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Abstract

Distributed multiagent resource allocation is a field with many interesting
and unexplored areas. To explore these systematically and to support the-
oretical findings there is a need for experimental results. In this report a
simulation platform is proposed which hopes to meet these demands. In the
framework presented, a user can easily generate a scenario with prespecified
amounts of agents and resources, in which the agents have their own prefer-
ences and objectives. The agents are able to negotiate amongst themselves
to establish trades using money. Using such a scenario, the user is able to
run a variety of experiments to see under what circumstances the agents
most beneficially manage to reallocate their resources. Finally the platform
provides possibilities for visualizing several experiment statistics. Although
the platform is not complete up to this point, it does provide a good basis
for future work.
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Chapter 1

Introduction

The evolution of computing systems has changed the paradigm of problem
solving in many ways. Trends such as their ubiquity, their parallel processing
power and their interconnection gave rise to a whole new field of systems.
The explosive growth of the internet in the 1990s was especially effective
in helping introduce concepts such as software agents (which can act on
behalf of a user or other program) and distributed systems (which distribute
complex problems) [2, 7]. It became clear that the main way of harnessing
the power of many was to combine the behavior of individual agents into an
effective composite system, and the term multiagent system was born [10].

The main focus of multiagent system research is the design of an interaction
mechanism. This can include both the regulation of interaction between the
agents, and occasionally the definition of the intelligent agent architecture
itself. Regardless of the power of the designer, the characteristics of the
agents and of the problems to be solved need to be known beforehand.

One possibility is that agents are cooperative, meaning they have shared
objectives. In this case, the negotiation between agents is mainly focussed
on determining which agent has the ability to best solve a certain portion
of the problem presented to the system. Two different kinds of systems
that address this situation are the contract net protocol and the blackboard
architecture. Contract net protocol has agents submit bids for tasks in which
they describe their abilities, after which a central contract manager assigns
the tasks. In the case of tasks that are not so modular, the blackboard
architecture allows all agents to make use of a global memory to direct
coordinated actions and to share intermediate results [15].

If the agents do not share the same objectives, they are said to be noncoop-
erative. In this case, they are assumed to behave according to the principles
of rational decision making, which means that they act according to their
individual preferences and wish to further their personal objectives. Their
preferences are generally registered in terms of utility theory. Utility, which
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is a term transferred from game theory, represents the happiness of each
agent after receiving certain goods or tasks. When using utility, it is also
possible to use the other mathematical tools provided by game theory such
as the concepts of Pareto optimality, Nash equilibrium and the minimax
algorithm. This cross-pollination between the fields of economics and com-
puter science has resulted in the heavy scrutiny of the game-theoretic parts
of interaction mechanisms, and specifically how to standardize negotiation
protocols and agent communication [11].

After determining the behavior of the agents involved, one can focus on the
form of negotiation. It is common to distinguish task-oriented and worth-
oriented domains [11]. A task-oriented domain contains a set of all possible
tasks, a set of agents and a function which defines the cost of executing any
set of tasks. A worth-oriented domain differs in having a set of possible
environment states, and instead of having tasks, the agents have joint plans
which are evaluated by a function to determine the cost of each joint plan.
The agents are no longer only negotiating to minimize their task allocation,
but also about what tasks they feel are necessary to reach an ideal state.

A variation of task distribution is resource distribution. Before a multiagent
system starts solving a problem, they could be distributing resources. An
easy analogy here is how a business manager assigns tools to his employees -
without rendering other employees useless, the manager will want to allocate
the most effective tools to the most effective employees. This sort of problem
can be approached the same way as task distribution, except that instead
of taking cost into account, one analyzes the benefits reaped from allocating
a certain resource to a certain agent. Like tasks, resources can be divisible
or indivisible, and whether they are or not directly affects how they can be
distributed over a system of agents.

The actual distribution can be regulated in different ways. The agents may
be self-organizing, and may distribute the resources amongst themselves as
they see fit. The resources would initially be allocated randomly amongst
the agents, and the agents then later set up deals to be able to trade off
their initial allocation for one they find more beneficial. Depending on the
negotiation tactics and objectives of the agents, this can be an easy grass-
roots method for allocating goods. Another option for distribution is com-
binatorial auctions, where a central auctioneer allocates goods according to
package bids submitted by the agents. Here a package bid is the naming of
a price of a set of resources, and the computational burden of figuring out
which sets of resources should go to which agent is laid upon the auctioneer
[14].

One can allow agents a certain (possibly infinite) amount of money to help
them negotiate. Using money in a distributed system, an agent can buy
a desirable resource even if he does not have other valuable resources to
return. This way, a deal that may otherwise not be rational for an agent
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can be made to possibly achieve a more optimal allocation in the future. In
a centralized system with finite money, certain richer agents would be able
to bid more for certain resource sets, and it would be possible to allow more
capable agents to obtain more resources.

As one can see here, many different kinds of problems can be presented to
multiagent systems. Each problem presented will have certain attributes.
The goods could be atomic or divisible. The goods which are to be dis-
tributed could be tasks or resources. Individual agent actions and achieve-
ments may or may not need to be shared amongst the agents while solving
the problems. Agents may or may not know of other agent’s preferences
and intentions. The agents may or may not be able to reason about possible
worlds. Agents may be strategic or competitive- they may or may not be
able to use knowledge of other agents’ intentions. All of these attributes af-
fect how a solution is to be obtained, and even merely listing all the possible
problems that could be encountered is beyond the scope of this report.

The purpose of our work here was to create a simulation platform we could
use in testing what kind of restrictions one could enforce in a society of
agents to find how a society could reach different kinds of optimums. There
has been a lot of theoretical work on these restrictions, but we believe that
testing things with a simulation platform may shed light on new possibilities
and help in developing new ideas. Once we find other kinds of restrictions
on individual agents which benefit the society as a whole, we can use these
to design better interaction mechanisms for multiagent societies.

The report is structured into four main parts. First we provide the reader
with the necessary background theory. Then we give a detailed outline of
the issues we would like solve in a simulation platform. In the third part,
we explain and discuss our implementation. Finally we discuss some of the
results we have obtained using the simulation platform.
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Chapter 2

Background theory

2.1 What is Distributed Multiagent Resource Al-
location?

Resource allocation aims to achieve certain goals in the future by optimally
distributing all available resources. A multiagent system is a system in which
multiple agents are collectively capable of reaching goals that are difficult
to achieve individually. Distributed Multiagent Resource Allocation is the
process of distributing a number of resources over a number of agents, where
the computational burden can be shared amongst many agents.

There are many different kinds of resources though, which can be distributed
differently amongst agents which may have different preferences. In each
allocation system, there may be different ways to make deals. This could be
done with or without money, and with or without restrictions imposed on
the agents for consistent and rational behavior.

There is even an altogether different kind of multiagent resource allocation.
In a combinatorial auction, the individual preferences of the agents in the
system are taken into account to be able to produce the most beneficial
allocation, but the computation of the allocation is done by one entity.
In this report we are mostly interested in distributed multiagent resource
allocation of non-sharable indivisible resources, and we will try to shortly
outline the other various possibilities in such a system below.

2.2 Terminology and Symbolism

Here we will give a short outline of some of our commonly used terminology
and the symbols we use to represent concepts in this report.
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Agents

The set of all agents is denoted as A = {a1, a2, ..., an}.
In this report we mainly work with individually rational agents. This means
that the agents will not behave in a manner that could be detrimental for
their own welfare. For a formal definition, see 3.3.3.

