generating a vector with x-coordinates. In this case, generate 101 x -values from -5 to +5 with the function seq() ("generate a sequence"):
$x<-\operatorname{seq}(-5,5, b y=0.1)$
- You can set the parameters by simply typing:
$\mathrm{a}=0.7$
$\mathrm{b}=0.8$
c=3
$\mathrm{i}=1.6$
- You can then generate a vector with the y-coordinates with help of the function c () ("generate a column vector"):
$\mathrm{y}=\mathrm{c}(-(1 / \mathrm{b}) * \mathrm{x}+(\mathrm{a} / \mathrm{b}))$
(in newer versions of R simply typing $y=-(1 / b) * x+(a / b)$ will also work).
- And plot the x, y pairs with plot() (with option 'line'):
plot(x,y,type='l')
- The values of a second variable, say z can be plotted on top of the first with the function lines(): lines (x, z)

