
Order-independence and Underspecification

Reinhard Muskens

1. Two Desiderata: Order-independence and Underspecification
In standard Montague Semantics we find a very close correspondence between
syntactic and semantic rules (the ‘Rule-to-Rule Hypothesis’). This is attractive
from a processing point of view, as we like to think of syntactic and semantic pro-
cessing as being done in tandem, with information flowing in both directions,
from parsing to interpretation and vice versa. The parsing procedure erects the
necessary scaffolding for interpretation, while semantics (and via semantics
context and world knowledge) ideally rules out wrong parses at an early stage.

Montague Semantics, however, also seems to favour a strictly bottom up se-
mantic processing architecture. The principle of Compositionality, which says that
the meaning of a mother node is to be computed from the meanings of her daugh-
ters, seems to enforce such a bottom up procedure. Since we know that parsing
algorithms that make use of top down predictions are often much more efficient
than those that do not, and since we do not therefore expect human syntactic
processing to be strictly bottom up, there is a dilemma. On the one hand, we want
interpretation to be order-independent: it should not be decided a priori whether
we assign meanings in a top-down, a bottom-up, or any other fashion. On the
other hand, the building block picture of meaning that the principle of
Compositionality has to offer is attractive too, if it were only because it explains
why language users seem to be able to construct unlimited numbers of meanings
from the finite set they find in the lexicon.

A second desirable constraint on processing meanings has to do with the many
readings that semantic theories normally assign to any given syntactic input and
the combinatorial explosion resulting from this multitude of analyses. As the aver-
age sentence will naturally contain at least some scope bearing elements, the num-
ber of readings of even a short text may well run into the thousands. Poesio
[1994], inspired by Lincoln’s saying no doubt, gives the example in (1). Since
the two conjuncts of this sentence count five scope bearing elements each, there
will be 5!*5! = 14400 permutations of these elements that respect the constraint
that conjunctions are scope islands. Not all of these permutations lead to
semantically different readings, but the number of readings that are predicted is
still immense.

(1) A politician can fool most voters on most issues most of the time, but no
politician can fool all voters on every single issue all of the time.

As most texts do not seem to offer insuperable processing difficulties to their
readers, it seems improbable that we process sentences by first generating all of
their readings and then testing them. Many authors (e.g. Schubert & Pelletier
[1982], Alshawi [1992], Reyle [1992], Poesio [1994], Pulman [1994], Cooper et
al. [1994], Cooper et al. [1995]) therefore have advocated an approach in which
scope ambiguities are not immediately resolved but are allowed to exist for some

18

time. This requires a level of underspecified representations. We do not want a
representation for each of the multitudinous different scoping possibilities of a
given text, but want a single efficient representation for them all. During the pars-
ing process and afterwards, contextual information may narrow down the range
of possible scopings of a text; but as long as this process of narrowing down the
range of possibilities has not resulted in a unique reading of the text, its semantic
representation must be underspecified.

In this paper I shall give a set of simple LFG-like annotated phrase structure
rules which connect underspecified representations with other components of the
grammar. The rules may be traversed in any order. The underspecified representa-
tions will be much like the UDRSs of Reyle [1992], but will formally consist of
two parts: (a) a set of equations in ordinary classical type logic with abbreviations
that emulate the language of Discourse Representation Theory, and (b) a set of de-
scriptions in the first-order language of trees. Both parts will be generated by the
grammar in a relatively independent way. The first part will give us building
blocks of ‘open’ Discourse Representation Structures. The second part will
summarise all possible ways in which these building blocks may be combined
into an ordinary DRS.

2. Continuous Interpretation in Montague Semantics
In the previous section we have formulated the constraint that the interpretation
process should be order-independent. But in fact we may generalise this
constraint somewhat and demand that the association of semantic representations
with syntactic entities be continuous. By this we mean the following. Consider
the tree in (2).

(2) S

NP

Det

every

N

boy

VP

V

adores

NP

Det

a

N

girl

This tree can be thought of as the union of the set of all its local subtrees:

 S

NP VP

 , NP

Det N

 , VP

V NP

 , Det

every

 , etc.

