
Fair Protocols for Sequential
Allocation Problems

Honours project

Authors:
Sosha Happel

Marysia Winkels

Eva van Weel

Supervisor:
Ulle Endriss

Contents

1 Introduction 2

2 Theory 3
2.1 Terminology . 3
2.2 Scoring function . 5
2.3 Social welfare . 8
2.4 Uncertainty over profiles . 10
2.5 Expected utility . 14

3 Software implementation 17
3.1 Representation . 17
3.2 Implementation . 18
3.3 Program call . 23

4 Observations 26
4.1 Full Correlation . 26
4.2 Full Independence . 30

5 Conclusion 31

1

1 Introduction

During the first semester of this year we have been working on an Honours
project focussing on fair protocols for sequential allocation problems in multi-
agent systems, supervised by Ulle Endriss.

The project started off by understanding the article “A General Elicitation-
Free Protocol for Allocating Indivisible Goods” by Bouveret and Lang [1].
This article is about a sequential allocation process, where a well-meaning,
non-biased central authority has to divide a set of objects (indivisible goods)
among a set of agents, whose preferences it does not know. The idea is to
use a decentralised approach to divide the goods, which means the central
authority designates an agent to pick an object among those that remain
until all objects are allocated. The problem consists in choosing the “best”
sequence of agents, according to some optimality criterion.

Section 2 contains most of the concepts used by Bouveret and Lang [1] on
which this project is based, as well as our own thoughts and additions to
this. We have written simulation software - as described in Section 3 - to
find the “best” sequence of agents for various inputs. These results could
then be used to make observations and recognise general patterns in these
“best” sequences, which have been described in Section 4. The conclusion of
the project can be found in Section 5.

2

2 Theory

In this section of the report, the notions of the article by Bouveret and Lang,
[1] will be explained, aswell as our own additions to their article.

2.1 Terminology

We have a set of indivisible objects O = {o1, ..., op} and a set of agents
N = {a1, ..., an}. A specific agent is refered to as ai, where i is the index of
the agent in the set N . During the allocation process, an agent from the
set of agents is designated to pick an object from the set of objects at that
moment. By picking an object, it is removed from the current set of available
objects and is assigned to that specific agent. At the end of the allocation
process, when all objects have been allocated, the final distribution of objects
over the set of agents is called the allocation.

The order in which the agent places the objects according to his preference is
called a preference order, ranking the objects from most to least prefered.
We write o1 � o2 to express that agent ai strictly prefers o1 over o2. If, for
instance, the objects to be allocated are different kinds of fruits, one agent
might prefer the banana over the pear and the pear over the apple. The
preference order of this particular agent ai would be represented as follows:

banana � pear � apple

Objects are usually, rather than refered to by name, denoted with their
objectnumbers. The set of objects O = {banana, apple, pear}, is represented
as {o1, o2, o3}, meaning the correct representation of the preference order
mentioned above is:

o1 � o3 � o2

A preference order of an agent lists all the available objects, and therefore
has a length which is equal to the amount of objects available to be allocated.

At each stage of the allocation process, one agent is allowed to pick one
object from the set of remaining objects, meaning that the number of stages is
equal to the amount of objects. To determine which agent is allowed to choose
an object at what stage in the allocation process, a picking order is defined.
This picking order is called either a protocol or a policy interchangeably,
and is represented by π. Each number in the protocol represents the index
of a specific agent in the set of agents. An example of a protocol would be:

π = 122

3

In this protocol, the first number is a 1, meaning the first agent that is al-
lowed to choose an object from the set of objects is agent a1

1. Both the
second and third numbers in this protocol are 2, which means agent a2 is
allowed to pick the following two times.

We assume that each agent designated to pick an object, will always choose
its most prefered object among those that are available. Additionally, none
of the agents are aware of the other agent’s preferences, thereby excluding
the possibility of a strategical choice of object.

Example #1

Using this knowledge on agents, objects, preference orders and protocols, a
simple example can be constructed to illustrate these concepts. Suppose we
have three agents, N = {a1, a2, a3}, and five objects, O = {o1, o2, o3, o4, o5}.
The protocol for this example is given to be π = 12332 and the preference
orders of the respective agents are as follows:

�a1 : o1 � o2 � o3 � o4 � o5

�a2 : o4 � o2 � o5 � o1 � o3

�a3 : o1 � o3 � o5 � o4 � o2

With these given preference orders and protocol, and the assumption that
each agent will always pick the best available object according to its own
preference order, the allocation process will be as shown in Table 1. Each
column in the table denotes an agent and by cross-referencing the agent’s
column and the stage of the allocation process, one can see what objects
that specific agent posesses at that specific stage.

Stage agent 1 agent 2 agent 3
1 o1 - -
2 o1 o4 -
3 o1 o4 o3
4 o1 o4 o3o5
5 o1 o4o2 o3o5

Table 1: The allocation process for the given protocol and preference orders

As can be seen from the final row - indicating the last stage in the allocation
process after which nothing changes - in Table 1, agent a1 ends up with

1In this report, agent ai is most often simply refered to as agent i

4

object {o1}, agent a2 with both objects o2 and o4 and agent a3 with objects
{o3, o5}.

