
A Statistical Beat Induction Method for Metrical Grouping

Patrick de Kok, Gijs Kruitbosch, Nadya Peek
{pkok,gkruitbo,npeek}@science.uva.nl

Universiteit van Amsterdam

February 16, 2008

Abstract

When listening to music, humans can quickly find the beat to tap along to. In the field of Beat
Induction, researchers attempt to simulate how the meter of a fragment of music is found. We have
proposed a new computational model for finding the rhythm of a musical fragment. Our implementation
uses a statistically oriented beat induction method, which harnesses a naive Bayes classifier to categorize
beats and time signatures. Using a training corpus of folk songs, we match note placement and duration
to different beats and time signatures using the WEKA machine learning toolkit. We evaluated several
conditions for classification: to test how soon our system can generally correctly classify a beat; how soon
our system can find a time signature; and finally to deal with possible difficulties with upbeats. When
using our system to classify data, we find it performs quite well in distinguishing between ternary and
binary time signatures, but does not do very well in classifying precise time signatures. In this paper,
we offer our explanations for this and show the other results we have obtained using our classifier. We
also discuss possible improvements and applications of our learning system.

1. Introduction

Humans quickly recognize beats and temporal
patterns− they can generally find a beat to clap
along with within a few seconds. Even with varying
note-durations and tempo switches within a song,
humans manage to find a regular interval to dance
or clap along to. The way humans manage to de-
duce the isochronous pattern of the beat is however
still poorly understood. Yet we manage, even with-
out any musical training and from a very young age,
to find the beat.

You’re browsing, let us imagine, in a
music shop, and come across a box of
faded pianola rolls. One of them bears
an illegible title, and you unroll the first
foot or two, to see if you can recognize
the work from the pattern of holes in the
paper. Are there four beats in the bar, or
only three? Does the piece begin on the
tonic, or some other note? Eventually
you decide that the only way of finding
out is to buy the roll, take it home, and
play it on the pianola. Within seconds
your ears have told you what your eyes
were quite unable to make out − that you

are now the proud possessor of a piano
arrangement of “Colonel Bogey”’

− H. Christopher Longuet-Higgins [8]

One of the ways beat is assumed to be induced is
through selective listening. In many types of lay-
ered music, the beat is given by the lower tones- the
bass drum or the lower octaves of a piano. How-
ever, it is also possible to deduce a beat from only
a melody line. The beat then may either be de-
duced through the tonality of the piece (depending
on the time signature and key of the piece, certain
chords might be expected at certain times) or the
duration of the notes (especially in pieces with a
simple rhythmic structure). In this paper, we will
attempt to induce beat with only information on
note duration.

Note duration is directly coupled to time signature.
Some of the questions we will ask during the course
of this paper will include how easy it is to deduce
the time signature given the beat, or how easy it
is to deduce the beat given the time signature. It
may for instance be easy to distinguish 3

4 from 4
4 but

not 3
4 from 6

8.

Various computational models for beat induction
have been proposed to simulate a beat induction
process. The approaches taken for beat induction

1

vary widely: neural network approaches attempt to
find beat through the constant reinforcement and
decay of expected notes; rule-based systems which
describe a set of rules encoding procedural aspects
of knowledge; pattern recognition tasks which look
to match a fragment to a previously heard beat; sta-
tistical approaches aiming to find statistical regu-
larity in temporal patterns. We will provide a more
extensive overview of these previous approaches in
the next section 2.

The remainder of this paper is structured as follows:
after the literature review section 2, we explain our
approach to beat induction in section 3. We detail
our implementation in section 4 and show our ex-
periments and results in sections 5 and 6. Finally,
we offer some conclusions and ideas for future work
in sections 7 and 8.

2. Previous Work

This section is an outline of work done in beat and
meter induction in the past.

2.1. Beat induction in humans

According to David Huron in Sweet Anticipation
[4], listening to music evokes 5 response systems
in humans: reaction; tension; prediction; imagina-
tion; and appraisal. The prediction responses re-
ward the accurate prediction of the music because
accurate prediction of events helps organisms bet-
ter understand their environments. This is the rea-
son why humans are so adept in predicting tem-
porally structured sounds. The first two responses
are also rooted in evolution, as they provide part
of the fight-or-flight reaction mechanism. The last
two have to do with human creativity, which is thus
partially based on prediction.

2.2. Beat induction in AI

Music cognition has also been a very popular sub-
ject within the field of artificial intelligence, and
many attempts to simulate various forms of music
cognition have been made. Besides the problem of
beat induction, in which one attempts to learn to
tap along with the beat, attempts have also been
made for meter induction, predicting consecutive
chords and predicting melodic onsets. Below we
will outline earlier research done in beat and meter
induction, and explain how it relates to our ap-
proach.

2.2.1. Rule-based approach

Longuet-Higgins and Lee initially attempted to use
formal analysis to find the meter of the anthems
[7]. Here they try to make procedural aspects of
knowledge more explicit by describing it through
rules. Each rule contains a condition which recog-
nizes a pattern in the input, as well as an action
which then can modify the classification.

They initialize their learning algorithm by taking
the duration between the first two onsets as the
beat, and then incrementally adapt their prediction
using a variety of rules like stretch, update, con-
flate and confirm. The rules are designed to revise
the input and subsequently change the hypotheti-
cal meter, which is returned after a set time span.
Longuet-Higgins and Lee assume here that an ac-
cented beat is more likely to fall on onsets higher
in the tree, and that an accent in intervals may be
perceived as a longer note duration, because longer
note durations are generally more salient to the lis-
teners.