Now supposing that we can find independent interpretations for the local subtrees
of (2), the Continuity Principle says that the interpretation of (2) itself should
simply be the set-theoretic union of those interpretations. The general formulation
is as follows:

19

Principle of Semantic Continuity
The interpretation of the union of a set of trees is the union of the interpretations
of its elements.

Note that if this principle can be adopted, it will immediately ensure that
interpretation can be done order-independently. It will also follow that
interpretation is monotonic, in the sense that the interpretation of a tree will
include the interpretation of any of its subtrees. The principle will moreover allow
interpretations to be partial in the following sense. Suppose you hear a sentence
uttered, but for some reason miss one or more of the words. For instance,
suppose that what you actually hear is Every boy xxxxxx a girl. Then obviously it
will not be possible to interpret the complete utterance. On the other hand, equally
obviously, people do assign meanings to what they hear even if they miss some
part of it. Supposing that you have managed to assign the incomplete tree (3) to
the utterance, the principle of Continuity will now guarantee that you find some
meaning for it, namely the union of the interpretations of all local subtrees of (3).

(3) S

NP

Det

every

N

boy

VP

V NP

Det

a

N

girl

In (4) below we have given a description of the tree in (2). The symbols s1, np2,
vp3, etc. are constants referring to nodes. The symbol < denotes the relation of
immediate dominance, and we write a < b, c as an abbreviation of a < b ∧ a < c
∧ b p c, where p denotes the left-of relation. The function denoted by cat assigns a
category label to each node and lex assigns lexical items to the leaves of a tree.
There are of course many trees which satisfy the constraints in (4), but given
some reasonable general assumptions about trees (see Backofen et al. 1995 for a
first-order axiomatization) the one in (2) is the unique minimal tree satisfying the
constraints here.

(4) s1 < np2, vp3 cat(s1) = S
np2 < det4, n5 cat(np2) = NP
vp3 < v6, np7 cat(vp3) = VP
np7 < det8, n9 cat(det4) = Det
lex(det4) = every cat(n5) = N
lex(n5) = boy cat(v6) = V
lex(v6) = adores cat(np7) = NP
lex(det8) = a cat(det8) = Det
lex(n9) = girl cat(n9) = N

We can now interpret (2) in the following way. With each node ni we associate a
variable of type logic xi and we interpret each local subtree with an equation in

20

type logic of the form x = A, where x is a variable and A is a term, as in (5)
below. The type of a variable follows from its typography: p stands for
propositions (type t), P for properties (type et), Q for quantifiers (type (et)t), D
for type (et)((et)t), V for type ((et)t)(et), and x and y for type e.

The interpretation of the entire tree will now simply be the collection of all
equations in the second column of (5). It is clear that this system of equations en-
tails that p1 = ∀x(boy(x) → ∃y(girl (y) ∧ adores(x)(y))), but all other indexed
variables are likewise equated with a closed term and there are intermediate results
as well. Obviously, this way of interpreting conforms to the principle of
Continuity and so is order-independent and monotonic. But the principle of
Compositionality is respected as well; in fact it is embodied in the first four
equations in the second column of (5).

(5) s1 < np2, vp3 p1 = Q2(P3)
np2 < det4, n5 Q2 = D4(P5)
vp3 < v6, np7 P3 = V6(Q7)
np7 < det8, n9 Q7 = D8(P9)
lex(det4) = every D4 = λP′λP∀x(P′(x) → P(x))
lex(n5) = boy P5 = boy
lex(v6) = adores V6 = λQλy.Q(λx.adores(x)(y))
lex(det8) = a D8 = λP′λP∃x(P′(x) ∧ P(x))
lex(n9) = girl P9 = girl

The interpretation procedure given above is inspired by the way in which f-struc-
tures are obtained in Lexical Functional Grammar. Each syntactic rule in LFG
comes with functional annotations that give rise to a set of equations constraining
f-structure. For example the rule

S → NP VP
↑subj = ↓ ↑ = ↓

gives rise to the equations subj(x1) = x2 and x1 = x3 saying that the subject at-
tribute of the feature x1 corresponding with S has the feature x2 corresponding
with the NP as its value and that the features corresponding with S and VP are the
same. Lexical items carry similar equations. Thus we can decorate each entry in
(4) with a set of feature equations, as it is done in (6) (we suppress category in-
formation). The resulting system of equations for the entire c-structure (the f-de-
scription) describes the f-structure given in (7). The latter, an alternative notation
for a certain graph, is the minimal solution of the system of equations in the right
column of (6).