Resources

The set of all resources is denoted as R = {r1, r2, ..., rm}.
Resources can be discrete or continuous. Common examples here are cakes
(which one can slice) and hard candies (which one consumes individually).
In the case of discrete resources, they can be sharable (such as an internet
connection) or non-sharable (such as an IP address). In this report we will
only consider indivisible non-sharable resources.

Allocations

An allocation A is a division of resources R amongst the system of agents
A.

Every distribution of resources amongst a group of agents is called an allo-
cation. The restrictions that hold upon each allocation in this report stem
from the limitation to indivisible non-sharable resources. This means that
no resource may be held by two agents at once, and that the sum of each
agent’s set of resources should become the total set of resources R.

Utility Functions

A utility function is a quantification of an agent’s preferences in regards to
the resources. These preferences can be expressed in several different ways.
A cardinal preference structure assigns numerical values to possible allot-
ments. An ordinal preference structure has agents value certain resources
over others. A binary preference structure allows agents to either like or
dislike resources. In this report we will use a cardinal preference structure.

In our representation a utility function u : 2R → R+ maps a set of resources
{r1, r2, ...rm} of any length from 0 to |R| to a value in real positive numbers
or zero.

Deals

To be able to advance from one allocation to the next, the agents need to
make deals. Any deal δ consists of two allocations (A,A′) where A and
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A′ are different allocations of all the resources R. The most simple kind
of deal is one where one resource is passed from one agent to another (the
1-resource-deal). You also have cluster deals, in which an agent passes mul-
tiple resources to another agent, and bilateral deals, in which agents swap
resources. You can extend these types of deals to multiagent deals, in which
multiple agents swap single resources, and to combined deals, in which mul-
tiple agents swap single or multiple resources. Finally you can also resort to
general deals, with any amount of agents and any amount of resources.

Money

To make sure that an agent is willing to give up a certain resource even
if its loss will entail a loss in utility, you can introduce money. It is not
irrational to expose the agents to unlimited supplies of money to be able to
buy resources off each other. Using payment functions, one can avoid having
to specify who pays who what for each different kind of deal, and instead
only show how much each agent pays (to compensate for a gain in utility)
and how much each agent receives (to compensate for a loss in utility).

Payment Functions

A payment function p from A to R is a function such that the sum of all the
payments made during one allocation and by all agents is always equal to 0.
A payment from a specific agent ai is denoted by p(i). When the value of
the payment function is negative, the agent receives money, otherwise the
agent is paying money.

In this report we only refer to two different payment functions, the locally
uniform payment function (LUPF) and the globally uniform payment func-
tion (GUPF). In the former, the increase in social welfare is equally dis-
tributed amongst the agents participating in the deal. In the latter, the
increase in social welfare or ‘social surplus’ is distributed amongst all agents
in the system.

Social Welfare

Based on the utility functions, one can calculate the social welfare sw(A)
of the system. There are different kinds of social welfare which you can
calculate depending on the objectives of your society. Each definition of
social welfare gives a concrete representation of the state of the society at a
certain time.

In our report, we mainly use utilitarian social welfare (see also 2.3) for which
the formal definition is:
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sw(A) =
∑.

i∈A ui(A)

where ui are all utility functions.

If the agents manage to more optimally allocate their resources, they can
maximize the sum of their utilities, which will increase their social welfare.
Depending on which optimal state the agents are striving for, different social
welfare definitions may apply.

2.3 Objectives

Some important questions in distributed multi agent resource allocation are:
When to stop? Should one stop only after finding an optimal state, or will
a feasible state do? What are suitable measures for optimality or feasi-
bility? Should time limits be imposed? What would be the difference in
computational complexity of a feasible state versus an optimal state?

An optimal state could be defined as the maximum of the sum of individual
utilities. This is also known as utilitarian social welfare. In other cases, you
could want to maximize the individual utility of the poorest agent, or of the
richest. That is known as egalitarian social welfare and elitist social welfare.
You might want to create an envy-free system, where no other agent would
prefer another agent’s bundle over his own.

A feasible state could be defined as any progression towards the optimum.
A reason to settle for a feasible state could be a time limitation, where
it is necessary to find the best possible allocation in a fixed time span.
Other reasons could be attempts to minimize computational complexity.
Not having to calculate the actual optimal allocation relieves a great deal
of computational burden.

Pareto optimality

Pareto dominance is a relation between two allocations where the dominant
allocation is strictly preferred by at least one agent and opposed by none.
An allocation is Pareto optimal if it is not Pareto-dominated by any other
allocation.

Utilitarian Social Welfare

Utilitarian social welfare is the sum of individual utility. The maximum
utilitarian social welfare is achieved by maximizing the average agent’s wel-
fare. When agents behave according to the criterion of individual rationality
(see 3.3.3), are allowed an infinite amount of deals and can pay each other
to compensate loss in individual utility, they will always achieve optimal
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utilitarian social welfare [13]. If we refer to an unspecified kind of social
welfare or utility in this report, we are referring to utilitarian social welfare.

Egalitarian Social Welfare

Egalitarian social welfare takes the poorest agent’s utility as a measure for
the system. Unlike utilitarian social welfare, there is no clear behavior crite-
rion which guarantees optimal egalitarian social welfare. One of the criteria
that helps progress egalitarian social welfare is Pigou-Dalton transfers. Us-
ing Pigou-Dalton transfers, agents do not aim to maximize their own social
welfare, but instead attempt to minimize the difference in social welfare
between themselves and fellow agents. See also section 3.3.3.

Elitist Social Welfare

Elistist social welfare takes the richest agent’s utility as a measure for the
system’s welfare. In an elitist system, each agent needs to attempt to max-
imize only its own social welfare.

Envy-Freeness

An agent i is said to envy another agent j if agent i would prefer to own
agent j’s bundle of resources. Another objective could be to attain an Envy-
free system. In this case, you would need to maximize the average social
welfare of every agent in the system and also create other restrictions.

To be able to find more ways that agents could be restricted to converge to
a certain social optimum, it would be useful to have a simulation platform
in which you can test what happens to a society when these restrictions are
imposed. After getting some ideas from a simulation, we might be able to
find more theoretical results that didn’t seem as obvious before.
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Chapter 3

Problem outline

3.1 Introduction

Within the field of Multiagent Systems this report focuses on the area of
resource allocation, due to its applicability in many fields such as socio-
economics and computing. Indeed, quite a few simulation platforms have
been created for multiagent systems (see [5] for a listing). However, most of
these are so general, that it may become rather time-consuming to set up
and evaluate specific resource allocation related problems with these tools.
In addition, since some tools have been made for generating scenarios for
combinatorial auction problems (e.g. CATS [9]) we will focus on the area of
distributed multiagent resource allocation, as well as the actual running of
experiments using these scenarios.

In this chapter the issues concerning a simulation platform for this field will
be discussed. The simulation process can be divided into three parts: sce-
nario generation, negotiation policy and experiment support. The scenario
description module is responsible for setting up the experiment by defining
the settings that are used. The negotiation policy module handles the ex-
periment running. Finally the experiment support module ensures that all
activity is logged and provides facilities for the visualization of experiment
statistics. The aspects and difficulties of each module will be put forward
in the following sections.

3.2 Scenario generation

The simulation process starts off with creating a scenario. A scenario is
defined by the following parameters:

• The number of agents taking part in the negotiation
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• The number of resources

• The utility functions used by the agents

• Initial allocation

Changing these settings may have different results per setting. Changing
some will mainly influence the computational load (e.g. number of resources)
and other can influence whether an optimal state can be reached (e.g. utility
functions used). A lot of variation is possible in selecting the utility function,
which makes it an interesting setting. Section 4.3.2 will expand on how our
platform provides the possibility for random utility function generation.

