The tree property at $\aleph_{\omega+2}$

Šárka Stejskalová joint work with Sy-David Friedman and Radek Honzik

Kurt Gödel Research Center University of Vienna logika.ff.cuni.cz/sarka

> Amsterdam August 24, 2018

The tree property

Recall that an uncountable regular cardinal κ has the tree property (TP(κ)) if every κ -tree has a cofinal branch. In this talk we show the basic steps behind the proof of the following theorem:

Theorem (Friedman, Honzik, S. (2018))

(GCH) Suppose $0 \le n < \omega$ is a natural number and there is κ which is $H(\lambda^{+n})$ -hypermeasurable where λ is the least weakly compact above κ , then there is a forcing extension where the following hold:

- ① $\kappa = \aleph_{\omega}$ is strong limit and $2^{\aleph_{\omega}} = \aleph_{\omega+n+2}$.
- ② TP($\aleph_{\omega+2}$).

The continuum function at \aleph_{ω}

Recall that if \aleph_{ω} is strong limit, then by a result by Shelah,

$$2^{\aleph_{\omega}} < \min(\aleph_{2^{\omega^+}}, \aleph_{\omega_4}),$$

so we cannot aim for an arbitrary infinite gap.

We will mention at the end some open question, in particular whether we can extend our result to a countable gap with $TP(\aleph_{\omega+2})$.

Forcing we will use

We use Mitchell forcing because it is more suitable to manipulate the continuum function.

- The product of the Mitchell and the Cohen forcing works nicely because Mitchell projects to the Cohen forcing (at relevant cardinals).
- The Mitchell forcing $\mathbb{M}(\kappa, \lambda)$ can be easily modify to force $2^{\kappa} > \kappa^{++}$ while forcing $\mathsf{TP}(\kappa^{++})$.

Mitchell forcing

Assume $\kappa < \lambda$ are infinite regular cardinals, with λ being inaccessible (weakly compact for us).

Definition

A condition in $\mathbb{M}(\kappa,\lambda)$ is a pair (p,q) such that p is a condition in $\mathsf{Add}(\kappa,\lambda)$ and q is a function with domain of size at most κ , $\mathsf{Dom}(q)\subseteq \lambda$, such that for all $\alpha\in\mathsf{Dom}(q)$, $q(\alpha)$ is an $\mathsf{Add}(\kappa,\alpha)$ -name for a condition in $\mathsf{Add}(\kappa^+,1)^{V^{\mathsf{Add}(\kappa,\alpha)}}$.

The ordering is defined on the next slide.

Mitchell forcing, the ordering

Assume $\kappa < \lambda$ are infinite regular cardinals, with λ being inaccessible. Then

Definition

A condition (p, q) is stronger than (p', q') if

- (i) $p \leq p'$,
- (ii) $\operatorname{dom}(q) \supseteq \operatorname{dom}(q')$ and for every $\beta \in \operatorname{dom}(q')$, $p \upharpoonright \beta \Vdash_{\operatorname{\mathsf{Add}}(\kappa,\beta)} q(\beta) \le q'(\beta)$.

Mitchell forcing, basic properties

Assuming that $\kappa^{<\kappa}=\kappa$ and $\lambda>\kappa$ is an inaccessible cardinal, Mitchell forcing $\mathbb{M}(\kappa,\lambda)$ satisfies following:

- It is λ -Knaster and κ -closed.
- It collapses the cardinals in the open interval (κ^+, λ) to κ^+ .
- It forces $2^{\kappa} = \lambda = \kappa^{++}$.

There is a projection from $\mathbb{M}(\kappa, \lambda)$ to $\mathsf{Add}(\kappa, \lambda)$.

The preservation of κ^+ is shown by the existence of a projection from $Add(\kappa,\lambda)\times\mathbb{T}$ to $\mathbb{M}(\kappa,\lambda)$, where \mathbb{T} is a κ^+ -closed forcing (it has conditions of the form (0,q) in $\mathbb{M}(\kappa,\lambda)$).¹

The natural projection from $\mathbb{M}(\kappa,\lambda)$ to $\mathbb{M}(\kappa,\alpha)$ for $\kappa<\alpha<\lambda$, makes it possible to treat $\mathbb{M}(\kappa,\lambda)$ as an iteration, and write $\mathbb{M}(\kappa,\alpha)*\dot{\mathbb{R}}$.

¹We call \mathbb{T} the term forcing.

Branch lemmas

Let κ , λ be regular cardinals.

- (essentially Baumgartner) Assume that $\mathbb{P} \times \mathbb{P}$ is a κ -cc forcing notion. If T is a tree of height κ , then forcing with \mathbb{P} does not add cofinal branches to T.
- (essentially Silver) Let $\kappa < \lambda$, with $2^{\kappa} \geq \lambda$. Assume that $\mathbb P$ is a κ^+ -closed forcing notion. If T is a λ -tree, then forcing with $\mathbb P$ does not add cofinal branches to T.

