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Recap: Transitional Probabillities
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Recap: Transitional Probabillities
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This system has multiple attractors a
C is a “sink” (point attractor)

D-E is a “limit cycle” G




« Markov order 1: the probability of the next state depends only on the current state

« Markov order 0O: the probability of the next state is independent of the current state

« Markov order n: the probability of the next state depends on the current state and the
previous (n-1) states

« Equivalently: the previous (n-1) states are incorporated in the current state description!

* In the language domain, (n+1)-th order Markov models are also called ngrams!



Recap: Markov models

* Markov property: the probability of the next
event is only dependent on the current state

e Terms to know:

* (In)dependence of current state

* Transitional probabilities, transition matrix
» Sink / point attractor, Limit cycle
 Markov order



Generalizing over states




Recap: Hidden Markov Model

* Finite number of hidden states
* “Transition probabilities” from state tot state
* Finite number of observable symbols

* “Emission probabilities” from hidden states to
observable symbols
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(a) Transition probabilities

next element
My Ma Ma My Th T: #
il 1 () [ (] | B
My | O 1 [l (] | B
Mz | O () 1 (] o o 0
My | 0 () [ L L
My 0 I [ (] | | |
Ti () () [} 0 p2 pa ps
Tz () () [ (] o o0 1
(el HMM
F
:'I I::Fl :-"I I'TE .-"'I I"-u : .-"I II"-. 4 -"I
/5 v —y — —
-1"1.. II“II_‘... ﬂll'“'.ﬁll ﬁll'"'.ﬁll
'\ "y Wy W,
My M2 Ma My

(k) Bigram analysis

State~+Sound Probability

0w Ay 1
My -+ Ms 1
Mz == Ma 1
My -~ T m
fl-fg_ ¥ fl-.!r.lI o
My = T 1
Ty ~ T Pa
Ty == Ty My
Ty o~ # Ps
Ta s 1
P4



Terms to know:

finite-state automaton (FSA)
hidden markov model (HMM)
Forward algorithm:

P(o|HMM)
Viterbi algorithm:

argmax_h P(o|h,HMM)
Baum-Welch algorithm:
argmax_ HMM P(o|HMM)



Recap: Chomsky'57 vs. the FSA

Let S1, S2, S3, S4, S5 be simple declarative sentences in
English. Then also

(2) If S1, then S2.
(3) Either S3 or S4.
(4) The man who said that S5, is arriving today

are sentences of English.

E.qg., if either you are with us or you are against us applies
here, then there is nothing more to discuss.



Simplest example of a “finite-state language”:
(ab)"

E.g. ab, abab, ababab, abababab
b

begin Z E g ; b end

a

Simplest example of a “context-free language”:
a'b"

E.g. ab, aabb, aaabbb, aaaabbbb, ...

push-down automaton!



a man sees the woman with the telescope

e bigram, hmm & cfg models & derivations

(a) Bigram (b HMM (e) Contesct-free grammar
0 = a S — NP VP
a  ~+ man [] '. NP — DET N
man v+ sees "=F- ' NP — DET N PP
sees  ~+  the Vo VP — V NP
the ~+ woman i1 the ua man wornan SEES with PP —  PREF NP
woman ~+  with by DET + A
with =+ the telescope DET +  the
the == telescope N ~+  man
telescope ~+  # N ~+ WoInan
Vv w4 EEEE
PREP -+ wath

Table 2: Three models for the production of a sentence (probabilities omited for simplicity)



(a) Bigram (b) HMM (e ) Context-free gramimar
Step  State Sound Step State Sound Step  State Sourd
[ A [ a |- -
2 a marn 2 1 man 2 NPVP -
3  man Sees 3 2 AEEE 3 DETNVP -
1 sees the 1 0 the 1 NVP a
5 the Wolnan a1 WOolAn 5 VP man
f  woman with h 3 with G VNP -
T with the 7T 0 the T NP AEEE
& the telescope 51 telescope & DETNPP -
O telescope - 0 # - 4 NFPP the
10 # - 10 PP WOInAl
11 PREP NP -
12 NP with
13 DETN -
14 N the
15 # telescope

Table 3: Three corresponding derivation sequences in the production of a sentence

discrete infinity!



Chomsky Hierarchy

3. Finite state grammars

A—a A—abB

[Hmn* a'thm

2. Context-free grammars A—y atp"
1. Context-sensitive grammars | aAf — ayp a'h"c"
0. Unrestricted grammars ax—y {a"b" |l = n = m)}
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The Chomsky Hierarchy
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G o

(2) a.

Gilligan claims that Blair deceived the public.