3.3 Negotiation policy

Once all settings pertaining to the scenario are set, the negotiation module
comes in. The major part of the computational load is due to this part of
the process. In this section the most important aspects of the negotiation
stage are discussed. This may help to clarify why certain functionalities are
included in our simulation paltform. First of all the issue of money will
be discussed. Then deal selection is introduced, and finally the possiblities
regarding agent rationality and deal acceptability are elaborated.

3.3.1 Payments

In order to compensate for deals that are not advantageous for an agent,
the use of money is be introduced in the negotiation stage. Here classes of
deals, such as 1-resource-deals, are now made possible. Without money, an
agent would never donate a resource to another agent (assuming positive
utilities). However with side-payments introduced, the agent can donate its
resource in exchange for money.

Monetary payments

During the negotiation process many payments can be made and received by
one agent. However, instead of storing all payments for each pair of agents,
this can also be stored as the total amount of money an agent receives or
pays. This can be modelled by a payment function p : A → R, which has
to satisfy

∑
i∈A p(i) = 0. That is, no money can enter or leave the society

of agents. This function is defined as such, that when p(i) > 0, agent i
pays the amount of p(i) in this negotiation round. When p(i) is negative,
however, i receives the amount of −p(i).

As described by Chevaleyre et al. in [3], at least two uses of money can be
distinguished:
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Infinite money In this situation all agents possess an unlimited amount
of money. This means that they can pay any amount necessary. To even
more increase the variety of possible scenarios, other additions to this scheme
are possible. Examples are products/tasks that have a cost of∞ (Andersson
and Sandholm [1]) and extending utility functions so that situations such as
ui(R) =∞ (Endriss et al. [6]), which implies that an agent is willing to pay
any price to obtain this resource R.

Limited money It is obvious that having infinite money is not always a
realistic assumption. A more reasonable one is where the amount of money
is limited. In this case, money can be seen as just another resource.

Necessity

As one can imagine, the possibility of side-payments make the negotiation
process more versatile. However, there are even some specific scenarios
where side-payments are necessary to guarantee that some maximal state
can be reached. An example can be found in [8].

Types of payment functions

When payments are used, several payment functions p(i) can be chosen from.
Important to our project are mainly the LUPF and the GUPF payment
function, which are the most simple ones available.

LUPF As explained in the terminology, the LUPF payment function di-
vides the social welfare surplus (i.e. the increase of social welfare) over all
agents Aδ that were involved in the deal. In formula form this is:

p(i) = [ui(A′)− ui(A)]− [sw(A′)− sw(A)]
|Aδ|

If i ∈ Aδ else 0

GUPF In contrast, the GUPF divides the social welfare surplus over all
agents in the agent society. In formula:

p(i) = [ui(A′)− ui(A)]− [sw(A′)− sw(A)]
|A|

Since using different payment functions may render certain social optimal
allocations unreachable, it is clear that these parameters should be included
in a good simulation platform. For example, using GUPF and IR (see section
3.3.3) deals, will eventually terminate in an efficient and envy free state (see
[4]). With LUPF this is not necessarily the case.
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3.3.2 Deal selection

Deal selection is concerned with choosing which resources an agent trades
with another, if any. In a simulation platform, this amounts to selecting
the agents that will make a deal, and choosing which resources they will
exchange. It is perhaps the most difficult part (from a theoretical point of
view) of negotiation. This is mainly due to the potential combinatorial na-
ture of the problem. The influence of this part is, however, too important for
it to be handled superficially. Selecting a different deal selection algorithm
can influence the performance of the resource allocation process. It may
even influence whether an optimal allocation can be reached. In the section
on experiment running (Section 4.5), more information is given about the
implemented deal selection algorithms.

3.3.3 Agent Rationality

A final characteristic that has great influence on the negotiation process
is the agent’s rationality. This characteristic determines whether or not a
proposed deal is acceptable for that agent. We will discuss a criterion called
Individual Rationality and the Pigou-Dalton transfers.

IR

Individual Rationality (IR) is a criterion that best fits a utilitarian society.
In short, this criterion states that a deal is acceptable for an agent iff the
corresponding utility increase is greater than the amount of money the agent
pays. The reverse also holds: The amount an agent receives should be higher
than the decrease of the agent’s utility. That is:

ui(A′)− ui(A) > p(i) for all i ∈ A

Possibly p(i) = 0 if A(i) = A′(i)

As shown in [6] individually rational deals will always lead to an increase in
social welfare. This fact shows why this criterion is useful in a utilitarian
setting, since this strives for a maximal social welfare.

Pigou-Dalton transfers

This criterion best fits an egalitarian setting. Pigou-Dalton transfers try to
reduce the difference in utility between two agents. These transfers have to
satisfy the following constraints:

• Aδ = {i, j}
Only the agents i and j are involved in the deal.
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• ui(A) + uj(A) = ui(A′) + uj(A′)
The transfer does not change the total amount of utility

• |ui(A′)− uj(A′)| < |ui(A)− uj(A)|
The deal reduces inequality

Although this is an interesting criterion, it has not yet been implemented
in our platform. It is also not a criterion that ensures convergence to an
optimal state, unlike individual rationality. Finding more criteria which do
demand convergence would be very beneficial.

Since varying rationality criteria best fit varying social optima, this is a
setting that should be changeable when running experiments.

3.4 Experiment support

The greatest distinction between a Multiagent systems implementation and
a Multiagent systems simulation platform is the experiment support. For
a platform to be useful, it should provide sufficient facilities for calculating
and visualizing the statistics of the foregoing experiment. In addition it is
desirable to be able to compare different experiments with each other. Here
a mixture of practical and theoretical difficulties are encountered. ‘What is
the best way of storing an experiment?’ and ‘What types of visualizations
are most useful?’ are practical issues that need to be addressed.
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Chapter 4

Implementation

4.1 Introduction

Given the theoretical ideas and results discussed in the previous sections, we
wanted to try to obtain more results by actually testing them in a simulation.
We hoped that testing them in such a practical way would perhaps give an
indication as to where other interesting theoretical results might be found.
In order to do so, we wrote an implementation of Multiagent Resource Allo-
cation ourselves. We decided to use Java because of its platform-independent
and Object-Oriented features.

4.2 Architecture

We divided the simulation platform into three main parts: the scenario
generation, the experiment running and the graphing. Each of the parts
functions autonomously, and can use an input file generated in a previous
section. This way the usage of the system becomes more modular, and the
user can for instance generate many possible experiments, and later run
them all one after another. A user can also run the same experiment many
times, and overlay the outcomes into the same graph to be able to extract
common trends. To see a schematic overview of the system, see figure 4.1.
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Figure 4.1: An overview of the various packages in the simulation platform
and their input parameters.
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4.3 Scenario Generation

The first module takes care of the generation of a scenario. In this step, the
following items must be defined:

1. the name of the scenario.

2. a description of the scenario.

3. the number of agents to use.

4. the number of resources to use.

5. how the resources are initially divided amongst the agents.

6. how much the agents value the resources (the agents’ utility functions).

The name, description, number of agents and number of resources are some-
what self-explanatory. The last two items will be explained in more detail
in the following paragraphs.