The order in which the rules are applied and thus
interact with each other is crucial. Longuet-Higgins
and Lee do not propose a method for testing the
manner in which rules interact with each other,
which would be necessary should we want to expand
their approach [2]. Furthermore, Longuet-Higgins
and Lee begins as a rather simple rule based sys-
tem, but as they attempt to cover more exceptions
and possibilities they add more and more rules,
inevitably leading to a more complicated system.
The way these fine tuning rules are chosen by the
authors seems somewhat arbitrary, which would
not lead to a very robust classifier. If we were to
continue Longuet-Higgins and Lee’s approach, we
would have to find a more systematic way to come
up with new rules for the system.

2.2.2. Recurrent network approach

Another method to learn metrical grouping would
be by means of (recurrent) neural nets. In this
approach, a neural net is trained to develop ex-
pectancy for future events, based on the past events
it has already observed. Such a method was at-
tempted by Bharucha and Todd [1] to predict chord
sequences in musical fragments. Useful attributes
of neural nets are their ability to learn incremen-
tally, without a complex control mechanism, and
without a limit for input permissible for describing
the context of the musical fragment.

However, there are some difficulties with a neu-
ral net approach. A general issue with learning
by means of neural nets is that once trained, the

2

weighted functions are not easily understood by hu-
mans. Instead, they simply provide a black box
which produces the correct output in the best case
scenario, or does not produce the correct output
with little to no explanation in the worst. Should
we want our classifier to give us some insight into
how beat induction works, then a neural net would
not be an ideal choice.

An aspect of neural nets specific to our problem is
that neural nets do not store temporal information
spanned over a longer period of time very well, nor
many different highly complex relations [11]. It is
clear that these are two attributes we would very
much like to see in our classifier, again making neu-
ral nets not a strong choice.

2.2.3. Reinforcing Oscillator Models

Large and Kolen attempted to make an oscillatory
unit which can be networked into a system for en-
trainment and expectancy [5]. Each unit can track
a different layer within a music fragment, thus al-
lowing much more concurrent processing. Each
unit is set in motion each time a note hits at the
right moment, and is constantly adjusted as the
music continues. With this approach they hope to
overcome the two problems explained above, be-
cause the temporal aspect of music would be en-
coded in the expectancy of each oscillatory unit,
and the complex relations can be realized through
the mutual reinforcement of the units. Also, the
system is more suitable for dealing with actual per-
formed music, which will never have an entirely ex-
act intervals.

2.2.4. Statistical approach

Another method to learn metrical grouping is to
collect statistical regularities within a dataset of
temporal data in the form of symbolic music with
predefined meters. This could be done using a
model which would predict the likelihood of differ-
ent events at different positions in the bar, which
could later predict which meters would be most
likely given a symbolic music fragment. Palmer and
Krumhansl [12] attempted this approach before us-
ing a collection of music scores to first determine the
likelihood of certain meters given the occurrence of
notes at a certain time within a measure.

2.2.5. Data-oriented processing

Van Zaanen, Bod and Honing have attempted to
use Data-Oriented Processing to determine the pos-
sibilities of meters in symbolic musical fragments

[14]. Here temporal data is described in the form
of a tree-branch, and the classification is given by
the fitting of a tree-branch into a slot in another
tree. This approach however does not address the
recurrent nature of music at all, as each tree branch
is seen as an independent structure within the tree,
and could adhere to an entirely different meter.

3. Approach

Most earlier approaches have their flaws when ap-
plied on our problem. For a very good working
version of the approach of suggested by Longuet-
Higgins and Lee [7], it might be a matter of adding
only a few extra rules, but there is also the pos-
sibility that one needs to add a plethora of rules.
Because the amount of rules which have to be added
to their system is uncertain, we would like to use
a way of automatically discovering new rules. As
discussed in section 2.2.2, neural networks are not
optimally suited to work on the type of informa-
tion we want to experiment with. To build an im-
plementation of the Large and Koolen approach [5]
suited for our problem will consume a lot of time.
As said in section 2.2.5, Data-Oriented Parsing does
not address the recurrent nature of music. Because
we want to develop a system which might work in
analogy with a human listener, we do not find the
method suggested by Van Zaanen, Bod and Honing
suitable for our research. We do think it probable
that a human listener has learned this knowledge in
a statistical way, but maybe in another way than
suggested by Palmer and Krumhansl [12].

We have decided to apply the naive Bayes classi-
fier for the classification of the temporal structures
within a musical fragment. This classifier is known
to work surprisingly well in some domains when
trained on a small set of attributes and very accu-
rate when trained on a large training data set [10].
Another classifier we considered was the Bayes op-
timal classifier, which we however decided against
using due to its high cost when applied to a large
data set. [10].

3.1. Naive Bayes classifier

The naive Bayes classifier can be applied in situ-
ations where each individual instance can be de-
scribed by a conjunction of its attribute values, and
the target attribute has a finite domain. The classi-
fier is trained in a supervised learning phase, where
it is presented with training examples paired with
their target attributes. Later it goes through a test
setting, in which a set of attributes without clas-
sifications are fed in. It returns the class to which

3

it considers the instance to belong. This is done
by finding the maximal probability of a hypothesis
such as “This fragment has a meter of 3

4” given the
conjunction of the attributes.

