Axioms of determinacy and their set-theoretic strength

Daisuke Ikegami

The Institute for Logic, Language and Computation University of Amsterdam

November 17, 2006

Outline

Determinacy Axioms

Set-theoretic Strength

Questions for Ph.D topic

Outline

Determinacy Axioms

Set-theoretic Strength

Questions for Ph.D topic

- Infinite games with perfect information
 - Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - Axiom of Blackwell determinacy (BI-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- ► The converse is unknown (Martin's Conjecture).
- ightharpoonup Con(AD) \iff Con(BI-AD).
- We can prove some consequences of AD from BI-AD.

- Infinite games with perfect information
 - Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - ▶ Axiom of Blackwell determinacy (Bl-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- ► The converse is unknown (Martin's Conjecture).
- ightharpoonup Con(AD) \iff Con(BI-AD).
- ▶ We can prove some consequences of AD from BI-AD.

- Infinite games with perfect information
 - Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - ▶ Axiom of Blackwell determinacy (Bl-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- ► The converse is unknown (Martin's Conjecture).
- ightharpoonup Con(AD) \iff Con(BI-AD).
- We can prove some consequences of AD from BI-AD.

- Infinite games with perfect information
 - Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - ▶ Axiom of Blackwell determinacy (Bl-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- The converse is unknown (Martin's Conjecture).
- ightharpoonup Con(AD) \iff Con(BI-AD).
- We can prove some consequences of AD from BI-AD.

- Infinite games with perfect information
 - ▶ Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - ▶ Axiom of Blackwell determinacy (Bl-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- The converse is unknown (Martin's Conjecture).
- ightharpoonup Con(AD) \iff Con(BI-AD).
- We can prove some consequences of AD from BI-AD.

- Infinite games with perfect information
 - Axiom of regular (Gale-Stewart) determinacy (AD): For any $A \subseteq {}^{\omega}\omega$, $G_{\omega}(A)$ is determined.
- 2. Infinite games with imperfect information
 - ▶ Axiom of Blackwell determinacy (Bl-AD): For any $A \subseteq {}^{\omega}\omega$, $B_{\omega}(A)$ is determined.

- AD implies BI-AD.
- The converse is unknown (Martin's Conjecture).
- ▶ Con(AD) ⇔ Con(BI-AD).
- We can prove some consequences of AD from BI-AD.

Determinacy vs Axiom of Choice

- AD, BI-AD are inconsistent with AC.
- AD, BI-AD imply many interesting statements contradicting with AC.
- Many restricted versions of AD, BI-AD are consistent with AC (e.g. Projective determinacy).

Determinacy vs Axiom of Choice

- AD, BI-AD are inconsistent with AC.
- ► AD, BI-AD imply many interesting statements contradicting with AC.
- Many restricted versions of AD, BI-AD are consistent with AC (e.g. Projective determinacy).

Determinacy vs Axiom of Choice

- AD, BI-AD are inconsistent with AC.
- ► AD, BI-AD imply many interesting statements contradicting with AC.
- Many restricted versions of AD, BI-AD are consistent with AC (e.g. Projective determinacy).

Outline

Determinacy Axioms

Set-theoretic Strength

Questions for Ph.D topic

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Many mathematical questions are undetermined in ZF or ZFC.
- We need additional axioms to resolve them.
- ► How do we compare them? ⇒ via "consistency strength"

S, T: theories

- ▶ If $Con(S) \Rightarrow Con(T)$, then $S \ge T$.
- If Con(S) ⇒ Con(T) and we cannot derive Con(T) ⇒ Con(S), then S > T.

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- ▶ Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa) \ 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - $ightharpoonup \kappa$ is *weakly compact* if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - $ightharpoonup \kappa$ is measurable if there is a non-principal κ -complete ultrafilter on κ

- Uncountable cardinals.
- Generalizations of ω: some transcendental properties for smaller cardinals.

- ▶ Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa) \ 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - ightharpoonup κ is *weakly compact* if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - \blacktriangleright κ is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - κ is *measurable* if there is a non-principal κ -complete ultrafilter on κ

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- ▶ Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa) \ 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - $ightharpoonup \kappa$ is *weakly compact* if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - κ is *measurable* if there is a non-principal κ -complete ultrafilter on κ

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- ▶ Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa) 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - $ightharpoonup \kappa$ is weakly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - κ is measurable if there is a non-principal κ-complete ultrafilter on κ.

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- Inaccessible cardinals:
 - κ is inaccessible if κ is regular and $(\forall \lambda < \kappa) 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - κ is weakly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - κ is measurable if there is a non-principal κ-complete ultrafilter on κ.

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa)$ $2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - κ is weakly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - $\triangleright \kappa$ is *measurable* if there is a non-principal κ -complete ultrafilter on κ .

- Uncountable cardinals.
- ▶ Generalizations of ω : some transcendental properties for smaller cardinals.

- Inaccessible cardinals:
 - κ is *inaccessible* if κ is regular and $(\forall \lambda < \kappa) \ 2^{\lambda} < \kappa$.
- Weakly compact cardinals:
 - κ is weakly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a weak sense.
- Strongly compact cardinals:
 - ightharpoonup is strongly compact if the compactness theorem holds for $\mathcal{L}_{\kappa,\kappa}$ in a strong sense.
- Measurable cardinals:
 - κ is measurable if there is a non-principal κ-complete ultrafilter on κ.

- Large enough: we can resolve many mathematical questions undetermined in ZFC.
- Almost all large cardinals are linearly ordered via consistency strength.
- Many mathematical statements are consistent or equiconsistent with some large cardinals.
 - ⇒Large cardinals are a standard measure via consistency strength.