2.2 Scoring function

Every agent has a preference order for the objects, but one might wonder
how this preference order has been constructed. Each agent has a utility
function to create its personal preference order. The utility function ui(o)
is a function that determines the value that agent i gives to object o. Agent
i prefers o1 � o2 if and only if ui(o1) ≥ ui(o2). This utility function is unique
for every agent and while the utility function determines the preferences, it
cannot simply be retrieved from the preference order of an agent. Instead, a
scoring function is used to map from any given preference order to a corre-
sponding utility function. Important to note at this point is that the agents
have additive utilities, meaning the value of a subset of objects is equal to
the sum of the values of its elements.

To map from a preference order of an agent to a utility function, the position
of an object in a preference order is be used. This position of object o in
the preference order of agent i is called the rank. The rank of object o in
preference relation of agent i is denoted as follows, where p represents the
total number of objects:

ranki(o) ∈ {1,, p}

If an agent were to have the preference order o2 � o1 � o3, object o1 would
get a rank of 2.

The ranks of the objects in the preference order of agent i provide us with pa-
rameter k which can be used in the scoring function, in addition to the total
number of objects p, to calculate the utility for agent i. Rather than refering
to the rank of an object in relation to a preference order as ranki(o), from
this point onwards k will be used to represent the rank of object o for agent i.

Three types of scoring functions have been described in the article by Bou-
veret and Lang, [1]; Borda, Lexicographic and Quasi-Indifferent. In
addition to this, we have also added our own scoring function Fibonnaci.

2.2.1 Borda

The Borda scoring function, named for mathematician and political scientist
Jean-Paul de Borda’s voting system, grants the first object in an agent’s pref-

5

erence order (rank k = 1) a score equal to the amount of objects, the second
object in an agent’s preference (k = 2) one less, and so on until it reaches the
least prefered object in an agent’s preference order, which will be assigned a
score of one. The end result is that the sum of some less desireable objects
is actually quite likely to turn out to be higher than the score of solely the
most prefered object.

The Borda score is calculated with the following formula:

gB(k) = p− k + 1

In practice, for preference order o2 � o1 � o3, the utility over the objects for
agent i would be:

o1 : gB(2) = 3− 2 + 1 = 2

o2 : gB(1) = 3− 1 + 1 = 3

o3 : gB(3) = 3− 3 + 1 = 1

2.2.2 Lexicographic

The lexicographic scoring function ensures that an object at any rank will
always provide a higher utility than the sum of the utilities of all the other
objects below that ranking. This scoring function will be a good measure
if the preferences of the agents are outspoken, meaning the agents prefer
certain objects over other objects relatively much. The lexicographic score
is calculated using the following formula:

gL(k) = 2p−k

In practice, for preference order o2 � o1 � o3, the utility over the objects for
agent i would be:

o1 : gB(2) = 23−2 = 21 = 2

o2 : gB(1) = 23−1 = 22 = 4

o3 : gB(3) = 23−3 = 20 = 1

For this particular agent, the posession of o2 leads to a higher utility, than
having both o1 and o3.

6

2.2.3 Quasi-indifferent

The QI or quasi-indifferent scoring function is a reasonable choice when the
number of objects is of primary importance. Using this scoring function, it is
always better for agents to acquire a lot of objects than a few higher ranked
objects, meaning the objective of each agent is to collect as many objects as
possible. The formula to calculate the QI score is:

gI(k) = 1 + ε× (p− k),where ε� 1

In practice, for preference order o2 � o1 � o3, the utility over the objects for
agent i would be:

o1 : gB(2) = 1 + ε× (3− 2) = 1 + ε× 1 = 1 + ε

o2 : gB(1) = 1 + ε× (3− 1) = 1 + ε× 2 = 1 + 2ε

o3 : gB(3) = 1 + ε× (3− 3) = 1 + ε× 0 = 1

As per definition ε is a very small number, the differences between the scores
are minimal if agents all have the same amount of objects. As mentioned
before, this type of scoring function is particularly useful if the number of
objects is high.

2.2.4 Fibonacci

In mathematics, the Fibonnaci series is a series of numbers following the
recurrence relation Fn = Fn−1 + Fn−2, with seed values F0 = 1 and F1 = 1.
Using this as a scoring function means that the utility of every object is equal
to the sum of the following two objects in that preference order. This means
that for every object, the value is at least equal and in many cases more than
the combination of any two objects that are less prefered. This means this
function is roughly similar to the lexicographic scoring function, in the sense
that the sum of two lesser prefered objects is lower than the more prefered
object, but less extreme as with the Fibonacci scoring function, the sum of
all the remaining objects lower ranked objects (assuming there are more than
two left) can in fact overtake the score of the better liked object. The score
is calculated with the following formula:

fib(0) = 1

fib(1) = 1

fib(x) = fib(x− 1) + fib(x− 2)

gF (k) = fib(p− (k − 1))

7

In practice, for preference order o4 � o2 � o1 � o3, the utility over the
objects for agent i would be:

o1 : gF (3) = fib(4− (3− 1)) = fib(2) = fib(0) + fib(1) = 1 + 1 = 2

o2 : gF (2) = fib(4− (2− 1)) = fib(3) = fib(2) + fib(1) = 2 + 1 = 3

o3 : gF (4) = fib(4− (4− 1)) = fib(1) = 1

o4 : gF (1) = fib(4− (1− 1)) = fib(3) + fib(2) = 3 + 2 = 5

2.3 Social welfare

We are now able to assign utility values to agents after having completed
the allocation process based on the provided protocol, but as of yet, we still
have no way of knowing whether this is a “good” policy, as we have not yet
defined what we consider to be a good policy. Is a protocol good when all
the agents are more or less equally happy with the allocation, or is it good if
the highest possible combined utility is reached, even if it is at the expense
of one or several agents?