4.3.1 Initial Resource Allocation

In order to get a working scenario, one must specify an initial allocation of
the resources in the scenario amongst the agents involved. To do this, we
randomly select an agent for each resource, and then allocate the resource
to this agent.

4.3.2 Utility Function Generation

As a next step, it is necessary to supply the agents with utility functions.
In the process of simulation, however it is desirable to have control over the
amount of randomness in these functions. In some situations randomness is
required to differentiate the agents, and at other times it is useful to have
predetermined values for the parameters. In this way one can more easily
control the experiments.

Weighted Propositional Formulas

In the approach discussed here, Weighted Propositional Formulas are used
for the representation of agent preferences. This choice is made, due to
its expressive power and its relative simplicity. This approach uses logi-
cal formulas to express utility and consists of a weighted goal base GB =
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{〈G1, α1〉, . . . , 〈Gn, αn〉}. Here Gi is a propositional formula containing re-
sources as atoms and αi is the weight assigned to the goal. The utility of a
certain allocation for agent m is then calculated with:

uGB(A(m)) =
n∑

i=1

{αi|A(m) |= Gi}

k-additive form

A more specific form of this approach is called the k-additive form. With
this representation, formulas are of the form

G =
∧
r∈T

r With T ⊆ R and |T | ≤ k

We will call a goal concerning precisely j resources a j-goal. The weight
that is associated to a goal indicates the additional utility this subset of
resources gives the agent. This form is fully expressive if all (postive and
negative) weights are allowed. Note however that in the current implemen-
tation the optimal partial reallocation algorithm (see section ) assumes that
only positive weights are used. Furthermore this form is particularly fit for
random generation due to its structure.

Parameters

Although a k-additive UF is much more restricted than when full weighted
propositional formulas are used, there are a lot of parameters that can be
set. For some of these it is perhaps hard to give a meaningful interpretation
of their values, and for others varying the values may not be useful for re-
search or practical ends.

In the remainder of this section a (not exhaustive) number of parameters
is given with a few statements about their possible use to give an idea of
the variety of parameters. The parameters can be divided in two categories:
parameters that cause variation between UFs and parameters that cause
variation between the formulas within a UF.

Inter-UF variation

• The value of k
Making k variable will allow the agents to differentiate in the way they
value the resources. Do they place a preference on a lot of resources,
or only a few?
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Inter-Formula variation

• The amount of goals with a certain length
Of all formulas with length j there are at least two reasons one might
not want to generate all of these. First of all this is a very computation-
aly intesive task. Note that the number of possible formulas is equal
to the number of possible combinations when choosing j resources out
of a total of |R|. This number gets very larger very quickly, for exam-
ple: if |R| = 60 and j = 30 there are 1.18 × 1017 possible formulas.
Secondly it can be very useful in order to create realistic scenarios.
It might, for instance, seem logical to create a larger percentage of
smaller formulas since it is perhaps to complex for an agent to know
the additional utility of large combinations of resources.

• The sum of the weights assigned to all goals
That is:

∑n
i=1{αi}. This parameter indicates how greedy the agent is

who owns this utility function. An agent with a higher total weight
sum is in some sense more greedy, since it places a larger overall pref-
erence on resources. The total weight is implicitly defined by the
probability distribution of the assignment of a certain weight.

• The way this mass is distributed over the j-goals (1 ≤ j ≤ n)
In some situations one would want to assign a larger additive utility
to singleton sets than to larger sets.

• The distribution of R over the different goals
Are all resources used in the formulas and which resources are used
in which formulas? Some resource might only occur in the shorter
formulas or vice versa. Perhaps, however, a random distribution is
best for an initial approach.

Parameter instantiation

It is difficult to say what realistic or useful instantiations of these parameters
are. Our current implementation thus merely provides several different ways
of setting these parameters. Examples are a precise (predetermined) setting
or by means of probability distrubtions (such as normal, uniform). It is also
possible to manually add modules if these possibilities are not sufficient.
What the influence is of each type of instantiation is matter for further
research.

Generating formulas of length k

Randomly generating formulas of length k is not as easy as it seems. Its dif-
ficulty arises from the fact that an agent should only have distinct formulas.
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Thus, if there are 20 possible formulas of length k, and 15 need to be se-
lected, it is likely that the the generation process is time consuming. A more
extended analysis and solution to this problem can be found in Appendix
A.

4.4 Scenario Representation

In order to conveniently store, modify and share experiment scenarios, we
designed a fileformat for these purposes. This section documents that file
format, its features and limitations, and it gives a concrete example of what
such a scenario file could look like.

We chose to use XML for formatting the data, because XML parsers are
ubiquitous by now, so getting the data in and out of the format should be
easy, even if one wants to use other tools, or just wants to quickly modify a
scenario in order to conduct a slightly different experiment.

4.4.1 Example

The following is an example of a valid XML-formatted description of a sce-
nario involving 5 resources, named r1 through r5, and 2 agents, named a1

and a2. An agent’s utility function is defined by an unordered list of goals,
which each have a weight attribute and a value which describes the goal that
should be fulfilled in order for the weight to be added in the utility of that
agent for his set of resources at that particular time. The initial allocation
is semi-random-picked by the authors of this document.

<?xml version="1.0"?>
<scenario name="My Scenario for Experiment 2000">

<description>This scenario was made to test x and y
and should be run z times and then averaged.</description>
<resources>

<resource id="r1"/>
<resource id="r2"/>
<resource id="r3"/>
<resource id="r4"/>
<resource id="r5"/>

</resources>
<agents>

<agent id="a1">
<utility>

<goal weight="3">
(and r1 r2)

</goal>
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<goal weight="5.6">
(or r3 r4)

</goal>
</utility>

</agent>
<agent id="a2">

<utility>
<goal weight="2">

(implies r1 r3)
</goal>
<goal weight="-4">

(biimplies r1 r4)
</goal>

</utility>
</agent>

</agents>
<allocation>

<bundle agent="a1">
<resource id="r2"/>
<resource id="r3"/>
<resource id="r5"/>

</bundle>
<bundle agent="a2">

<resource id="r1"/>
<resource id="r4"/>

</bundle>
</allocation>

</scenario>

4.4.2 XML Tags used

In describing a scenario, the following tags and attributes are used:

scenario The <scenario> tag contains all the information for the scenario.
It must be the root tag. There must be no siblings for this tag. All
other listed tags must be descendants of this tag. The <scenario> tag
should have a name attribute giving a (short) name to the scenario.

description The <description> tag contains a (longer) textual descrip-
tion for the scenario. It should solely consist of text. It must be a
child of the <scenario> tag.

agents The <agents> tag contains an unsorted list of agents involved in
the scenario. It must be a child of the <scenario> tag. Its children
must solely be <agent> tags.
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agent The <agent> tag contains a description of an agent. It must have
an id attribute describing the unique identifier associated with this
agent. The id shouldn’t contain anything other than alphanumeric
symbols and the dash and underscore. There must be no other tag
within the document with the same id. An <agent> tag can contain
a <utility> tag describing the agent’s utility function. An <agent>
tag must be a child of an <agents> tag.

utility The <utility> tag contains a description of the utility function of
the agent. It must only contain <goal> tags. It must be the child of
an <agent> tag. The formulas representing the agent’s preference are
Weighted Propositional Formulas (as described in Section 4.3.2).

goal The <goal> tag contains a description of a single goal within an agent’s
utility function. It must have a weight attribute that has a numeric
value indicating the weight that agent attaches to this specific goal
holding in a particular allocation. It should contain text describing a
formula that must hold true for the weight to be added to the agent’s
utility. The formula text should have the Lisp-like syntax described in
section 4.4.3 on Goal Representation. A <goal> tag must be a child
of an <utility> tag.

resources The <resources> tag contains a description of all resources in-
volved in a particular scenario. It must contain only <resource> tags.

resource The <resource> tag describes a single resource. It must be a
child of either a <resources> or a <bundle> tag. It must have an
id attribute describing the unique identifier associated with the re-
source. All resources must appear once, and only once, as a child of
the <resources> tag and at most once as the child of a <bundle>
tag. Hence, there should never be more than 2 instances of a single
resource id present in any scenario description.

allocation The <allocation> tag contains a description of the starting
allocation for this scenario. It must be a child of the <scenario> tag.
It must only have <bundle> tags as children.

bundle The <bundle> tag describes a bundle of resources allocated to a
particular agent in a given allocation. It must be a child of
an <allocation> tag, and must contain only <resource> tags. It
must have an agent attribute which describes an existing unique iden-
tifier of a given agent.