This classifier searches for the most likely hypoth-
esis h when presented with a n-tuple of attributes
〈a1, . . . , an〉 in a set of hypotheses H:

h = argmax
hj∈H

P (hj |a1, . . . , an)

When applying Bayes’ theorem [10] to this expres-
sion, it can be rewritten as:

h = argmax
hj∈H

P (a1, . . . , an|hj)P (hj)

P (a1, . . . , an)

As the denominator of the above expression is only
for normalization, which adds no information when
you are choosing the arg max, this can be left out.
The term P (hj) is easily estimated by counting
the occurances of each h in the training dataset
H. P (hj is then estimated as 1

|H| . However, this
can not be used in combination with the proba-
bility P (a1, . . . , an|hj). It is likely that this only
occurs once or does not occur at all. This is only
a possible option when working with an enormous
database in which many different instantiations of
P (a′

1, . . . , a
′
n|h′

j) are covered. Because of this, it
is customary to take on an inductive assumption
which states that all attributes a1, . . . an are con-
ditionally independent from each other given any
hj . With this assumption P (a1, . . . , an|hj) can be
rewritten to be the product of the probability of
each attribute ai given hj . This gives us the fol-
lowing expression which is much easier to compute:

h = argmax
hj∈H

P (hj)

nY
i=1

P (ai|hj)

As one might expect, the inductive assumption does
not hold for our case, as there surely is a condi-
tional dependency between the attributes we want
to pass to the classifier [10]. Nevertheless, the naive
Bayesian classifier often remains a well performing
learning system [16].

Other classifiers based on Bayes’ theorem, like
the Bayes optimal classifier, might outperform the
naive Bayes classifier in some cases. As a trade-off,
their computational complexity increases exponen-
tionally with the number of training examples. This
is a very detrimental property in our case: we use
a fairly large training dataset, in an analogy with a
human listener’s musical experience.

3.2. Data representation

We are unaware of any tools which are able to trans-
form the audible beat sequence into an appropriate

representation for our classifier. We need to use a
symbolic representation of music in order to be able
to present the naive Bayes classifier with a conjunc-
tion of attributes. Because of this, we want to rep-
resent it in a different form than its natural, audible
form. We use the same representation as used by
Desain and Honing [2], which represents each note
in a musical fragment with an integer value− indi-
cating the length of that note with respect to the
shortest note in that musical fragment. For each
musical fragment, the representation in rhythmic
units of the quarter note is given, so it is possible
to translate the represented intervals back to their
note lengths.

Hence, our data is presented in the form of lengths
of intervals between note onsets. An example would
be 3 2 2 3 2 2 which would represent a rhythm
like (|..|.|.|..|.|.). The data set represented
in this way is the Essen Folksong Collection [13].
We used 5699 different entries of this collection.
Please refer to table 1 for an overview of the com-
position of the used entries with respect to their bi-
nary and ternary character. For each experiment,
we removed entries if their value for the target at-
tribute occurred on less than 1% of the data set.
The aim of doing this is to make sure that the clas-
sifier will have enough data for all possible values of
the target attribute to try to reliably classify them.
Because of this decision, we use a different num-
ber of musical fragments per training attribute, as
displayed in table 2.

Table 1: The number of binary, ternary and de-
viant time signature entries selected from the
Essen Folksong Collection.

Meter Number of entries

2 3141
3 2555
5 2
7 1

3.3. Classification attributes

As said before, we want to find the relations be-
tween note sequences and the meter, beat duration
and bar duration, which are the three basic prop-
erties of the temporal structures we are interested
in. The meter of a piece of music, or its time sig-
nature, is a notation used to specify the beats per
measure and the beat duration. The beat duration
is the length of a quarter note in rhythmic units.
The bar duration is the length of a bar, or measure,
expressed in rhythmic units.

4

Table 2: The number of used training instances per attribute to train for.

Training attribute Training instances % of whole data set
Meter 5594 98.16
Beat 5641 98.98
Beat duration 5681 99.68
Binary/ternary 5696 99.94

To learn something, one needs to select the at-
tributes to train the classifier on. We considered
several attributes to train the classifier on:

As described in the beginning of this section, the
beat duration is the length of a quarter note in beat
measures. We suggest representing this as an inte-
ger value.

The bar duration also has a natural integer repre-
sentation. There should be no such thing as a bar
duration of 4.2 beats, and thus we can safely take
an integer representation for this.

The meter is of a different nature because it is a
nominal attribute. Because of this, our system is
trained on a set of strings where each string is a
representation of a meter in the training data set.
An example would be, for a music fragment in 3

4,
the string value “3/4”.

It would be a possible option to learn from the
tempo of a piece of music. This has been suggested
as a rhythmical device aiding metrical determina-
tion in musical cognition by Meyer [9]. The tempo
is the number of beats per minute at which a piece
of music should be played. Previous research by
Meyer [9] as well as Desain and Honing [3] has sug-
gested that the speed of the music may help dis-
ambiguate which meter the music is using (e.g. 6

8

music is not generally played extremely fast). This
attribute should be supplied to the classifier as a
positive integer value.

We also are interested in training the system by
rhythm prototype matching. Rhythm prototype
matching matches the note intervals in a piece to
a prototype of a meter. Such prototypes can be
subdivided into levels, which are subdivisions of a
measure. For example, a 3

4 rhythm would first be
divided into 3 different portions (with accents on all
the 1

4
beats), then each of those in 2 different sub-

portions (with subtle accents on all the 1
8

beats),
and only then each portion would be divided in
two again (for 1

16
beats). The matches with the ac-

tual notes with respect to the comparing prototype
are then summed per level of such a tree figure.
This example is visualized in Figure 1. A 4

4 rhythm

would be divided in 2 (accent on the first and third
1
4

beat), then in 2 again (accents on all 1
4

beats)
and in 2 again (accents on all 1

8
beats). At level III

where we are looking at a beat of length 1, we have
8 matches. There are 7 matches at level II, which
looks at beats of length 2, and there are 6 matches
at the top level, which looks at beats of length 4.