To provide us with a measure of optimality for a protocol, social welfare is
used. A protocol π is optimal if it maximizes the social welfare for a given
allocation. The type of social welfare that is used depends on the objective.
One objective could be to use to level of contentness for the least happy
agent as standard. This is what egalitarian social welfare does. Another
possibility is to look at the sum of the utilities of all the agents, which is
called utilitarian social welfare.

The social welfare is calculated with aggregation function F , where ui
represents the utility u of agent i.

2.3.1 Egalitarian social welfare

Egalitarian social welfare measures the optimality of the division, by deter-
mining the utility level of the least happy agent.

Egalitarian: F (u1, ..., un) = mini=1,...,nui

8

2.3.2 Utilitarian social welfare

Utilitarian social welfare takes the sum of all the agent’s utilities, meaning
that a policy that is considered good from a utilitarian point of view some-
times sacrifices the utility level of individual agents, in order to maximize the
total sum. Utilitarian social welfare might be an unbalanced measure, as it
is easily manipulated by a few high utilities.

Utilitarian: F (u1, ..., un) =
∑

i=1,...,n ui

Example #2

Taking the data from Table 1 as a basis, the notion of scoring function and
social welfare can easily be illustrated. In Example #1, the following subsets
of objects were found for each agent:

1 : {o1}
2 : {o2, o4}
3 : {o3, o5}

One can map from the given preference orders to the utilities for each agent.
This has been done for the above sets of objects per agent and the results
are shown in Table 2, where the rank of the objects is deduced from the
preference orders of the agents.

Agent Objects Object rank Borda score Lexi score QI score
1 {o1} {1} 5 16 1 + 4ε
2 {o2, o4} {1, 2} 5 + 4 = 9 16 + 8 = 24 2 + 7ε
3 {o3, o5} {2, 3} 4 + 3 = 7 8 + 4 = 12 2 + 5ε

Table 2: Agent utilities depending on scoring function

With these utilities for objects in possession of the agents, the different types
of social welfare can be computed. Table 3 shows the results for the two types
of social welfare; egalitarian and utilitarian.

Social welfare Borda score Lexi score QI score
Egalitarian 5 12 1 + 4ε
Utilitarian 21 52 5 + 16ε

Table 3: Social welfare

9

2.4 Uncertainty over profiles

As every agent has its own preference order, we need a way to define the set
of the preference orders of all the agent in the set N . This set of preference
orders is called a profile R and is denoted as R = 〈�1, ...,�n〉, where �i

represents the preference order of agent i.

In previous example, example #2, the preference orders of the agents were
known in advance and because of this, the allocation process was fixed. As
we do not always have the luxury of knowing the preference orders of the
agents, there is an uncertainty over profiles. What can be given, rather than
the preference order of each individual agent, is a type of correlation, which is
a measure of dependency among the possible preference orders. The article by
Bouveret and Lang [1] covers the two extremities of the spectrum; preference
orders are either fully independent from one another (full independence)
or the preference orders for all agents are identical (full correlation).

Additionally, we have thought about a type of correlation which is different
from full correlation and full independence.

2.4.1 Full correlation (FC)

Under full correlation, all agents have the exact same preference order and
will therefore want to obtain the same objects. This will inevitably lead to
bad social welfare, since all the agents prefer the same objects. To calculate
the probability of a certain profileR occuring for full correlation, the following
formula is used:

Pr(R) =
1

(p!)

With this probabibility Pr for profile R one knows the chance that profile R
occurs for this amount of objects.

2.4.2 Full independence (FI)

Full independence describes the situation in which all profiles are equally
probable and the rankings of the agents are independent. For full inde-
pendence the uncertainty over profiles can be calculated with the following
formula:

Pr(R) =
1

(p!)n

10

This means every profile has a 1
(p!)n

chance of being the true case for these
agents and amount of objects.

2.4.3 A new type of correlation

Full correlation and full independence are two extrema of the spectrum. In
many cases, a more “realistic” type of correlation would be one that would
take into account that some objects are generally liked more than others,
though not exactly as much. A practical example would be when the avail-
able objects are a laptop, a flatscreen tv, a piece of paper and a peanut.
Generally, when you ask a certain amount of people at random how they
would order these objects, the laptop and flatscreen will probably in most
cases end either in the first or second place, while the peanut and the piece
of paper will most likely be least prefered by a lot of people. However, to
someone who is very hungry, the peanut might be more prefered than the
piece of paper and to someone who is keen on drawing, the piece of paper
might be more liked. A profile that is compliant with this would, realistically,
have a higher chance of being true than others.

The Idea
A possible new form of correlation would be one that is based on a score,
called the similarity score, which evaluates the average “distance” (difference
in rank) between objects in the preference orders of two agents. Calculating
the similarity score between all pairs of agents in a profile and averaging
this out would possibly be some form of measure of similarity between the
preference orders of agents within a profile. This measure of similarity can
then be used to value some profiles, for example one with a higher or lower
similarity score, as more likely, thereby increasing the chance of that profile
being true, while deceasing the chances of profiles that differ much from the
desired similarity score.

Possible Implementation
To implement this into our simulation software, one would add a possible
correlation form to the input, which requires an extra parameter, in the
range of zero to one, which is similarity score. Profiles with a similarity
score nearer to the input value have a higher probability than those further
away from it. The similarity score between the different preference orders is
calculated by looking at the average distance between ranked objects divided
by the total amount of objects.
The nearer the similarity score is to zero, the more similar two preference
orders are. As a higher number would suggest a higher similarity, this is

11

counter-intuative and an alternative might be to make the similarity score
one minus the previously calculated number.