21

(6) s1 < np2, vp3 subj(x1) = x2, x1 = x3
np2 < det4, n5 x2 = x4 = x5
vp3 < v6, np7 obj(x3) = x7, x3 = x6
np7 < det8, n9 x7 = x8 = x9
lex(det4) = every pred(spec(x4)) = “every”, num(x4) = sg
lex(n5) = boy pred(x5) = “boy”, num(x5) = sg
lex(v6) = adores pred(x6) = “adore”, subj(pred(x6)) = subj(x6),

obj(pred(x6)) = obj(x6), tense(x6) = pres,
num(subj(x6)) = sg

lex(det8) = a pred(spec(x8)) = “a”, num(x8) = sg
lex(n9) = girl pred(x9) = “girl”, num(x9) = sg

(7)

x 1

PRED “adores (↑ SUBJ), (↑ OBJ) ”

TENSE PRES

SUBJ

x 2

SPEC PRED “every”[]
PRED “boy”
NUM SG













OBJ

x 7

SPEC PRED “a”[]
PRED “girl”
NUM SG







































But the continuous interpretation procedure as illustrated in (5) suffers from a
fundamental handicap: it does not seem possible to handle semantic rules that in-
volve variable binding. In particular, although the method allows us to treat all
rules of functional application in Montague’s system, it will not allow us to treat
his quantification rules. Consider the Analysis Tree / Logical Form given in (8).
We would like the local subtree

S

NP3 S

to have its own interpretation, a semantic equation as in (5). But under the usual
assumptions there is no way to assign it such an equation with the result that the
free variable x3 corresponding to the trace e3 gets bound in the solution of the
final system of semantic equations. For example, the equation p1 = Q(λx3p2)
(where Q is the variable corresponding to the NP and p1 and p2 are variables
corresponding to the mother and daughter Ss respectively) will obviously not do.
The other equations will enable us to derive that p2 = adore(x3)(x7), but a general
condition on substitution (adore(x3)(x7) is not free for p2 in p1 = Q(λx3p2))
prohibits the deduction we would like to make.

22

(8) S

NP7

Det

a

N

girl

S

NP3

Det

every

N

boy

S

e3 VP

V

adores

e7

It turns out, however, that the difficulty sketched here need not arise in the
dynamic system of Compositional DRT (CDRT), defined in Muskens [1991,
1994a, 1994b, 1996] (for similar systems see Asher & Wada [1989],
Groenendijk & Stokhof [1990], Asher [1993], Bos et al. [1994] and Van Eijck &
Kamp [forthcoming]), which is a synthesis between Montague Semantics and
DRT. The reason is essentially that CDRT is based on a logic (standard type
logic) in which a copy of the variable binding mechanism is internalised. This
internalisation will allow us to circumvent the present difficulty. In the next
section I shall explain how the internalisation is brought about and how CDRT
works.

3. Internalising the binding mechanism: Compositional DRT
The mathematics underlying CDRT can be explained in two pages. The logic that
will be used to internalise binding will be the ordinary three-sorted type logic
TY3. Apart from the sort of entities (type e) and the two truth values (type t), we
shall also allow for what I would like to call pigeon-holes or registers (type π)
(these are the pegs of Groenendijk, Stokhof & Veltman [?]) and for states (type
s). Registers, which are the things that stand proxy for variables and constants,
may be thought of as small chunks of space that can contain exactly one object
(the value of the variable or constant). States may be thought of as a list of the
current inhabitants of all registers. States are very much like the program states
that theoretical computer scientists talk about, which are lists of the current values
of all variables in a given program at some stage of its execution. Since some
registers stand proxy for variables and some for constants, we must distinguish
them and we shall have a predicate VAR of type πt to single out those that emulate
variables. We shall typically use (subsripted) δ to range over variables and
constants of type π; v is a variable of type π; constants u and w denote registers
that model variables; and constants w, but also constants like John, Mary or Sue
(note the initial capital), denote registers that stand proxy for constants, while
john, mary, sue and the like (no initial capital) are type e constants. Constants u
and w denoting variable registers are also called unspecific (discourse) referents,
constants denoting constant registers specific (discourse) referents.