Using these rhythm prototypes we count the num-
ber of notes that start on each beat on a certain
level of the prototype, and sum these per level per
rhythm prototype. This way, we establish how well
the beats of a piece’s musical notes ‘match’ with
different rhythms. This is then supplied to the clas-
sifier as integer values.

Figure 1: A small piece of music in 3
4 matched

against the 3
4 rhythm prototype

It would be possible to just sum these attributes
for each meter. However, knowing which and how
many levels match is intended to aid the classifier
in distinguishing subtle differences between simi-
lar candidate rhythms. For example, when trying
to distinguish between 3

4 and 6
8 , 3

4 would be di-
vided by 3, and then by 2 (matching every 1

8
beat),

whereas 6
8 would be divided by 2, and then by 3

(also matching every 1
8

beat). Clearly these will
have the same value for the second level (all the 1

8

meters) but different ones for the first level (all 1
4

beats for 3
4 , the first and fourth 1

8
beat for 6

8). It is
clear that specifying each level of each rhythm as a
separate attribute here will be beneficial in distin-
guishing between the two rhythms. We could sim-
ply weight the matches of music fragments and pro-
totypes at all different levels (by multiplying their
values by a weighting constant) and sum over that,

5

hereby measuring one integer-valued attribute for
each rhythm. However, after the summation there
is no way to tell whether notes for instance only
match one of the levels of the rhythm, so this ap-
proach would cause data loss.

3.4. Two different approaches

This method of rhythm prototype matching can be
applied either top-down or bottom-up. When ap-
proaching the problem in a top-down fashion, the
classifier is presented in the learning phase with mu-
sical fragments and a measure duration. It then
matches each measure with the prototype for each
meter, and classifies based on the results of these
matches.

However, this approach also assumes that the sys-
tem knows how long a measure is, as otherwise it
would not be able to deduce how long all the dif-
ferent parts of levels of its meter prototype should
be. This is rather counterintuitive, as one would
normally assume that one does not yet know the
measure length of a piece of music when trying to
determine beat or a time signature.

Furthermore, this approach is not the approach a
normal human listener applies. After listening to a
short musical fragment, a human may already have
found a model describing the temporal structures,
and may be using it to tap along with the beat. The
human will have also been able to make a judgment
on the meter of the fragment before listening to it
in its entirety.

The bottom-up approach instead matches the mu-
sic with a monotonic beats, each having a different
beat period. The number of matches can then be
used by the classifier to decide upon which value
of the target attribute best fits this piece of mu-
sic. This does not require extra information, and
could also be applied incrementally, making it more
human-like.

3.5. Dealing with upbeats

We do foresee a certain problem in our approach.
The classifier does not treat the upbeat of frag-
ments differently from other parts of the fragment.
The upbeat consists of a small number of notes be-
fore a full measure begins. The length of this se-
quence is always represented as a positive integer.
Because the possible presence of an upbeat might
bring the musical fragment out of phase with the
beat, and because we intuitively think that there
is no correspondence between upbeat length and
the following note sequence, we expect this phe-
nomenon to negatively influence the performance of

the Naive Bayes classifier. We therefore would like
to have several ways of coping with this problem in
both the test and training phase of the classifier.

There are several alternative methods of handling
upbeats. The most trivial attempt when the up-
beat is known, is completely eliminating the up-
beat. This can be done in two ways. The first is
removing the note sequence which makes up the
upbeat from the total musical fragment. Although
you have less data in this way, all the data you have
should contain only valid information of the tempo-
ral structure. The second method is putting a sin-
gle note in front of the upbeat of sufficient length to
make the upbeat a full measure long. This method
preserves the data removed in our first suggestion,
but it adds a “perfect” bit of data in there, and
assumes that we already know the bar duration.

We also tested the default case where the upbeat is
included without any alterations. In this case it is
treated as any other part of the musical fragment.
Although we do suspect this to have a significant
negative effect on the outcome of the classifier, we
sought to test this case.

Another possibility is using the update algorithm
suggested in Longuet-Higgins and Lee [7], which
tries to find the upbeat itself without any informa-
tion except for the note sequence. It can be used
by applying the algorithm of Longuet-Higgins and
Lee until it has reached the point where it has rec-
ognized the end of the upbeat. It will return the
position of the end of the upbeat and it would then
continue with our own algorithm.

Our last suggestion to approach the upbeat prob-
lem is to shift the phase of the beat. Normally it is
assumed that the prototype or monotic beat starts
at the same time as the fragment does. But be-
cause there might be an upbeat in front of it, the
two might be out of phase. We could try to find
the right phase by gradually shifting the beat, one
beat unit at a time, and matching the prototype or
monotonic beat for every possible shift (between 0
and the length of the prototype or monotonic beat).
This leads to different results than only removing
the upbeats, or compensating them, as matching
would be done exhaustively: if we are matching a
monotonic beat of length n, there will be n different
ways of applying this (shifting it by 0, 1, ..., n − 1),
of which only one is ‘right’. All the other shifts
can give new information to the classifier, however,
which might help it in making the right decision
anyway.

6

4. Implementation

Although all approaches mentioned in the back-
ground review are valid and might work well, we
have decided not to implement and test them all.
The main reason for this is that we do not think
it either belonging to the paradigm of learning sys-
tems, or not corresponding to the way a human
listener might be doing a certain task. Instead, we
implemented a statistically oriented method which
measures how well a fragment of note durations
matches with a prototype of a time signature.