The main strategy of the proof, with gap 3 (n=1)

- We prepare the universe V so that forcing $2^{\kappa} = \lambda^+$ with the Cohen forcing will preserve the measurability of κ (with some work, this is possible to do with the large-cardinal assumption that κ has a (κ, λ^+) -extender; supercompactness is not necessary²).
 - The preparation actually destroys the strong-limitness of λ . Thus λ is not weakly compact in the rest of the argument. This presents a technical obstacle which needs to be overcome.
- We use a variant of the Mitchell forcing $\mathbb{M} = \mathbb{M}(\kappa, \lambda, \lambda^+)$ to force 2^{κ} to be equal to λ^+ , and simultaneously collapse cardinals in the interval (κ, λ) .

 $^{^2}$ See R. Honzik, Laver-like indestructibility for hypermeasurable cardinals, to appear in Arch. M. Log.

The main strategy of the proof, with gap 3

• In $V[\mathbb{M}]$, the tree property holds at κ^{++} , κ is still measurable, and we can define a Prikry forcing with collapses. Our final forcing is

$$\mathbb{M}(\kappa, \lambda, \lambda^+) * \mathbb{Q},$$

where \mathbb{Q} is the Prikry forcing with collapses (defined with respect to some guiding generic).

 Now, the quotient analysis is much harder because of the Prikry forcing (with collapses).

Let give a brief review of the quotient analysis on the next slide.

The quotient analysis

• Let $k: V \to M$ be an elementary embedding with critical point λ . With the right setup we can write

$$k(\mathbb{M} * \mathbb{Q}) = (\mathbb{M} * \mathbb{Q}) * \mathbb{R},$$

where \mathbb{R} is the quotient forcing $k(\mathbb{M} * \mathbb{Q})/(\mathbb{M} * \mathbb{Q})$. In particular, if G * x is $\mathbb{M} * \mathbb{Q}$ -generic, then

$$\mathbb{R} = \{ (p', q', r') \in k(\mathbb{M} * \mathbb{Q}) \, | \, (p', q', r') | | k''(G * x) \}.$$

• We wish to show that $\mathbb R$ does not add branches to λ -trees over M[G][x].

The quotient analysis

- Unlike the classical case (just with \mathbb{M}), it is not clear whether \mathbb{R} regularly embeds into a product $P_1 \times P_2$, where $P_1 \times P_2$ is κ^+ -cc and P_2 is κ^+ -closed, which would make the argument simpler.
- Instead we will show directly that $\mathbb R$ does not add branches, which requires a careful analysis of when (p,q,r) in $\mathbb M*\mathbb Q$ forces (p',q',r') in $k(\mathbb M*\mathbb Q)$ into (or out of) $\dot{\mathbb R}$.

A rough outline of the argument is given on next slide.

- Suppose for contradiction T is a λ -tree in $V[\mathbb{M}*\mathbb{Q}]$ and \mathbb{R} forces that \dot{b} is a new branch in T. Let \dot{T} be a \mathbb{Q} -name over \mathbb{M} for T.
- We build a labelled tree \mathcal{T} of height κ of conditions a=(r,(p',q',r')) in $\mathbb{Q}*\mathbb{R}$ such that r decides how \dot{T} looks locally and the whole a decide how \dot{b} looks locally. In particular if (r,(p',q',r')) decides a segment of \dot{b} through \dot{T} , and for instance knows $y<_{\dot{T}}z$ are in \dot{b} , then already r knows $y<_{\dot{T}}z$.
- Since \mathcal{T} has 2^{κ} cofinal branches, there are two branches v, w through \mathcal{T} and respective conditions a_v and a_w which decide $\dot{b}|\delta$ the same way, say y (where δ is a level of $\dot{\mathcal{T}}$ such that $\dot{b}|\delta$ is being decided by branches through \mathcal{T}).
- Continuing above these conditions, we get two more conditions which decide a restriction of \dot{b} above y differently.

- By reflection (which is built into \mathcal{T}), such a difference is by necessity reflected down to some level $\delta' < \delta$ which contradicts the fact that a,b decide the restriction $b|\delta=y$ the same way.
- The construction of $\mathcal T$ and the subsequent arguments use crucially the fact that we work with a dense subforcing of $\mathbb Q*\mathbb R$ in which the conditions (r,(p',q',r')) are such that $r\in\mathbb Q$ and $r'\in k(\mathbb Q)$ have the same stem.
- With conditions from this dense subforcing, one can extend p' and q' more easily without running the risk of incompatibility with the stem of r (which would result in falling out of the quotient \mathbb{R}). Then we use the nice chain condition of "p"-conditions and nice closure of the "q"-conditions (with respect to the term ordering) to build \mathcal{T} .

A variant of this argument is used to show any finite gap with $TP(\aleph_{\omega+2})$. In this variant, we essentially reduce the general case to the gap 3 case.

Open questions

Open questions:

- ① Is it consistent to have an infinite gap with $TP(\aleph_{\omega+2})$?
- ② Can we in addition control other cardinal invariants besides $\mathfrak{c}(\aleph_{\omega})$? For instance $\mathfrak{c}(\aleph_n)$ for $n < \omega$, or $\mathfrak{u}(\aleph_{\omega})$?