In order to be able to impose the necessary structure on our models, we shall
let V be some fixed non-logical constant of type π(se) and denote the inhabitant of
register δ in state i with the type e term V(δ)(i). We define i[δ1…δn]j to be short
for

23

∀v((δ1 ≠ v ∧…∧ δn ≠ v) → V(v)(i) = V(v)(j)),

a term which expresses that states i and j differ at most in δ1,…,δn; i[] j will
stand for the formula ∀v(V(v)(i) = V(v)(j)). We impose the following axioms.

AX1 ∀i∀v∀x(VAR(v) → ∃j(i[v]j ∧ V(v)(j) = x))
AX2 VAR(u) , if u is an unspecific referent
AX3 un ≠ um , for each two different unspecific referents un and um
AX4 ∀i(V(Tomπ)(i) = tome),

∀i(V(Maryπ)(i) = marye),
∀i(V(Timπ)(i) = time), etc., for all names in the fragment.

AX1 requires that for each state, each variable register and each object, there must
be a second state that is just like the first one, except that the given object is an oc-
cupant of the given register (this is the ‘Having Enough States’ axiom from
Dynamic Logic, but also the ‘Update Axiom’ from Janssen’s Dynamic Intensional
Logic). AX2 ensures that unspecific referents always denote variable registers,
AX3 that different unspecific referents refer to different registers, so that an
update on one will not result in a change in some other’s value. AX4 makes sure
that if a register is denoted by a specific referent, its content will not vary and
provides the obvious connection between specific referents and type e constants.

This takes care of the internalisation of the binding mechanism. We now come to
the emulation of the DRT language in type logic. Let us agree to write

Rδ1…δn for λi.R(V(δ1)(i))…(V(δn)(i)),
δ1 is δ2 for λi.V(δ1)(i) = V(δ2)(i),

if R is a term of type ent and the δ’s are constants or variables of type π. This
gives us our basic conditions of the DRT language as terms of type st. In order to
have complex conditions and boxes as well, we shall write

not K for λi¬∃jK(i)(j),
K or K′ for λi∃j(K(i)(j) ∨ K′(i)(j)),
K ⇒ K′ for λi∀j(K(i)(j) → ∃kK′(j)(k)),
[δ1…δn | γ1,…,γm] for λiλj(i[δ1,…,δn]j ∧ γ1(j) ∧…∧ γm(j)),
K ; K′ for λiλj∃k(K(i)(k) ∧ K′(k)(j)).

Here K and K′ stand for any term of type s(st), which shall be the type we associ-
ate with boxes, and the γ’s stand for conditions, terms of type st. [δ1…δn |
γ1,…,γm] will be our linear notation for standard DRT boxes and the last clause
embodies an addition to the standard DRT language: in order to be able to give
compositional translations to natural language expressions and texts, we borrow
the sequencing operator ‘;’ from the usual imperative programming languages and
stipulate that a sequence of boxes is again a box. The following useful lemma is
easily seen to hold.

24

MERGING LEMMA . If ′
r
u do not occur in any of

r
γ then

|=AX [
r
u |

r
γ] ; [′

r
u | ′

r
γ] = [

r
u ′
r
u |

r
γ ′

r
γ]

The present emulation of DRT in type logic should be compared with the seman-
tics for DRT given in Groenendijk & Stokhof [1991]. While Groenendijk &
Stokhof give a Tarski definition for DRT in terms of set theory and thus interpret
the object DRT language in a metalanguage, the clauses given above are simply
abbreviations on the object level of standard type logic. Apart from this
difference, the clauses given above and the clauses given by Groenendijk &
Stokhof are much the same.