- 1. Large enough: we can resolve many mathematical questions undetermined in ZFC.
- Almost all large cardinals are linearly ordered via consistency strength.
- Many mathematical statements are consistent or equiconsistent with some large cardinals.
 - ⇒Large cardinals are a standard measure via consistency strength.

- 1. Large enough: we can resolve many mathematical questions undetermined in ZFC.
- 2. Almost all large cardinals are linearly ordered via consistency strength.
- Many mathematical statements are consistent or equiconsistent with some large cardinals.
 - ⇒Large cardinals are a standard measure via consistency strength.

- 1. Large enough: we can resolve many mathematical questions undetermined in ZFC.
- 2. Almost all large cardinals are linearly ordered via consistency strength.
- 3. Many mathematical statements are consistent or equiconsistent with some large cardinals.
 - ⇒Large cardinals are a standard measure via consistency strength.

- 1. Large enough: we can resolve many mathematical questions undetermined in ZFC.
- 2. Almost all large cardinals are linearly ordered via consistency strength.
- Many mathematical statements are consistent or equiconsistent with some large cardinals.
 - ⇒Large cardinals are a standard measure via consistency strength.

- 1. The following are equiconsistent
 - ► ZF + AD.
 - ▶ ZFC + "There are infinitary many Woodin cardinals."
- The following are equiconsistent:
 - ightharpoonup ZFC + Δ_2^1 -determinacy.
 - ZFC + "There is a Woodin cardinal."
- The following are logically equivalent.
 - ZFC + Π¹-determinacy.
 - ► ZFC + "0[#] exists."

- 1. The following are equiconsistent:
 - ► ZF + AD.
 - ZFC + "There are infinitary many Woodin cardinals."
- 2. The following are equiconsistent:
 - \triangleright ZFC + Δ_2^1 -determinacy.
 - ZFC + "There is a Woodin cardinal."
- 3. The following are logically equivalent.
 - ZFC + Π¹-determinacy.
 - ► ZFC + "0[‡] exists."

- 1. The following are equiconsistent:
 - ► ZF + AD.
 - ZFC + "There are infinitary many Woodin cardinals."
- 2. The following are equiconsistent:
 - ▶ ZFC + Δ_2^1 -determinacy.
 - ZFC + "There is a Woodin cardinal."
- 3. The following are logically equivalent.
 - ZFC + Π¹-determinacy.
 - ► ZFC + "0[#] exists."

- The following are equiconsistent:
 - ► ZF + AD.
 - ZFC + "There are infinitary many Woodin cardinals."
- 2. The following are equiconsistent:
 - ZFC + Δ¹₂-determinacy.
 - ZFC + "There is a Woodin cardinal."
- 3. The following are logically equivalent.
 - ZFC + Π₁¹-determinacy.
 - ► ZFC + "0[‡] exists."

Outline

Determinacy Axioms

Set-theoretic Strength

Questions for Ph.D topic

- Develop Blackwell Determinacy Theory.
 - ▶ Does BI-AD imply that every set of reals has the Baire property?
 - Does BI-AD imply Moschovakis Coding Lemma?
- 2. Consistency strength of Higher Blackwell Determinacy.
 - Consistency strength of BI-AD_ℝ.
 cf. We only know that Con(BI-AD_ℝ) > Con(AD).
 - ▶ Consistency strength of BI-AD_ℝ + " Θ is regular". cf. Con(AD_ℝ + " Θ is regular.") > Con(AD_ℝ)
- Find a pointclass Γ such that Con(Γ-determinacy) ← Con("0[¶] exists.")

- 1. Develop Blackwell Determinacy Theory.
 - Does BI-AD imply that every set of reals has the Baire property?
 - Does BI-AD imply Moschovakis Coding Lemma?
- 2. Consistency strength of Higher Blackwell Determinacy.
 - Consistency strength of BI-AD_ℝ.
 cf. We only know that Con(BI-AD_ℝ) > Con(AD).
 - Consistency strength of BI-AD_ℝ + "Θ is regular".
 cf. Con(AD_ℝ + "Θ is regular.") > Con(AD_ℝ)
- Find a pointclass Γ such that Con(Γ-determinacy) ← Con("0[¶] exists.")

- Develop Blackwell Determinacy Theory.
 - Does BI-AD imply that every set of reals has the Baire property?
 - Does BI-AD imply Moschovakis Coding Lemma?
- 2. Consistency strength of Higher Blackwell Determinacy.
 - ▶ Consistency strength of $BI-AD_{\mathbb{R}}$. cf. We only know that $Con(BI-AD_{\mathbb{R}}) > Con(AD)$.
 - ▶ Consistency strength of BI-AD $_{\mathbb{R}}$ + " Θ is regular". cf. Con(AD $_{\mathbb{R}}$ + " Θ is regular.") > Con(AD $_{\mathbb{R}}$)
- Find a pointclass Γ such that Con(Γ-determinacy) ← Con("0[¶] exists.")

- Develop Blackwell Determinacy Theory.
 - Does BI-AD imply that every set of reals has the Baire property?
 - Does BI-AD imply Moschovakis Coding Lemma?
- 2. Consistency strength of Higher Blackwell Determinacy.
 - Consistency strength of BI-AD_ℝ.
 cf. We only know that Con(BI-AD_ℝ) > Con(AD).
 - ► Consistency strength of BI-AD_R + " Θ is regular". cf. Con(AD_R + " Θ is regular.") > Con(AD_R)
- Find a pointclass Γ such that Con(Γ-determinacy) ← Con("0[¶] exists.")

Thank you!