4.1. Current Implementation

First, the corpus is preprocessed by a series of
functions written in Common Lisp. It is at this
stage that the upbeat and the length of the musi-
cal fragment might be altered, the fragment might
be shifted, and the target attribute for the clas-
sifier is specified. Subsequently, we compare the
notes with completely monotonic beats of increas-
ing length. Whenever beats coincide, we increment
a counter. This counter then represents the agree-
ment between this particular regular beat and the
actual notes. For example, comparing 2 2 1 1 2 1 1
with a monotic beat with beat length 2 will result
in a score of 5, whereas comparing 2 1 1 3 1 1 3
would have a score of 4. We compare each piece
of music to beats with beat periods up to 48, and
use the scores obtained by these comparisons as at-
tributes to train a Bayesian classifier to learn our
target attributes meter, bar length, beat duration,
and whether a piece’s meter is binary or ternary.

In figures 2 and 3, we illustrate how such an ap-
proach could distinguish between 4

4 and 3
4, and com-

pose the prototype of a meter that we used to il-
lustrate this approach in section 3.3. The fragment
(shown in pink dots) matches better with a regular
beat of 3, which the classifier should be able to link
to a 3

4 time signature.

Figure 2: A fragment of note intervals matched
with regular beats of 1 and 3 (corresponding
to 3

4, with no eighth notes). The score match-

ing with a beat length of 3 is 4, the score of
matching with a beat length of 1 is 8.

Figure 3: A fragment of note intervals matched
with regular beats of 1, 2 and 4 (corresponding
to 4

4, with no eighth notes). Here the score of
matching with a beat length of 4 is 1, for beat
length 2 it is 4 and for beat length 1 it is 8 once
more.

Finally we reformat the data set into the Attribute-
Relation File Format (.ARFF), as used by Weka 3
[15], a data mining software suite developed at the
University of Waikato. The ARFF files were subse-
quently loaded into Weka through its Explorer in-
terface. The fragments have been classified with
Weka’s NaiveBayes classifier, using the matches
with the different monotonic beats as attributes.

Our program works according to the bottom-up
principle which we have described in section 3.4.
We have varied over the different upbeat methods
in the following way: each of the first three sugges-
tions (removal, compensation, and no-change) have
been applied to each note sequence. We have also
added options to shift the matching as another way
to add more data for the classifier and cope with
upbeats.

Then we have the option of which target attribute
we want to train the classifier for. The target at-
tributes we want to train the system for are beat
duration, bar duration, and measure length. As
we do suspect it to be very hard to have the classi-
fier discriminate between different binary or ternary
beats such as 4

4 and 2
4 or 6

8 and 3
4, we have decided

to also train for the target attribute of whether the
fragment has a binary or ternary time signature.

We have trained for each permutation of above op-
tions an instantiation of the naive Bayes classifier,
and we will analyze all the results in the next sec-
tions.

7

4.2. Unimplemented Approaches

As described in section 3, we have considered sev-
eral options for our implementation. Although we
would like to use tempo as one of the attributes
to feed in, we have decided not to. The main rea-
son for this is that we have not been able to find
a musical corpus which has been digitized, and of
a sufficient size, which has tempo annotated in it.
Because of time limitations we were not able to ex-
pand an existing corpus with this information, or
construct a complete new one.

The second approach we have decided not to imple-
ment is top-down prototype matching. Although
this might work fine, it probably is not the way
a human listener considers the stream of incoming
notes when he or she is involved in beat identifica-
tion. Even after a short period of time, the listener
might already have formed a hypothesis of what the
beat and beat length might be [6]. But this is not
the case when a human tries to identify the meter
of a piece of music. For doing this, a longer frag-
ment is needed, and thus a top-down might still be
applied.

Another reason for not implementing this is that we
do not think this to be useful for all attributes we
want to train on. And because we expect two at-
tributes we want to train on, to determine the third,
we do not find it necessary to implement this.

We tested all but one variations in upbeat handling.
The update rule suggested by Longuet-Higgins and
Lee [7] has not been implemented. This decision
has been made mainly because of how it is embed-
ded in their system of rules, and how dependent it
is on those given rules. Because we presume the
system should perform better when presented with
more data, a method which is heavily dependent on
fixed rules does not fit in our paradigm.

5. Experiments

When humans listen to music, they do not take in
a whole song and then process it. They can already
tap along with the beat after a couple of seconds
[12]. Humans recognize the beat and participate.
After training our learner, we hope it will be able
classify accurately when presented with a short in-
terval of note durations as well.

To model the way humans can incrementally deal
with music fragments when they are presented, we
compared how well our algorithm does with differ-
ent amounts of information provided from the data.
For this, we have separated our data into different
categories. Do listeners determine meter or beat

period after a certain amount of time? Or a cer-
tain amount of notes? How does analyzing part of
a song compare to analyzing a whole song? Do hu-
mans achieve better estimates of bar duration or
meter after being exposed to a larger fragment of
music?

To deal with differing intervals, we have worked
with both a maximum amount of total note dura-
tion as well as a maximum total number of notes.
For comparison, we have also used an unlimited
data set which runs the algorithm on the entire
song. We expect the first two forms of sampling
to provide similar results, and the unlimited exper-
iment to outperform the first two with regards to
accuracy but not with regards to complexity. It is
however possible that after extensive training lis-
tening to the entire song becomes unnecessary to
correctly classify a music fragment.