24



4.4.3 Goal Representation

Goal formulas are represented using a simple Lisp-like syntax. Here’s an
informal ABNF (Augmented Backus−Naur form) grammar for the syntax
used. Note that <a>*<b>element means a repetition of element with a
minimum of a and maximum of b repetitions. a and b deault to respectively
0 and infinity.

atom = DIGIT
/ ALPHA
/ "-"
/ "_"
/ 1*atom

formula = atom
/ "(and" formulalist ")"
/ "(or" formulalist ")"
/ "(implies" formula formula ")"
/ "(biimplies" formula formula ")"
/ "(not" formula ")"

formulalist = formulalist formula
/ formula formula

In other words, a formula is always one of the following:

• an atom

• a conjunction, i.e. “(and”

• a disjunction, i.e. “(or”

• an implication, i.e. “(implies”

• a bi-implication, i.e. “(biimplies”

• a negation ie “not”

An atom is always at least one character long, and solely consists of alphanu-
merics and the dash and underscore characters.

A conjunction, disjunction, implication and bi-implication should be fol-
lowed by at least 2 whitespace-separated formulas, followed by optional
whitespace, followed by a closing parenthesis “)”.

A negation should be followed by at least 1 whitespace-separated formulas,
followed by optional whitespace, followed by a closing parenthesis “)”.
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4.4.4 Storage

Scenarios should be stored in files with the .sdf extension, which is short
for Scenario Description File. They should contain at least a collection of
agents and resources, but can also provide the utility functions of these
agents, and/or the resource allocation of the resources to the agents. To
actually run a scenario, all of the above is necessary (but could be assembled
from different files).

4.5 Running an Experiment

When running an experiment, essentially what takes place is an iterative
search for better allocations. The implementation takes the current allo-
cation and tries to find a better one. When it finds one, it tries to find a
new one that is even better, and so on, until a user-specified limit on the
number of times it should try to find a better allocation has been reached.
The transitions between these allocations are called deals . The process of
creating a deal is described in the following subsections.

4.5.1 Agent Selection

First, the implementation selects two agents randomly from the set of all
agents participating in the scenario. If the second agent is the same as the
first agent, it will insist on randomly selecting new agents until this method
produces a different agent.

In reality, of course, more than two agents could participate in a deal. This
has not been implemented yet. There are two possible ways of finding new
deals amongst two agents that we have implemented. Both are discussed in
the following subsections.

4.5.2 1-resource deals

A 1-resource deal is, as the name implies, a deal involving just one resource.
This is mostly useful if there is money involved, otherwise it would not be
possible to transfer most resources (because it would not be rational for
an agent to give away a resource he cares about). Note that the current
implementation does not support running an experiment without money, so
this is not a problem.

This is implemented in a very simple manner. The code loops through all
the resources owned by one of the agents, and checks if trading the resource
would increase social welfare (which, because we use money, is equivalent
with individual rationality). If it does, it stops and trades that resource,

26



and then the deal is done. If the deal is not rational, it will try the next
resource, and if all the resources from this agent don’t work out, it tries all
those from the other agent. When those fail too, the attempt fails entirely.

4.5.3 Optimal Partial Reallocation

Another possibility of selecting a deal between two agents is optimal partial
reallocation. This approach redistributes all the resources owned by two
agents in the best way possible. To figure out what an optimal reallocation
of resources between two agents is, we will employ A*. This approach was
inspired by the proposed algorithms for combinatorial auction problems used
by Sandholm for Optimal Winner Determination as described in [14]. When
using A* for a certain problem, states, moves and a heuristic need to be
defined. To apply A* to this situation, the following definitions are chosen.

A* - States

In combinatorial auction problems, Sandholm shows that a bid-oriented ap-
proach tends to give better performance in practice, compared to a good-
oriented approach [12]. With this in mind it would be a sensible choice to
use a utility-oriented approach. However, finding an admissible heuristic for
this approach is rather difficult, and it is not at all evident that the effort
of finding such a heuristic is outweighed by the performance improvement.
Thus the state space will be defined from a resource perspective. Here a
state is defined as:

• For each agent the set of resources which has been allocated to it.

• The set of unallocated resources.

In the initial state no resources are allocated. The final states are charac-
terized by having all resources are allocated.

A* - Moves

Given this state space, a move amounts to making a decision for one resource
from the set of unallocated resources. Here we assume that the resource to
be allocated is always the ‘next in line’, or random. This way no actual
reasoning has to be done in selecting a resource. Improvements to this ap-
proach could consider heuristics for selecting the next resource. The resource
in question can be allocated to only one of the agents, two in this case. As
a consequence every state has only two successor states.
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A* - Heuristic function

In addition, the function f needs to be defined, for the A* algorithm to work
correctly. This function is calculated as follows:

f(x) = g(x) + h(x)

Here g(x) is the total cost of taking this path up to node x, and h(x) the
estimation of the costs that can be expected in the remainder of this path.
h(x) is better known as the heuristic function. To ensure that the solution
path is optimal, the heuristic must be admissible. This means that the
chosen heuristic should make an ‘optimistic’ estimate of the costs. This
means that the estimate of the costs should always be lower than the actual
costs. However, since this situation deals with utility instead of costs, the
heuristic should always overestimate the utility.

Choosing the function g(x) is not difficult: it is the social welfare of the
small subcommunity consisting of the two agents. Since it calculates the
precise utility of the current allocation, it represents the total utility of the
path up to the node x.

For h(x) the following formula will be chosen:∑
i∈Agents

∑
(G,α)∈Goalsi

α (4.1)

Here (G, α) signifies a goal G and its weight α.

Here Goalsi only contains those goals that still have the possibility to yield
any extra utility for agent i. This means that Goalsi equals agent i’s goal-
base minus those goals which contain resources that have been allocated to
another agent. Additionally all goals are removed that are already satisfied
by the agents currently allocated resources.

Admissibility of the heuristic One can easily show that our heuristic
indeed overestimates the actual utility increase. The given function esti-
mates the total utility increase in the remainder of the path by assuming
that all goals that can be satisfied, will be satisfied for each agent. It is
clear that the actual amount can not be any higher, since all goals are taken
into account. The goals that are left out in Goals do not have to be taken
into account since they will never yield any additional utility: the agent will
never acquire one or more of the resources that are required to satisfy the
goal.

However, this heuristic in not the best possible, as the estimate is rather
far from the actual utility increase. It is clear that, in most situations, only
a few of all goals in Goals will be satisfied since satisfying a goal for one
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agent will in many cases invalidate one or more goals for another. As a
consequence only a few weights will be added to the utilities of both agents.
Regardless of these issues, we will stick to this heuristic for now.