1 : o1 � o2 � o3 � o4 � o5

2 : o4 � o2 � o5 � o1 � o3

Distances

o1 = 3

o2 = 0

o3 = 2

o4 = 3

o5 = 2

Average distance =
3 + 0 + 2 + 3 + 2

5
=

10

5
= 2

Similarity score =
2

5
= 0.4

One-minus alternative = 1− 0.4 = 0.6

This is the similarity score between two agents, but we want the similarity
score for the entire profile. Calculating that can done by taking the similarity
score between each pair of agents in the profile, adding them up, and dividing
them by the total amount of ’pairs of agents’ to find an average similarity
score.

With respect to Full Correlation and Full Independence
Full correlation would have a similarity score of zero, as the average distance
between preference orders within the profile is per definition zero. However,
this new type of correlation only ensures that profiles with a similar similarity
score to the input variable have a higher chance of occuring, while full cor-
relation fully excludes every profile in which the similarity score is not zero.
This means this new type of correlation cannot represent full correlation.
It cannot represent full independence either, as the basic idea of this new type
is that some profiles are more likely than others, while for full independence,
every profile is equally probable.

12

Possible Use
The similarity score gives weights to specific profiles, making some more
likely to occur based on on how similar the average distance between objects
in the preference orders of the agents is. It can also function to make a less-
similar profile more likely than a similar one, which can be desirable in some
instances.

An example of when this type of correlation would be useful is when the
objects can be divided into different categories, and we are aware of the sim-
ilarities between agents when it comes to category preferences. For instance,
when the set of objects contain six books, three of which belong to the fan-
tasy genre and three of which are cooking books.

CASE 1

Agent1 : F1

!!

F2

!!

F3

vv

C1

((

C2

}}

C3

}}
Agent2 : F3 F1 F2 C2 C3 C1

CASE 2

Agent1 : F1

++

F2

((

F3

**

C1

}}

C2

ss

C3

ssAgent2 : C2 C3 C1 F2 F1 F3

The similarity score between the two agents in case one would be 1+1+2+2+1+1
62

=
8
36

= 0.222 or 1 − 0.222 = 0.778, while the similarity score for case two is
equal to 4+2+3+1+4+4

62
= 18

36
= 0.5 or 1 − 0.5 = 0.5. A difference in category

preference will lead to a higher value for the similarity score (or a lower num-
ber in the one-minus alternative). How exactly a profile with a similarity
score nearer to the input value entered when calling for the function is set to
have a higher chance of being true than a profile with a similarity score that
differs more has not yet been decided. Ultimately, this type of correlation
between agents only makes sense using the Borda or quasi-indifferent scoring
function and - in most cases - only when having more than two categories of
objects, for example two intermediate book categories such as science-fiction
and historical novels, as the difference between the least prefered object in
the liked category and the most prefered object in the least liked category
should be in line with the chosen scoring function. In the case of lexicograph-
ical scoring, which returns a high difference in value between two consecutive
objects and in which the sum of lower ranked objects can never overtake a

13

higher ranked object, the preference order of an agent matters much more
than is the case with the Borda or quasi-indifferent scoring functions.

Up until now, all calculations have been done between the preference orders
of only two agents, while in reality, a whole profile should be evaluated on
similarity if this is to be used. We have not been able to implement this into
our similation software yet, and therefore do not know whether this is, in
reality, a useful addition.

The Downside and the Alternative
The dowinside of this method is that the similarity score principle only looks
at high or low similarities between preference orders within a profile, and
evaluates this based on averages. In some cases, certain objecs in a set are
simply more likely to be highly evaluated by agents than others, as was
briefly described in the opening example of this paragraph. For example,
when a group of people is asked what character traits they would prefer their
potential partner to have, humor and kindness are likely to end in the top
regions of every interviewee, while egoistic and aggressive are likely to be in
the bottom regions of each person’s list. In this case, where one does not
expect to find huge differences in the ranking of the objects, the similarity
score alone would not be a good measure as this would also provide a high
score (indicating a high similarity and therefore giving a higher probability
to that profile occuring) for a profile consisting of preference orders with
a large amount of objects, where most part of the preference orders among
agents are more or less identical, with some exceptions. For example, a profile
consisting of four preference orders for agents, ranking fifty objects, where
only the first and the last objects are ranked differently, would be considered
more probable to occur when using the type of correlation consistent with the
similarity score, because on average, the distance between objects is pretty
low. A realistic type of correlation to represent this would value profiles in
which all objects are at the same or a neighbouring rank. Unfortunately, we
have not been able to implement this.

2.5 Expected utility

With the probability for a certain profile, denoted as Pr(R), one can calculate
an expected utility for an agent i and protocol π. This utility is not the
actual utility, but rather an expected utility, due to the uncertainty over
the profile. The real utility of the agent i, might in fact be different. The
expected utility can be calculated as follows, where R(N ,O) is one profile
out of all possible profiles for the set of objects and agents.