To reduce computational complexity, we have also
made a distinction between using the algorithm on
all intervals and only using the algorithm on in-
tervals we deem significant. Significant intervals
have a greatest common divisor with at least one
of the numerators of the possible meters that is big-
ger than 1. More formally, an interval i ∈ N was
considered significant in attempting to distinguish
between meters in M when classifying songs if:

∃x ∈ M gcd(i, numerator(x)) > 1

holds, that is, if there exists at least one meter in
M of which the numerator is not coprime with i.
We have run the algorithm using first significant
intervals, and then all intervals, to be able to make
a comparison between the performance of the two.
For example, if we would only want to distinguish
between 3

4 and 4
4, we would not be interested in the

interval 7. However, should we also want to be able
to identify 7

8, then 7 would become a significant in-
terval.

These constraints result in 6 separate experiments
of which an overview is given in table 3: looking
at all intervals of unlimited data, looking at only
the significant intervals of unlimited data, and then
limiting the data on a certain amount of notes and
a certain amount of total note duration, and mea-
suring both all intervals and significant intervals on
those.

Table 3: Overview of experiments
All intervals Significant intervals

Unlimited data Unlimited data
Limit amount of notes Limit amount of notes

Limit total duration Limit total duration

Additionally, we handled upbeats in three of the

8

different ways explained in section 3.5. First we re-
moved upbeats entirely, then we added a long note
at the beginning of the song to compensate the up-
beat and form a full measure. Finally we also ran
experiments in which we did nothing about the up-
beat. We also added data for the same intervals
shifted along the data, to help the learning algo-
rithm recognize the right meter despite an upbeat.

To be able to do a true comparison, we would have
to collect some data from human test subjects on
how they do with beat classification. Due to time
constraints, we have not done this, but instead will
adopt the bias that humans are perfect classifiers of
beat, and that for our dataset, it should be possible
to achieve 100% accuracy.

6. Results

In this section we detail the results obtained with
from the experiments that were explained in sec-
tion 5. First we will explain the results obtained
when classifying on all data available for each song,
and then we will discuss the results from classify-
ing on limited amounts of data. Finally we will
detail some general findings related to the handling
of upbeats

6.1. Classifying on all data

First we tested our approach with no limits on the
sample size, so we classified based on the entire
song. It turned out our approach did quite poorly
in determining the exact meter of a piece. As can be
seen in Figure 4(a), even in the best of cases it clas-
sified barely over 40% correct. Closer inspection of
the result data (not reproduced) indicated that the
confusion is primarily between meters that are very
similar in note emphasis and beat patterns, such as
2
2 and 4

4. The results in figure 4(a) are from clas-
sifying using only data about significant intervals,
but classification using all possible integer intervals
between 2 and 48 did not improve the success rate
of the algorithm.

Classification of beat (figure 4(b)) and bar dura-
tion (figure 4(c)) both produced relatively good re-
sults, averaging 60 to 70% correctly classified in-
stances. This was somewhat surprising as it turned
out several of the pieces in the data set had beat
durations of less than 1 unit, which the algorithm
didn’t match against, as the smallest interval it
used was 2 units (we didn’t expect, at the time,
that fractional units would ever be used by songs).
This does explain the difference between the two,
as bar duration detection does roughly 10 percent-

age points better than beat duration detection if
upbeats are not removed or compensated for. This
leads to a second important observation, which is
that the presence of upbeats, even if there is shifted
data available, greatly reduces the effectiveness of
the algorithm when classifying bar durations.

Finally, figure 4(d) shows the results for detecting
the ‘type’ of meter, that is, if it was binary (24,

4
4,

2
2, etc.) or ternary (34 or 6

8). These results are quite
encouraging, with the best strategies achieving as
much as an 86% success rate. Here, the availability
of shifted data does make a significant positive im-
pact on the success of using the original data with
upbeats present, unlike in many of the other cases.

All these results were produced using only the sig-
nificant set of intervals, so those that were multiples
of 2 and 3. This does not seem to have affected the
results in a significant consistent way. The aver-
age absolute difference between two corresponding
items with either only the significant or all the in-
tervals was 2.27 percentage points, where half the
approaches showed a better result for using all in-
tervals, and the other half showing a better result
for using only the significant intervals.

6.2. Classifying on limited data

After testing our approach on the complete data,
we imposed limits on the amount of data given to
the algorithm for processing, to simulate the human
approach, which makes decisions before hearing the
entire song. We used two different approaches to
do this, one which limited the number of intervals
(notes and rests) available, and the other limiting
the total interval duration. We will outline the most
significant trends here.

First of all, the differences between only significant
or all the intervals were once again negligible. This
further affirms that only using intervals which are
multiples of the meters or beat durations that one is
looking for is a sound approach to the various clas-
sifications that we were trying to make. This is im-
portant because it would significantly improve the
speed of any on-the-fly processing that may need to
be done in practical applications of the algorithm.

Second, surprisingly some of the classifications ac-
tually performed significantly better when given
less data. This was especially true for the clas-
sification of bar durations when the total length
of the sample was limited, and the upbeats were
compensated. These results are displayed in figure
5(d). Here it is clear that the results for the com-
pensated upbeats are between 5 and 10 percentage
points higher than for the same classification given
all the data of the song (visible in figure 4(c)). This

9

is probably caused by the fact that we compensate
the upbeat by prefixing it with one long note in this
algorithm, which means almost nothing will match
inside this bar, until the first note of the upbeat. If
the subsequent sample is sufficiently short, the bias
will create the effect seen here.