Example search tree

Using these parameters, A* can now be applied. To give more insight into
the workings of the search process, a search-tree of a small problem is shown
in Figure 4.2.

Figure 4.2: Optimal partial reallocation example

Problematic issues - Complexity

Using this approach several problems might occur. The first problem takes
place in scenarios with a high resource to agent ratio where the agents only
have preferences for a small amount of resources. In these situations there
are a lot of resources that no one cares about. This means that, using
this heuristic, allocating one of those resources will not give a more precise
heuristic value. Since A* receives no additional information beyond the cost,
its heuristic is crippled. This makes the algorithm a lot slower, and even
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cause it to hang in some situations due to extremely large search trees (e.g.
240 nodes).

One solution to this problem is to add a preprocessing phase in which all
resources that are not wanted by anyone can be either randomly allocated
or assigned to the agent who already owns them. Resources that are only
wanted by one agent can automatically be assigned to this agent. In the
current implementation the latter solution was chosen. (See Future work,
section 7, for other possibilities). We leave it to the reader to check that
this approach saves one step in the above example. After implementing this
adaptation, the algorithm indeed turned out to show better performance.
Experimental results of the use of this algorithm can be found in section
6.1.

Problematic issues - Global optimality

Although this algorithm does ensure an optimal partial reallocation, it can
not guarantee a global optimal state after a certain amount of optimal par-
tial reallocation deals. Even though this is a known problem, we illustrate
this with an example:

Utility functions

Agent 1: {r5; weight=4}
Agent 2: {r1, r4, r7; weight=10}
Agent 3: {r9; weight=3}

Initial allocation

Agent 1: r1, r2, r3
Agent 2: r4, r5, r6
Agent 3: r7, r8, r9

Recall that all goals which contain resources that cannot be allocated to
the agent will be removed. This means that if agent 1 and 2 enter optimal
partial reallocation, agent 2’s goal is removed, since it could never receive
r7 (seeing as agent 3 is not participating in the deal). After removing this
goal, neither agent ‘prefers’ r4. Then, if the algorithm is biased to choosing
a certain path (say the ‘allocate to agent 1’ path), agent 2 will never receive
r1. And thus the optimal state, where agent 2 receives r1, r4 and r7 is never
reached.

Randomly reallocating the non-preferred resources may improve the situa-
tion. The chances of finding a better allocation will increase compared to
the situation where they are not reallocated or allocated to one agent by de-
fault. However, despite this adjustment the algorithm will still be globally
non-optimal in some cases.
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4.6 Saving the results

Whichever algorithm you use to find deals, the results are always saved in
the same, very simple format. A rough example follows:

Start experiment data
<?xml version="1.0"?>
<!-- The entire XML scenario file is included here for calculations
that you might want to use on the result. For the sake of readability,
this has been left out. -->

Money: true
Payment: LUPF
End experiment data
Start allocation sequence
Allocation 0
agent0
r0
0.0
0.0
agent1
r1
3.0
0.0
agent2
r2,r3
4.0
0.0

Allocation 5
agent0
r3
1.0
-1.0
agent1
r1
3.0
0.0
agent2
r2,r0
5.0
-1.0

End allocation sequence
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So in short, first the entire scenario is inserted, so that parsers can calculate
things like envyfreeness and such, which require the agents’ utility functions.
Then there are two lines stating whether money has been used, and what
kind of payment function was in use.

After that the ‘real’ data starts: a long sequence of allocations. The se-
quence is started by the line ”Start allocation sequence”. What follows is a
sequential list of allocations. Each allocation is specified by a list of data, 4
lines per agent. For each agent, the lines state:

1. the agent’s id.

2. the agent’s resources, separated by commas.

3. the agent’s utility at this point.

4. the amount of money the agent has received (negative) or spent (pos-
itive).

Each allocation starts with a line saying Allocation N where N is the
number of tries that it took to get this allocation (from the start of the
running of the experiment). Each allocation ends with an empty line (note:
other empty lines may occur if an agent owns no resources). The entire
sequence of allocations ends with a line stating ”End allocation sequence”.

4.7 Graphing the Results

While the format of the results is somewhat human-readable, it is really hard
to draw comparisons and get an idea of the big picture. For this purpose,
we wrote a grapher that can read the output files and produce graphs of
some of the more interesting correlations between the different kinds of data
contained in the output. The grapher supports the following types of graphs:

• Number of Resources per agent This graph gives an overview of
the changes in resource possession per allocation. It is meant mostly
as a control graph, in which you can check whether an agent might
have a very strange utility, or anything else might have gone wrong.

• Social Welfare per Allocation This graph shows the increase in
the sum of the utility per allocation. It clearly shows the progression
towards an optimum, and is very useful for determining the shortest
amount of time needed to gain the maximum amount of welfare.

• Try Count per Successful Allocation The closer the system gets
to an optimal state, the more difficult it becomes to find a possible
deal. This graph plots the amount of successful allocations per the
amount of deal attempts.
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• Maximum Envy This graph plots the envy of the most envious agent
per allocation.

• Average Envy This graph plots the average envy of all the agents
the system. As the experiment progresses, you would like to see a
decrease in envy as well as an increase in social welfare.

• Number of Envious Agents per Allocation Using this graph you
can see how envy is distributed throughout the system.

• Total Envy A summation of all the envy of all the envious agents per
allocation.

Additionally, the graphing system allows you to overlay graphs on top of each
other, and graph the output of multiple data files. It also has an option as to
whether or not money should be taken into account when calculating envy
amongst agents.

Figure 4.3: An example graph from the Grapher
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Chapter 5

Usage

You can see an overview of the simulation platform in figure 4.1.

The simulation platform is provided as either source files, or jars. De-
pending on your preference, you can either compile yourself or use the jar
files.

5.1 Compilation

You can compile all packages using the build files supplied. If you use a mac
or linux, type ./build.sh. If you use windows, use build.bat.

If after you use the source files you want to combine the source into jars
again, you can use deploy.sh or deploy.bat.

If you would like to use jars instead, simply unzip the MARA.zip file, and
everything should work with double-clicking.

5.2 The Scenario Generator

In the scenario generator (figure 5.1), you define the number of agents, the
number of resources and the utility functions. Note that if you generate
many more resources than agents, the complexity will go up exponentially.
If each agent receives an average of r resources, and you’re looking to re-
distribute the resources of 2 agents, you will have a complexity which ap-
proaches 22r.

The generator gives you the option to either generate a new random allo-
cation of resources to agents, or use and existing scenario description file
(.sdf).

To call the scenario_generator, double click the ScenarioGenerator.jar
package in your favorite file browser.
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Figure 5.1: Scenario Description Interface

After generating the starting scenario, you can generate utility functions
(figure 5.2). The first option is used to specify a distribution for k, where
k is the maximum size of the set of resources referenced by one goal in
an agent’s utility function. A precise distribution of k = 3 will result in
all agents having utility functions containing between 1 and 3 resources in
each goal. An example is ((and ra rb), 5), where the set of resources
{ra, rb} receives a value of 5. One can also select a normal distribution for
k. Thus, in general this setting defines a distribution, such that every agent
is assigned a value k which is drawn from this distribution. In the preview
graph you can see what the your distribution will look like using your chosen
settings.