14

u(i, π) =
∑

R∈Prof(N ,O)

Pr(R)× ui(π,R)

Example #3

A simplified version of the previous examples, with less agents and less ob-
jects, can be used to illustrate the effect of the different forms of correlation.
To do this, we shall take a look at both full correlation and full independence,
not taking into account our own possible form of correlation. As there is an
uncertainty over profiles, the agent’s preference orders are not known in ad-
vance. In this example, the Borda scoring function is used and the following
set of agents, objects and protocol have been given:

N = {1, 2}
O = {o1, o2, o3}
π = 122

Full independence
As there are three objects to be allocated, the number of possible preference
orders per agent is 3!. This are all possible preference orders for the set of
objects O:

o1 � o2 � o3

o1 � o3 � o2

o2 � o1 � o3

o2 � o3 � o1

o3 � o1 � o2

o3 � o2 � o1

For two agents, any combination of two of these preference orders are a
possible profile. The probability for any profile occuring is therefore equal
to:

Pr(R) =
1

(3!)2
=

1

36

It is known that during the allocation process, the agent designated to pick
will always pick his most preferred object. Therefore agent 1 will always get
his most prefered object, leaving the second agent two possibilities; either
his most prefered object has been taken by agent 1 (1

3
chance) or his most

prefered object is still in the remaining set of objects (2
3

chance). In Table 4,
the Borda score is calculated, taking these probabilites into account.

15

Agent Probability for object × object rank Borda score
1 1× 3 = 3 3
2 1

3
× (3 + 2) = 5

3
1
3
× (3 + 1) = 4

3
5
3

+ 4
3

+ 1 = 4
1
3
× (1 + 2) = 1

Table 4: Borda score for full independence

The value for agent two has been calculated as follows: as agent 1 was al-
lowed to pick first, there is a 1

3
chance that agent 2’s favourite object has

been taken, leaving the (lesser liked) objects with rank 2 and 3 for agent 2.
There is a 2

3
chance that agent 1 chose a different object; 1

3
chance that it

was agent 2’s second favourite object, leaving agent 2 with his most prefered
(k=1) and least prefered (k=3) object and a 1

3
chance that it was agent 2’s

least favourite object, leaving his most prefered (k=1) and second prefered
object (k=2).

From these Borda scores, the expected social welfare can be calculated. It is
called expected social welfare, because the Borda scores are calculated with
a certain probability, leaving the social welfare with a certain probability
aswell. The results are shown in Table 5.

Social welfare Expected SW with Borda scoring function
Egalitarian 3
Utilitarian 7

Table 5: Social welfare for full independence

Full correlation
In full correlation, the preference orders of the agents are the same. This
leaves the probability for a profile to:

Pr(R) =
1

(3!)
=

1

6

Table 6 shows the Borda scores for full correlation, which differ slightly from
the ones of full independence.

Agent Probability for object × object rank Borda score
1 1× 3 = 3 3
2 1× (2 + 1) = 3 3

Table 6: Borda score for full correlation

16

This ofcourse also leads to different expected social welfare, which can be
seen in Table 7.

Social welfare type Expected SW with Borda scoring function
Egalitarian 3
Utilitarian 6

Table 7: Social welfare for full correlation

3 Software implementation

The software was written with as many independently working functions
as possible, so they could be tested seperately from each other. The main
function performs two main tasks; determining the expected utilities and
different possible policies with the given input, and returning the “best”
policy along with the policies within five percent of the best score. The
first is done by either calling for the appropriate subfunctions to calculate
the expected utility and policies and writing them to the result folder if the
function has not previously been called for with similar input parameters, or
immediately reading the expected utility and policies from a .dat file in the
result folder. When calling for the appropriate subfunctions, an estimation
is given how much time the calculation will take, based on the amount of
loop iterations necessary.

Secondly, the best policies according to the different forms of social welfare
are selected and presented. When it concerns Full Correlation, only egalitar-
ian social welfare is relevant to present as the utilitarian social welfare value
will be equal for each policy. Then another function displays two graphs
which presents the relationship between the average expected utilities or so-
cial welfares with respect to the maximal difference in occurance of an agent
within a policy.

3.1 Representation

The representation of the program was set up in a way that deals primarily
with the resulting social welfare score for every policy given an number of
objects, number of agents and a scoring function. Since we are not concerned
with specific agents receiving specific objets, the representation is very ab-
stract.

17

Policies Policies are represented as an array containing integers indicating
the agent picking that turn. The first agent that picks is number one, the
second agent is number two and so on. The position in the array indicates the
turn, starting with the first turn as the first element of the array. Example:

π = 12332→ [1, 2, 3, 3, 2]

Preference Orders Preference orders are represented as an array contain-
ing intigers indicating an object, the position in the array determines the
preference, with the first element as the highest rank. Example:

o4 � o2 � o5 � o1 � o3 → [4, 2, 5, 1, 3]

Profiles Profiles are represented as an array containing preference orders
(array) for each agent, with the position indicating the agent. Example:

a1 : o1 � o2 � o3 � o4 � o5

a2 : o4 � o2 � o5 � o1 � o3 → [[1, 2, 3, 4, 5], [4, 2, 5, 1, 3], [1, 3, 5, 4, 2]]

a3 : o1 � o3 � o5 � o4 � o2

Object Allocation When we run through the program we store the object
allocation for every policy and profile in an array containing integers indi-
cating the agent that got the object corresponding to the index. Example:

a1 : {o1}
a2 : {o2, o4} → [1, 2, 3, 2, 3]

a3 : {o3, o5}

3.2 Implementation

The implementation can be divided into three sections:

1. Pre-calculation

• Find all protocols

• Find all Profiles

2. Main loop

• Allocate objects

18

• Score agents

• Calculate social welfare

3. Analysis

The first section allocates all objects to agents for every protocol and profile,
the second section calculates the social welfare of the object allocation and
the third section gives an analysis of the result to provide extra information
on how different protocols relate to each other.