Third, there is a very clear sudden increase in the
success rate for the binary / ternary classification
after given it more than 19 to 24 beat units of
sample, depending on the method of upbeat cor-
rection used. This is visible in figure 5(a). We are
not entirely sure what causes this sudden increase,
apart from the obvious explanation that with less
than 20 beat units, the algorithm does not have
enough data to make a correct decision. However,
this seems to contradict the fact that, for example,
the bar duration classification works very well for
limited amounts of data. Intuitively, one would as-
sume that classifying whether something is a binary
or a tertiary rhythm should be easier than classify-
ing the bar duration, as typically the bar duration
would be one of only a few multiples of the binary
or tertiary rhythm, hence having a larger variance
across the dataset.

Finally, when looking at the same classification
with a limited number of intervals, a much more
gradual change is observed (see figure 5(b)). We
were not sure what caused this, or why this trend
is so different from that for limited lengths (com-
pare figure 5(a)). On average, adding one more
interval increases the length of the sample by 2.2.
So normally, a sample with 15 intervals is approxi-
mately the same as one of length 30, and one with 5
intervals should be approximately the same as one
of length 15.

One possible explanation would be that cutting off
at a certain length is less of a smooth transition:
we may cut off much more in some cases (leaving a
shorter sample than the limit), because leaving the
next interval in would increase the sample length
just a little bit too much. This would mean the in-
crease in length along the edge of the graph would
be less ’gradual’, leading to the sudden increase in
success rate as specific intervals (perhaps long in-
tervals at the end of beats?) get included. We
verified this on the data set, and it indeed seemed
that, for example, if we do not remove upbeats,
limiting samples to a length of 23 units leads to the
average sample length being approximately 21.18,

whereas for a maximum of 24 units, the average
sample length is approximately 23.6. This, then,
explains the sudden increase.

For completeness, we have included a table with
the best results for the limits on the sample length
as table 5, and a table with the best results for the
limits on intervals as table 4.

6.3. Upbeat handling

On the question of upbeats, there are several things
that caught our eye after doing our experiments.
First, It seems that providing shifted data does not
help significantly, except in the case of classifying
only if a song is using a binary or ternary type of
meter (see figure 4(d)).

Furthermore, compensating upbeats with a long
note tends to produce the best classifications, even
if the amount of data is limited. This can be in-
ferred from most of the figures, but is particularly
clear in figure 4(a) and 5(d). This is intuitive in the
sense that we are in fact presuming that we know
how long the beat is, and how long the upbeat is,
whereas for removing the upbeat, we only need to
know how long the upbeat is, and for leaving every-
thing as-is we do not need to know anything. These
premises (the things we need to know) also influ-
ence what the result looks like, and it is therefore
reasonable to expect that the final result is influ-
enced positively by using as many of these premises
as possible in modifying the original data set. In
effect, we are ‘cheating’.

One could argue that we should only have tested
with upbeats present in all cases, but we were
afraid this would not render useful results, and also
thought that even if it did, it would be helpful to be
able to compare them to results obtained without
upbeats, or with compensated upbeats.

As it turns out, if one does not do anything to cope
with upbeats, classification results do indeed suf-
fer. If the amount of data is limited, even merely
adding shifted data improves this. However, this
is only enough to obtain reasonable performance if
the amount of data is limited already, or if one is
classifying whether the pieces of music are using
binary or ternary meters. In all other cases, even
with shifted data, not handling upbeats specially
reduces the overall effectiveness of the classification
by a sizable margin.

10

(a) Meter detection (b) Beat duration detection

(c) Bar duration detection (d) Binary/Ternary detection

Figure 4: Detection of the different classes based on the significant intervals, with no limits on the number
of intervals or the total duration, given different approaches to coping with upbeats in the music

11

(a) Binary / Ternary classification with limited sample lengths and only significant
intervals

(b) Binary / Ternary classification with a limited number of intervals and only
significant intervals

12

(d) Bar duration classification with limited sample lengths and only significant intervals

Figure 5: Selection of plots visualizing the effect of limiting sample size on classifying bar duration and
binary vs. ternary meters.

13

Table 4: Success rate (in %) for the different classifications given a limited number of intervals, with only
significant intervals used for classification

Number of intervals Meter Signature Beat Duration Bar Duration Binary / Ternary
5 36.81 63.67 72.88 79.92
6 30.68 61.40 71.05 76.81
7 30.32 56.91 66.46 76.86
8 33.63 59.55 68.14 77.04
9 35.38 58.60 67.75 78.00

10 34.39 57.74 69.49 79.46
11 35.48 58.04 69.62 79.71
12 35.48 56.56 71.28 83.34
13 39.11 57.63 70.34 82.72
14 39.65 58.07 69.77 83.84
15 40.88 64.28 69.88 83.92

Table 5: Success rate (in %) for the different classifications given a limited sample length, with only significant
intervals used for classification

Number of intervals Meter Signature Beat Duration Bar Duration Binary / Ternary
15 36.31 64.20 76.01 77.98
16 37.79 64.34 77.81 79.04
17 37.88 63.74 76.16 79.78
18 38.70 64.81 78.04 82.18
19 37.61 63.58 78.02 83.74
20 39.47 63.86 78.66 84.48
21 39.52 63.42 78.80 85.20
22 38.65 62.89 77.77 85.32
23 38.81 62.68 78.62 84.87
24 39.31 63.12 77.96 85.78
25 38.22 62.96 78.16 85.01
26 39.15 62.89 75.89 85.31
27 40.31 63.07 77.08 85.78
28 40.81 60.68 74.61 85.25
29 41.26 62.52 75.02 85.13
30 40.36 63.32 76.21 84.69

14

7. Conclusion

Finding a beat in a piece of music is not as easy a
task as it may seem at first glance. While using au-
tomated learning may seem a fine approach when
considering downsides to static rules and other
ways of tackling the problem, there are also sig-
nificant issues. For example, what should be done
about upbeats, and how should one filter and ab-
stract the data so that it is easy for a classifier
to learn patterns from it? We have tried to ad-
dress these issues in our experiments. In this re-
port we have explained several ways of working
with upbeats, and have described how we imple-
mented these. We have also reproduced the results
of several experiments run with this framework and
a database of folk songs.