The second setting defines a mapping function as opposed to a distribution.
With this parameter the so-called formula length to count mapping is spec-
ified. This function determines how many formulas will be generated of a
certain length. If the selected function returns values that are larger than
the maximum amount of possible rules, the maximum is returned instead.
When a value below zero is returned, zero is returned. One can choose a lin-
ear percentage function, which returns a percentage of the possible amount
of formulas of that length. The linear function does not specify the per-
centage but the exact amount of formulas. Finally a gaussian percentage
function can be used as well. It should be noted that the total possible
amount of formulas is usually very large, and therefore percentage functions
will mostly return very high numbers. Of course this is not a problem if a
small k is chosen.
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Finally you will need to select the amount of variation in the weights of
each formula. Should each set of resources be just as desirable? A common
option here is a uniform distribution with both a lower and an upper bound.
Do note that you cannot use negative weights, so your lower bound has to
be at least 0.

Figure 5.2: Utility Function Generation Interface

5.3 The Experiment Runner

After generating an adequate scenario, you can start to run experiments.
In the experiment runner (figure 5.3), you can load your scenario, select
the desired payment function and number of allocation tries, and finally run
your experiment. You should choose a reasonable amount of allocation tries,
for small experiments with less than 20 agents, the 10 000 default is a bit of
an overkill. While running our own experiments, we used a rule of thumb
that allocation tries was more or less the total amount of agents times the
total amount of resources.

To call the experiment runner, double click on the ExperimentRunning.jar
package.
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Figure 5.3: Experiment Running Interface
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5.4 The Grapher

The experiment running will have generated a .csv file. You can read the
output yourself, or you can half the Grapher (figure 5.4) plot it into a graph
for you. You can read more about the graph options in 4.7.

To run the Grapher, double click on the Grapher.jar package.

Figure 5.4: Graph Generation Interface
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Chapter 6

Results

6.1 Optimal partial reallocation

Using the algorithm and heuristic as described in previous sections, some
interesting results were found using the presented simulation platform.

6.1.1 Time-based performance

The quality of the defined heuristic can be assessed by comparing experiment
runtimes using this heuristic with those using a trivial heuristic. The trivial
heuristic highly overestimates; this is done by adding one million to the
original g function. Comparing these to can be a useful indication whether
or not the chosen heuristic is any good.

For the experiments a scenario was used with 16 agents and 80 resources.
The utility functions had k = 3, so for each length up to k, the system
generated 3 formulas. The weights were randomly assigned from a uniform
distribution between 1 and 100. The initial allocation was generated ran-
domly.

After running the experiment several times, the following averaged results
were obtained.

Table 6.1: Experiment run times

Our heuristic Trivial heuristic Try count

20.3 s 21.8 s 200
40.5 s 60.9 s 400
82.0 s 686.3 s 800

From these results we can conclude that this heuristic definitely performs
better than a trivial heuristic. In the beginning the deals are easy to find
and thus even the trivial heuristic performs well. After more tries the deals
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become more complicated. For our heuristic the time grows linear with the
amount of tries. In contrast, the trivial heuristic grows much faster.

Of course these results do not show that the chosen heuristic is good. How-
ever, they definitely show that it is not the worst.

6.1.2 Optimal partial reallocation vs. 1-resource-deal

In addition to time performance, it is interesting to investigate the difference
between 1-resource-deals and optimal partial reallocation when considering
utilitarian social welfare. For this purpose experiments were run using the
same scenario as in section 6.1.1. Additionally the same scenario with an-
other intial allocation was used. This produced some mixed but interesting
results, these are shown in Figures 6.1 and 6.2.

Figure 6.1: Social welfare increase for initial allocation 1

From these few experiments it seems as if the optimal reallocation increases
faster than with the 1-resource-deals. Intuitively this also makes sense since
the 1-resource-deal policy randomly selects two agents and a resource while
optimal partial reallocation searches the state space far more directed. To
support these intuition, more systematic experiments should be run with
varying utility functions and ininitial allocations.

40



Figure 6.2: Social welfare increase for initial allocation 2
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Chapter 7

Limitations and Future work

As has become clear in the previous chapters, the possiblities of the sim-
ulation platform are vast. Although this is an encouraging prospect, the
downside is that we have currently not come to discover many of them. In
this section some of the possible improvements are discussed.

7.1 Theoretical work

In this report several theoretic issues have been discussed. Most of these
offer possibilities for further improvement. In addition some novel theoretic
issues can usefully ameliorate the current implementation.

7.1.1 Optimal partial reallocation

First of all, a lot of work remains to be done regarding the deal finding
policy optimal partial reallocation (See section 4.5.3). This mainly concerns
the heuristic we used.

Negative weights

The chosen heuristic does not support negative weights: using negative
weights renders the heuristic inadmissable. As a consequence the k-additive
form is no longer fully expressive. It is clear that this is an important limi-
tation, which future work can resolve by finding a better heuristic.

Global optimality

Furthermore, future work should adress the issue that the current heuristic
is not always optimal in the global case. This can perhaps be done, by in-
cluding information about resources owned by other agents that do not take
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part in the optimal partial reallocation. Another idea is to value partially
completed goals which contain resources that are owned by non partipating
agents.

7.1.2 Utility function generation

In section 4.3.2 the issues related to utility function genertation were intro-
duced. Several parameters were described of which a few are implemented in
the simulation platform. Future work should examine which (other) param-
eters are in effect useful in typical distributed multiagent resource allocation
situations.

Furthermore it is not at all clear what realistic values are for the current
parameters. Questions as ‘What distributions and functions are relevant?’
and ‘Which values are realistic?’ should be adressed. Answers to these
questions can lead to a more useful set of parameters for utility function
generation.

7.1.3 Computing optimal outcomes

Regarding experiment support (Section 3.4) an important and difficult the-
oretical issue is the question if the optimal outcome of the scenario can be
calculated. In, for example, a utilitarian experiment it can be useful to
evaluate the used settings by comparing the eventual social welfare with
the optimal social welfare. Such a comparison may be able support intu-
itions about whether using certain settings will ensure that the negotiation
approaches the optimum. Future work should thus seek ways to calculate
these optima for different types of social optima. It should be noted that
it would presumably not be too hard to extend the A* algorithm and its
heuristic described in section 4.5.3 to work for the set of all agents and
reallocate all resources at once.

7.1.4 Random combination sequence generation

The implementation of the random generation of combination sequences, as
described in Appendix A works well. However, it should be further examined
if the algorithm performs significantly better than the naive algorithm in
practical situations.

7.2 Implementation related work

Besides the theoretic work, also a lot of improvements remain to be explored
regarding the implementation of the simulation platform.
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Complexity issues

An improvement related to the problem described in ‘Problematic issues -
Complexity’ (Section 4.5.3). The preprocessing phase proposed could be
replaced by including a resource selection heuristic. If resources that do not
occur in any agent’s utility function are allocated, the function f(x) does
not change. Since the heuristic overestimates more in the beginning of the
search tree (due to the fact that no goals can be trimmed) the value for f(x)
will be unrealistically high. If after a few of these resources a conflicting1

resource is allocated, the heuristic becomes more realistic and thus smaller.
A* will then proceed to expand all nodes in the tree above that allocate
non-preferred resources, since the heuristic of those nodes is higher than the
just expanded (more realistic) value.

To solve this, a heuristic could be used that selects a resource to allocate
next. Intuitively it makes sense to allocate conflicting resources first. It
might also be useful to take into account the weights of the goals in which
they appear. Although these notions seem intuitively correct, future work
should investigate whether this is indeed so.