Data: n = number of agents, p = number of objects, g = scoring
function, c = correlation

Result: Social welfare score for each protocol
Protocols ← FindAllProtocols(n, p);
Profiles ← FindAllProfiles(n, p, c);
foreach protocol pt in Protocols do

foreach profile pr in Profiles do
Apt,pr ← AllocateObjects(pt, pr);
Spt,pr ← AgentScores(Apt,pr, pr, g);

end
SWpt ← SocialWelfareScores(Spt,−, sw);

end
Algorithm 1: Main

3.2.1 Pre-calculation

FindAllProtocols In order to allocate objects for all protocols, the algo-
rithm has to do a seperate run for each protocol of which there are nk in total.
Since we are not interested in knowing the score of a specific agent for every
protocol, only the order of agents matter. In other words, it does not matter
whether, for example, Bob or Robot1 picks first, it only matters which agent
picks in relation to the previous picks. By naming the agents after the order
in which they pick we can look at the problem in a more abstract manner.
As a result, every case where n ≥ k is treated as n = k and every protocol
where the order is equivelant, is treated as one case. This reduction has no
effect on the resulting social welfare score because every agent has the same
value in social welfare, that is to say, every individual score counts equally
in the final result.

19

Example of protocols with an equivelant order:

1 : {1, 2, 3, 3, 2}
2 : {3, 2, 1, 1, 2}
3 : {2, 3, 1, 1, 3}

Example of protocols with a unique order:

1 : {1, 2, 3, 3, 2}
2 : {1, 2, 3, 1, 2}
3 : {1, 2, 1, 2, 3}

Finding these unique order protocols can be compared to constructing a tree
of which the every node has a value starting with the root node containing
value 1. The depth of the tree is equal to the number of objects. Every
parent node has the following set of children:

{∀x‖v ≥ x ∨ p ≥ x}

Where v is the value of the parent node and p is the number of agents.

Every path from the root node to one of the leaf nodes represents a unique
order protocol. An example of a tree can be found in figure 1 and the algo-
rithm to find the protocols can be seen in algorithm 2.

Figure 1: Protocol tree with number of objects = 4 and number of agents =
3

1

1

1

1 2

2

1 2 3

2

1

1 2

2

1 2 3

3

1 2 3

20

Data: n = number of agents, p = number of objects
Result: AllProtocols
P ← {{1}};
for i← 2 to p do

Pnew ← {};
foreach protocol pr in P do

m← max(pr);
if m < n then

A← 1 : m+ 1;
else

A← 1 : m;
end
foreach agent a in A do

prnew ← Append(a, pr);
Pnew ← Add(prnew, Pnew);

end

end
P ← Pnew;

end
Algorithm 2: Constructing all protocols

The number of protocols resulting from this method is highest when n ≥ p.
In this case the amount of protocols correspond to Bnp, where Bn stands for
Bell-numbers2. In this worst-case, the resulting number of protocols without
the reduction would be equal to pp. Figure 2 shows the amount of protocols
per method for p = 1 : 11.

2Bnx correspond to the number of all possible partitions of the set {1 : x}.

21

Figure 2: worst-case number of protocols with and without reduction

FindAllProfiles When looking for all relevant profiles we can do the same as
with protocols, since the value of a certain preference is equal for all agents.
This means that we can say that agent 1 always has the same preference or-
der without changing the outcome of the social welfare. With full correlation
all agents have the same preference order and because agent 1 can always
have the same preference order, they can all have one preference order and
the result will be the same. So in this case the number of unique profiles is
1. With full independence this reduction has less of an impact. Normally,
the amount of profiles would be (p!)n, with the reduction this changes to
(p!)n−1. This is still a relevant reduction since the algorithm can only run
with very small input. In order to find all these profiles we have to find all
combinations of 1 : n of all permutations of 1 : p

3.2.2 Main loop

The main loop runs through every combination of protocols and profiles. For
full correlation we showed that running through one profile is enough to get
the social welfare score. So in this case the main loop runs for Bnp in the
worst case where n = p. For full independence we are still left withBnp∗p!n−1.

AllocateObjects The assignement of objects to agents is a matter of going
through the protocol and for every pick determine the highest ranked object
available for the agent picking. This object is then assigned to the agent and

22

removed from the list of available objects.

AgentScores After all the objects are allocated we can determine the ex-
pected utility for each agent using the scoring function from the input.

SocialWelfareScores When all the profiles are run for a certain protocol,
the social welfare score for that protocol can be determined using all the
expected utilities per agent and profile and the social welfare function.

3.2.3 Analysis

To help find patterns in the best protocols and we ran some analysis on the
resulting social welfare of protcols to show the effect of picking frequency per
agent and finding all protocols that were within a margin of 0.95 of the best
protocol.

3.2.4 Program structure

Figure 3 gives an overview of the functions used in the simulation software
and shows which function calls what function.

Figure 3: Program structure

3.3 Program call

To run the software one needs to define the input parameters. For the main
function PolicyAnalysis, four parameters are needed: the number of agents

23

N , the number of objects O, the scoring function g and the correlation c. A
call to PolicyAnalysis would look like this:

>> PolicyAnalysis(AgentNum, ObjectNum, ScoringFunction, correlation)

As output the software returns the best policies for both egalitarian and
utilitarian social welfare in the case of full independence. When the user has
chosen full correlation as input parameter, only the best policy for egalitarian
social welfare will be returned, since the utilitarian social welfare is always
the same for full correlation.