With these experiments, we have been able to learn
several important facts about using a Bayesian clas-
sifier to determine metrical information from musi-
cal intervals.

First, it is clear that classifying time signatures re-
liably with just these interval matches is too much
to ask, given the low accuracy of the classifier for
this target attribute. Whether a meter is binary or
ternary, however, is relatively easy to determine.

Second, it is not generally useful to include inter-
vals which do not correlate meaningfully with the
meters you expect to need to classify when gath-
ering data. The definition of significant intervals
given in section 5 is useful here. It seems that in-
tervals that are not related to the meters we want
to distinguish between are only overhead.

Third, concerning the question of upbeats, there
are several things that caught our eye after doing
our experiments. It seems that providing shifted
data does not help significantly in classifying cor-
rectly, except in the case of classifying if a song is
using a binary or ternary type of meter (see fig-
ure 4(d)). Compensating upbeats with a long note
seems to be the best overall method of classifica-
tion, even if the amount of data is limited, and in-
tuitively this does seem plausible. Leaving upbeats
for what they are produces the worst classification
results.

All these facts help being able to do practical things
with a classifying system for beats. Although there
are enough questions that remain unanswered (also
see section 8 in this respect), we feel that the ex-
periments we ran, and more importantly the results
we obtained through them, are a good step towards
productively being able to use Bayesian classifica-
tion and interval matching to obtain a reliable in-
dicator of beat.

8. Future Work

The described system works on symbolic input only,
contrary to how our human listeners can perform.
There is still a lot of research needed to develop a
system which can interpret the note durations in
real time. And when such a system has been de-
veloped, one could test it in combination with an
adjusted version of our system.

But making a more ‘human’ system is not the only
improvement which could be made. There is still
enough room for improvement in automated classi-
fication of temporal structures such as meter, beat
duration and bar duration. There is no system
known which can perform in these tasks as well as
a human listener. Although this system has more
success than some earlier systems, there probably
is a long route to a perfect system to analyze these
structures.

Another point which still needs more research, is
how well humans actually perform. We have as-
sumed that it is possible for humans to learn to per-
form perfectly in the described classification tasks,
but we were unable to find any references which
show this.

References

[1] J. J. Bharucha and P. M. Todd. Modeling the
perception of tonal structure with neural nets.
Computer Music Journal, 13:44–53, 1989.

[2] P. Desain and H. Honing. Computational
models of beat induction: The rule-based
approach. Journal of New Music Research,
28:29–42, 1999.

[3] P. Desain and H. Honing. The formation of
rhythmic categories and metric priming. Per-
ception, 32:341–365, 2003.

[4] D. Huron. Sweet Anticipation. The MIT Press,
Cambridge, MA, 2006.

[5] E. W. Large and J. F. Kolen. Resonance and
the perception of musical meter. pages 65–96,
1999.

[6] J. London. Hearing in Time: Psychological
Aspects of Musical Meter. Oxford University
Press, 2004.

[7] C. Longuet-Higgins and C. Lee. The percep-
tion of musical rhythms. Perception, 11, 1982.

[8] H. C. Longuet-Higgins. The perception of
music. Proceedings of the Royal Society, B
205:307–322, 1979.

[9] L. B. Meyer. Emotion and Meaning in Music.
University of Chicago Press, 1956.

15

[10] T. M. Mitchell. Machine Learning. McGraw-
Hill International Editions, 1997.

[11] M. C. Mozer. Neural net architectures for tem-
poral sequence processing. Predicting the fu-
ture and Understanding the past, 16:243–264,
1993.

[12] C. Palmer and C. L. Krumhansl. Mental rep-
resentations of musical meter. Joural of Exper-
imental Psychology: Human Perception and
Performance, 16:728–741, 1990.

[13] H. Schaffrath. The Essen folksong collection.
In D. Huron, editor, Database containing 6,255
folksong transcriptions in the Kern format and
a 34-page research guide. Center for Computer

Assisted Research in the Humanities, Menlo
Park, CA, 1995.

[14] M. van Zaanen, R. Bod, and H. Honing. A
memory-based approach to meter induction.
In Proceedings of the 5th Triennial ESCOM
Conference; Hanover, Germany, volume 6,
pages 250–253, 2003.

[15] I. H. Witten and E. Frank. Data Min-
ing: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco, sec-
ond edition, 2005.

[16] H. Zhang. The optimality of Naive Bayes.
Proceedings of the Seventeenth Florida Artifi-
cial Intelligence Research Society Conference,
pages 562–567, 2004a.

16

	1 Introduction
	2 Previous Work
	2.1 Beat induction in humans
	2.2 Beat induction in AI
	2.2.1 Rule-based approach
	2.2.2 Recurrent network approach
	2.2.3 Reinforcing Oscillator Models
	2.2.4 Statistical approach
	2.2.5 Data-oriented processing

	3 Approach
	3.1 Naive Bayes classifier
	3.2 Data representation
	3.3 Classification attributes
	3.4 Two different approaches
	3.5 Dealing with upbeats

	4 Implementation
	4.1 Current Implementation
	4.2 Unimplemented Approaches

	5 Experiments
	6 Results
	6.1 Classifying on all data
	6.2 Classifying on limited data
	6.3 Upbeat handling

	7 Conclusion
	8 Future Work