7.2.1 Memory management

During the use of the current version of the platform, it turned out that gen-
erating utility functions can, using certain parameters, cause Java to run out
of memory. This occurs when the amount of agents and resources get large
in combination with many goals to be generated. It is not clear if the prob-
lem lies with the used algorithms or the programming work. This problem
should be solved, so that a larger variety of scenarios can be generated.

7.2.2 Rationalities

Currently only individual rationality is implemented (See section 3.3.3). To
provide support for more types of experiments, it is interesting to implement
a wider range of agent rationalities. A good start are the Pigou-Dalton
transfers.

7.2.3 Experiment automation

Finally it would prove very useful if the platform provides experiment au-
tomation. For example, the experimenter should be able to run the same
experiment 100 times with different initial allocations, or with certain vari-
ations in utility functions. Using this, results could be averaged to provide
more reliable outcomes.

1A conflicting resource is a resource that appears in a goal of both participating agents.
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Appendix A

Random combination
sequence generation

A.1 Introduction

In this appendix the issue of random combination sequence generation will
be discussed. This is an issue that needs to be resolved when generating UFs.
An algorithm that solves this is useful when, for example, a formula for a k-
additive goal is created. These formulas consist of a conjunction of a certain
amount of resources. Since conjunction is a commutative and associative
operation, the order in which these resources appear in the formula does
not affect the semantics of the formula. Thus a combination of resources
is sought. Moreover, since a simulation should have random aspects, these
combinations need to be generated randomly.

A.2 Problem description

As this problem appears in many forms, a more abstract problem descrip-
tion will be given here.

Let n, k ∈ N and let O be a set of objects with |O| = n
Then C = {X | X ∈ 2O ∧ |X| = k} are all combinations of k objects from
O.

Generating a random combination from C is not difficult. The problem
of random combination sequence generation, however, amounts to picking
more than one distinct combinations randomly from C. If C were com-
pletely known this was not a difficult problem. However computing C is
computationally intensive, since finding all combinations is a combinatorial

48



problem. Consequently the core problem amounts to finding an efficient way
of generating a sequence S of m distinct combinations randomly, while:

S ⊆ C ∧ |S| = m

A.3 Problem illustration

In a naive approach, one might consider randomly picking a number x1 ∈
{1, . . . , n}, then choosing x2 ∈ {1, . . . , n}. In case the newly generated
number is equal to a previously generated nubmer, discard it and try again.
This is repeated until a complete combination x1 . . . xk is generated. This
approach clearly creates a random combination and, when repeated, will
generate all possible combinations.

When k � n, this algorithm runs quite efficiently. However, when this is
not the case the algorithm is rather inefficient. In addition, the algorithm
might theoretically not terminate at all. More importantly, a problem arises
when we want to generate a random sequence of distinct combinations. In
the naive approach we would sequentially generate several combinations and
discard those that were previously generated. Since this applies the same
concept as the above algorithm, the problem is only aggravated. To elucidate
this point, consider the following example.

In some situation 9 999 out of 10 000 possible combinations need to be
randomly generated. When generating the final (9999th) combination, the
probability that a combination is generated that was previously generated
is 9998

10000 . There is thus a high probability that the generation has to be
repeated many times before the final combination is generated.

Taking these problems into account, it is clear that a better algorithm needs
to be designed in order to improve efficiency.

A.4 Relevance

As described in the introduction, a solution to this problem can be applied
directly in the process of utility function generation. Once the UF generator
has determined the amount of formulas to generate of a certain length, this
amount of combinations of resources has to be generated randomly. This is
exactly the problem as described in the previous section.

A.5 Approach

The problem can be solved by reducing it to a simpler one that already has
an efficient solution. This is the random selection of m distinct integers from
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an interval [1, l]. The algorithm is as follows:

�

�

�

�

Algorithm A.5.1: SelectDistinctIntegers(upper,m)

L← {1, . . . , upper}
for i← 1 to m

do


pos← random number between 0 and l − i
res.add(Lpos)
L.remove(pos)

return (res)

This efficiently (in O(m)) generates a random sequence of m distinct ele-
ments from the list. The problem at hand can be solved using the same
approach, once each random combination can be identified with a number.
Consider the list of combinations in Table A.1.

ID x1 x2 x3

1 1 2 3
2 1 2 4
3 1 2 5
4 1 3 4
5 1 3 5
6 1 4 5
7 2 3 4
8 2 3 5
9 2 4 5

10 3 4 5

Table A.1: All combinations of 3 elements from a total of 5 elements

If there is an (efficient) way to compute x1x2x3 from a given ID, the problem
is solved. Using Algorithm A.5.1, m distinct ID’s between 1 and 10 can be
generated, and from this the combinations can be computed.

A.6 Algorithm

Obviously, having only the ID is not sufficient for computing a combination
with that ID. The algorithm will also require n, the total number of available
elements and k, the number of elements we want to choose (5 resp. 3 in the
example of Table A.1). Given these three parameters the algorithm should
compute the corresponding combination.

50



A.6.1 Buckets

Notice the interesting structure that the list of combinations exhibits. The
first column contains all numbers 1 to n − k, the higher the number, the
lower the number of repetitions of that number. Using this structure we can
divide the list into several buckets. A bucket consists of all adjacent numbers
within a column that have the same value. Figure A.1 gives a depiction of
this division.

Figure A.1: Conceptual bucket division of combinations

Given the correct bucket of the first column, an equivalent problem arises
in the second column. Again a sequence of numbers appears decreasing in
the amount of repetitions. To quantify this structure, observe the following.

Define BL as the bucket at which we arrive by following the sequence of
sub-buckets according to the contents of list L. For example:
B[1,2] indicates the 2nd sub-bucket of the 1st bucket. That is, the bucket
containing x2 = 3 for IDs 4 and 5 in Figure A.1. To determine in which
sub-buckets a certain ID belongs, it is necessary to be able to calculate the
size of a bucket:

|BL|
def
=

(
n−

∑|L|
i=1 Li

k − |L|

)
with

(
a
b

)
=

a!
b!(a− b)!

This formula can be understood more easily when justified as follows. When
picking k elements out of a total of n, the total number of combinations is(

n
k

)
. The size of a bucket depends on the amount of combinations that

can be made by filling the remaining positions from the remaining amount
of available elements. When considering a bucket in the i-th column, only
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k − i slots remain that need to be filled. Here i corresponds to |L|. Fur-
thermore, the amount of elements that remain to choose from depends on
the buckets that were chosen in previous steps. Choosing for example the
second bucket implies that the element in the first bucket and that in the
second bucket can no longer be used the remaing part of the combination.
This follows from the fact that the elements in the combination are listed in
increasing order.

Using this definition, we can now calculate the size of the example that was
given earlier.

|B[1,2]| =
(

5− 3
3− 2

)
=
(

2
1

)
= 2

The final step that remains is computing xi given L. This can be calculated
as follows:

xi =
i∑

j=1

Lj

A.6.2 Pseudo-code

Using this information the complete algorithm can now be constructed. By
comparing the given ID with the bucket sizes in the first column, the first
bucket can be determined. This process is repeated to compute L. Finally
the combination is computed from L. Below the pseudo-code for the algo-
rithm is listed.

�

�

�

�

Algorithm A.6.1: ComputeCombination(ID, n, k)

bucketEnd← 0
for slot← 0 to k − 1

do



L.add(1)
while ID > bucketEnd + |BL|

do
{

bucketEnd← bucketEnd + |BL|
Lslot ← Lslot + 1

Comb.add(
∑slot

j=1 Lj)
return (Comb)
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