π = 122

1 = 3

2 = 2 + 1

utilitarian = 3 + 2 + 1 = 6

π = 121

1 = 3 + 1

2 = 2

utilitarian = 3 + 1 + 2 = 6

Because of this phenomenon, it is not interesting to show the optimal policies
for utilitarian social welfare under full correlation. All policies are equally
good.

With the software, it is possible to verify whether policy π = 122 used in
example #3 is an optimal policy for N = {1, 2}, O = {o1, o2, o3}, g = Borda
and c = FI. Running these parameters with the simulation software yields
the following results:

>> PolicyAnalysis(2, 3, ’borda’, ’FI’)

==UTILITARIAN==

best policy:

1 2 1

==EGALITARIAN==

best policy:

1 2 2

24

As can be seen policy π = 122 is an optimal policy for egalitarian social
welfare, but not for utilitarian social welfare. The program also shows all the
policies, including the best one, that are in a five percent range of this best
policy. Remember that the best policy is the one that maximizes the chosen
social welfare. For the above example, the policies that are in a five percent
range of the best policies are:

==UTILITARIAN==

All policies within 5 percent of best score:

1 1 2

1 2 1

1 2 2

==EGALITARIAN==

All policies within 5 percent of best score:

1 2 2

For utilitarian social welfare, there are a couple of policies that are close to
the optimal one in maximizing the social welfare. As can be seen, these other
policies are similar to each other; π = 112 and π = 122. Table 8 shows the
optimal policies for various values of p and n under full independence, Borda
scoring function and egalitarian social welfare.

p n = 2 n = 3
3 122 123
4 1221 1233

Table 8: Optimal policies for various value of p and n under full independence,
Borda and egalitarian social welfare

The optimal policies for utilitarian social welfare are shown in Table 9.

p n = 2 n = 3
3 121 123
4 1212 1231

Table 9: Optimal policies for various value of p and n under full independence,
Borda and utilitarian social welfare

25

4 Observations

After succesfully implementing the theory into simulation software, which
could handle up to about 4 objects and 3 agents for full independence, and
10 objects and 5 agents for full correlation, we used this software to make
some observations.

4.1 Full Correlation

The results of full correlation gave us a good understanding of the format of
optimal protocols and for every scoring and scoial welfare function we can
now determine the optimal protocol without running the allocation.

4.1.1 Utilitarian

For utilitrian social welfare under full correlation it is not hard to show
that every protocol will have an equivelant social welfare score. Because
every agent has the same preference order and we know that evaluating one
preference order gives us the result of all preference orders. Every object
that is picked will get a set amount of score regardless of the agent picking
the object. In utilitarian social welfare the expected utility of an individual
agent is irrelavant to the social welfare since it consists of the sum of the
expected utility of all agents. Therefore each protocol is equal under full
correlation and utilitarian social welfare.

4.1.2 Egalitarian

With egalitarian social welfare under full correlation we only consider the
case where n < p. If this is not the case there will allways be at least one
agent that receives no objects and therefore the social welfare score equals
zero. For every scoring function the results showed us a pattern for the op-
timal protocol and we were able to formalize them.

4.1.3 Lexicographic

Using the lexicographic scoring function under full correlation always re-
sulted in the same pattern. First, every agent but the last one would be
allowed to pick one object, and all the remaining objects would go to the last
agent. This makes sense when realising that the lexicographic scoring func-
tion means that a higher ranked object will always get a higher rating that
the sum of all the lower ranked objects. The first agent will pick his most

26

desired object, and therefore get the highest score possible with one object.
Even if the first agent would be allowed to pick all the remaining objects
as well, he would not even be able to double his score. The agent following
the first agent will, as the correlation is full correlation, not be able to pick
the most desired object, but choose the second best. When the last agent
is allowed the pick, all previous agents have chosen objects with a higher
ranking than the ones still available, which means their score is higher than
the sum of the remaining objects. The only option left to make the division
still as fair as possible, is to allocate all the remaining objects to the last
agent, as his score will never surpass any of the previous agent’s scores.

For instance, when running PolicyAnalysis(4,6,’lexi’,’FC’), the best
policy returned under egalitarian social welfare is π = 123444, of which the
(expected) utilities for each agent can be seen in Table 10.

Agent Score
1 gL(1) = 26−1 = 32
2 gL(2) = 26−2 = 16
3 gL(3) = 26−3 = 8
4 gL(4) = 26−4 = 4

gL(5) = 26−5 = 2
gL(6) = 26−6 = 1 +

= 7

Table 10: Table showing the expected utilities for each agent for four agents,
six objects, and using a lexicographic scoring function under full correlation.

In short, using the lexicographic scoring function under full correlation en-
sures that the last agent to pick will always have the lowest utility. In order
to maximize the expected egalitarian social welfare, the expected utility of
the agent who is certain to have the lowest utility should be maximized. This
can be done by designating the last agent to pick all the remaining objects,
ensuring a score as high as possible.

4.1.4 Fibonnaci

The result of fibonacci scoring under full correlation and egalitarian social
welfare was similar to that of lexicographic. First, all agents except two
pick one object: s = {1, ..., n − 2}. Then the remainder of the picks, m =
p− (n− 2), are divided among the last two agents, an−1, an, in sets of three

27

consecutive picks, q = m mod 3, and a possible remainder of one or two
picks. Every set, one of the two agents gets the first pick and the other agent
the remaining two.