Gilligan claims that Campbell helped Blair deceive the public.
Gilligan claims that Kelly saw Campbell help Blair deceive the public.
(tail recursion)

Gilligan behaupte dass Kelly Campbell Blair das Publikum bellgen

helfen sah. (center embedding)
Gilligan beweert dat Kelly Campbell Blair het publiek zag helpen
bedriegen. (crossing dependencies)

19



The Chomsky Hierarchy

21



Terms to know

Rewrite grammars, rewrite operation

 Production rules

Terminal alphabet / observable symbols

Nonterminal alphabet / hidden states

Start symbol
 Derivation
 Phrase-structure

Contextfree grammars, contextfree constraint
Push-down automaton
Discrete infinity



Neural Network
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Neural Network

redness red & round

edible
(flat; red & round and not smelly;
rough & round and smelly)

roundness

inedible
(red & round and smelly,
rough & round but not smelly)

smelliness

roughness
rough & round

Fictional example: distinguish edible mushrooms from poisonous ones

Suppose: red & round and smelly and rough & round but not smelly mushrooms
are poisonous



Recurrent Neural Network

input layer hidden layer output layer

Simple Recurrent Neural Network

Jeff Elman, 1990, Finding Structure in Time,
Cognitive Science;

| Mikolov et al. 2010, Recurrent neural network
copy layer based language model, Interspeech 2010



Simple Recurrent Neural Network

* Processes input sequentially
* |Input items represented by a continuous vector

 Computes new internal state (hidden layer)
based on input and previous internal state

* |ike transition probabilities in HMM
» but: infinity of possible states (not discrete infinity)

 Computes current output based on current
internal state

 |like emission probabilities in HMM



Marcus et al. 1999 Science

le di di



Marcus et al. 1999 Science

fil je je



Marcus et al. 1999 Science

je je di



Marcus et al. 1999 Science

di le le



e The 16 sentences w/ « The 16 sentences w/

ABA pattern: ABB pattern:
e gatiga, ganaga, « gatiti, ganana,
e gagiga, galaga, * gagigi,galala,
o linali, litili, * linana, lititi,

o ligili,lilali, « ligigililala,
* ni gini, nitini, * nigigi, nititi,
 ni nani, nilani, e ninana,nilala,
« talata, tatita, « talala, tatiti,

» ta nata, ta gi ta. » ta nana, ta gi gi



Human-specific 'algebraic’
reasoning?

» Marcus et al. 1999 Science
* 7.5 month-old infants generalize ABB and AAB

patterns to novel stimuli, e.g. "wo fe wo","wo fe fe"

- l.e., infants significantly preferred the other
patterns

 Simple Recurrent Neural Networks cannot learn the
pattern

 Hauser et al. '02: monkeys can also do this.

RETRACTED!



Issues

something-same-different pattern

Marcus claims that SRN cannot learn such
patterns — we need algebraic rules

Interestingly, this pattern cannot be represented
by contextfree grammars either!

Repetition detector as a cognitive primitive?
Crucial issue: what makes us generalize?



Svyllable B

di e li we
Syllable A
le leleje leleli lelewe
Wi - wiwi i wiwiwe
i jijije [N ji ji we
de

dedeje dedeli -

Fig. 3. The design of Marcus,Vijayan, Bandi Rao, and Vishton (1999).The two
sets of four words used by Gerken (2006) are highlighted in red and blue.




Language-specific 'algebraic’
reasoning?
Marcus et al. 2007, PsychSci
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Language-specific 'algebraic’
reasoning?
 Marcus et al. 2007, PsychSci

- 7.5 month old children can do this only for
speech stimuli; they fail on tones, pictures,
timbres, animal sounds

— Older children can do it in any domain

- 7.5 month old succeed when first familiarized
with speech stimuli



Starlings

* Gentner et al (Nature, 2006) showed that starlings
can learn to discriminate between songs with and
without ‘recursion’

Is it really center-embedded
recursion that they use?

In Leiden, we replicated the
experiment with zebra finches

(van Heijningen, de Visser, ten
Cate, Zuidema)




(Van Heijningen, de Visser, Zuidema
& ten Cate, PNAS 2009)

Can song birds learn to recognize patterns in
sequences characterized by a context-free
grammar?



lllﬂﬂf

flat

A

) rH

Jﬂt'{ﬂ

il
B

Element types

high

D

4 element types

Of each element
type 10 examples

A1'A1o
40 elements



Method: Stimul

* Finite State Grammar: ABAB

 Context Free Grammar: AABB

A



Method: Skinnerbox
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Controls

* |t is possible to distinguish between the two
stimuli sets using simple strategies, e.g.:

— Presence/absence bigrams AA, BB and BA
— Primacy rule: AB or AB at beginning, or not
— Recency rule: AB or BB at end, or not

* Previous studies did not or not properly control
for these



Probes

* Are alternative strings (same alphabet) treated
as positive or negative stimuli?

« BAAB
« ABBA
« AAAA
- BBBB
- ABABAB
- AAABBB



Probes

* Are alternative strings (same alphabet) treated
as positive or negative stimuli?

« BAAB
« ABBA
« AAAA
- BBBB
- ABABAB
- AAABBB

+ | + | | |



Probes

* Are alternative strings (same alphabet) treated
as positive or negative stimuli?

« BAAB
« ABBA
« AAAA
- BBBB
- ABABAB
- AAABBB

+I+III
+ 00+ 4



Conclusions

* Humans, starlings and zebra finches
successfully distinguish AABB from ABAB

» Results from zebra finches show they can solve
it without recourse to recursion

 Future work:
— How do humans solve this task?

— Where on the Chomsky Hierarchy should we place
natural songs of birds?

o Automatic identification of elements & rules