σ = {n− 1, n, n}

After all the sets, depending on p, there could be one or two picks left, these
are divided among an−1, an as equally as possible.

r = {} ∨ {n− 1} ∨ {n− 1, n}

Resulting in the following formalized pattern for the optimal protocol:

π = {1, ..., n− 2}σ1, ..., σq, r

Example:
π = 1234434434, (s = 12, σ1 − σ2 = 344, r = 34)

Here, the first n − 2 agents get an expected utility equal to gF (x), x ∈
{1, ..., n − 2} of which the lowest will be gF (n − 2). The last two agents
will receive approximatly half of the the remaining score because they both
get the same score for every three objects picked since each rank is equal to
the sum of the two following ranks in score. The remaining one or two objects
will result in a difference of 1 maximum. This means that from an egalitar-
ian point of view under full correlation their respective expected utility is
optimized.

un, un−1 =

p∑
i=n−1

gF (i)

2

It can be shown that gF (n − 2) is always more then un and un−1. In order
to proof this we can look at Fx, the mathmatical function for fibonacci, and
use the following facts that are proven for Fx, where x > 1:

x∑
i=1

Fi = Fx+2

Fx >
1

2
Fx+1

28

We write the expected utility in terms of Fx:

un−1, un =
1

2

p∑
i=n−1

gF (i)

=
1

2

m∑
i=1

Fi

=
1

2
Fm+2

un−2 = gF (n− 2)

= Fm+1

Now we see that it is proven that un−2 > un, un−1. Since agent an−2 only
receives one object it can not loose any more of its ‘share’ without getting
less then the last two agents and since the last two agents get a near equal
expected utility these protocols are optimal.

4.1.5 Quasi Indifferent

This is an observation we did not make ourselves, but came from the original
article [1]. The best policy for quasi indifferent scoring function under full
correlation can always be described by combining two subpolicies. The first
subpolicy is of length (n−1)∗m where m = b p

n
c. This subpolicy is the same

as the optimal policy for Borda under full correlation, with (n−1)∗m agents
and ((n − 1) ∗m) ∗m objects. Every agent in this subpolicy gets allocated
m objects.

The second subpolicy assigns m+ 1 objects to the remaining agents, in any
order.

4.1.6 Borda or Quasi-Indifferent with 2n = p

In the specific case that there are twice as many objects as there are agents,
both the Borda and quasi indifferent scoring functions behave in the same
way when under full correlation. All the agents get to pick exactly twice,
first in normal order, than in reverse order. This means the first agent gets
to pick first and last, the second agent second to first and second to last, and
so on. As Borda is a linear function (and quasi indifferent scoring is partly
similar to Borda when under full correlation), these will result in exactly the
same score.

29

For example, when running PolicyAnalysis(3,6,’borda’,’FC’), the best
policy returned will be π = 123321, as can be seen in Table 11. The relevance
of this observation is that, even though our simulation software is not capable
of calculating the best policy for n=50,p=100, we can nevertheless return it.

Number of agents and objects Best policy
n=1, p=2 11
n=2, p=4 1221
n=3, p=6 123321
n=4, p=8 12344321
n=5, p=10 1234554321
n=9, p=18 123456789987654321

Table 11: Optimal policies p objects and n agent under both the borda and
quasi-indifferent scoring function

4.2 Full Independence

The patterns in the returned best policies under full independence rarely
seemed to hold up as we tried more variations. For instance, at first it
seemed as though the best policy based on expected egalitarian social wel-
fare using the Borda scoring function under full independence was always
the policy of an object less, with one additional pick for an agent. For ex-
ample, when n=3 and p=4, the optimal policy was π = 1233. For n=3 and
p=5, it was π = 12332 and with p=6 it was π = 123321. Continuing this
pattern, one would expect to see the optimal policy for n=3 and p=7 start
with 123321, but the actual best policy for these input values is π = 1122332.

Another trend we saw was that the average expected social welfare went
downhill as the maximum difference between how many times agents were
allowed to pick was raised. However, we soon saw that it was premature
to assume that policies with a high maximum difference in how often the
agents occured in the policy could be disregarded, as some of the policies
that completely excluded certain agents sometimes did appear in the top five
percent policies (looking at utilitarian social welfare).

4.2.1 Borda

Observation suggests that when using the Borda scoring function under Full
Independence, the best policy when only considering the expected utilitarian

30

social welfare is always a strict alternating pattern, as can be seen in Table
12

Number of objects n = 2 n = 3
2 12 12
3 121 123
4 1212 1231

Table 12: Optimal policies for p objects and n agents

5 Conclusion

During this project, we have succesfully managed to come to understand the
article by Bouveret and Lang about a fair protocol for the division of goods.
In addition to that, we have created a piece of software that can provide
the user with the ’fairest’ protocol given the necessary input. Lastly, we
have managed to come up with our own ideas which were different from the
ones in the article. There is still room for improvement; when it comes to
the software, it would be nice to be able to run it with larger input values,
and when it comes to the theoretical side, we feel that only considering
full correlation and full independence is not realisticenough for the practical
applications calculating the best protocol might have.

31

Acknowledgements

We want to thank our supervisor Ulle Endriss for his patience and support
during this Honours project. We also want to thank Raquel Fernández for
her coordination of the Honours Program and all the improvements that she
has made to it.

32

References

[1] Sylvain Bouveret and Jérôme Lang. A general elicitation-free protocol
for allocating indivisible goods. IJCAI, pages 73–78, 2011.

33