4. Continuous interpretation of Logical Forms
An important advantage of our emulation of DRT in type logic is that we can now
combine the niceties of Montague Semantics with those of Discourse
Representation Theory. Most importantly, we can now combine the Montagovian
way of composing meanings with the treatment of binding in DRT on the basis of
a well-understood and transparant logic. In the translations for a limited set of
words given in the table below the constructs of our extended version of DRT are
in free combination with lambdas and application. We abbreviate any type of the
form α1(…(αn(s(st))…) as [α1…αn]. Variables p and q are of type [], variable P
is of type [π], and variables v and v′ are of type π. Note that all translations are
closed terms.

EXPR. TRANSLATION TYPE

a λPλvλp([v |] ; P(v) ; p) [[π]π[]]
every λPλvλp[| ([v |] ; P(v)) ⇒ p] [[π]π[]]
boy λv[| boy v] [π]
girl λv[| girl v] [π]
adores λv′λv[| adores v v′] [ππ]

Let us see how we can use the present system to give a continuous interpretation
of a Logical Form which involves some quantification (a monostratal approach
will follow in section 6). An example tree is given in (9) below, with its
description in the first two columns of (10). In the third column of (10) each local
subtree is paired with a semantic equation, as it was done before. The rules for
obtaining semantic equations from local subtrees are as follows. (Variables D are
of type [[π]π[]], variables Q of type [π[]], variables R of type [ππ].)

I Each lexicalised terminal node nk is paired with an equation xk = A,
where A is the translation of the lexical element as in the table above.
Each trace ek with index i is paired with an equation vk = ui.

II Each local subtree described by sk < npl, sm such that npl is indexed by i
is paired with an equation pk = Ql(ui)(pm). All other local subtrees are in-
terpreted by means of function application.

25

(9) S

NP2

Det

a

N

girl

S

NP1

Det

every

N

boy

S

e1 VP

V

adores

e2

(10) s1 < np2, s3 index(np2) = 2 p1 = Q2(u2)(p3)
s3 < np6, s7 index(np6) = 1 p3 = Q6(u1)(p7)
np2 < det4, n5 Q2 = D4(P5)
np6 < det8, n9 Q6 = D8(P9)
s7 < e10, vp11 p7 = P11(v10)
vp11 < v12, e13 P11 = R12(v13)
index(e10) = 1 v10 = u1
index(e13) = 2 v13 = u2
lex(det4) = a D4 = λPλvλp([v |] ; P(v) ; p)
lex(n5) = girl P5 = λv[| girl v]
lex(det8) = every D8 = λPλvλp[| ([v |] ; P(v)) ⇒ p]
lex(n9) = boy P9 = λv[| boy v]
lex(v12) = adores R12 = λv′λv[| adores v v′]

The reader may verify that the only variables which occur free in the system of
equations in the third column of (10) are the subscripted ones and these are
nowhere abstracted over. So we can substitute equals by equals without any re-
striction. Doing this we find that p7 = [| u1 adores u2] is derivable, for example,
but also that p1 = [u2 |] ; [| girl u2] ; p3. The latter can be reduced somewhat fur-
ther with the help of the Merging Lemma, which allows us to obtain p1 = [u2 | girl
u2] ; p3. In a similar way we get p3 = [| [u1 | boy u1] ⇒ p7]. The equation corre-
sponding to the top node of the tree hence is

p1 = [u2 | girl u2, [u1 | boy u1] ⇒ [| adores u1 u2]].

As a second example we may consider the tree in (11). For its description and the
system of equations interpreting it, replace the first two rows in (10) by those in
(12) (s3 will now be the maximal S node).

26

(11) S

NP1

Det

every

N

boy

S

NP2

Det

a

N

girl

S

e1 VP

V

adores

e2

(12) s3 < np6, s1 index(np6) = 1 p3 = Q6(u1)(p1)
s1 < np2, s7 index(np2) = 2 p1 = Q2(u2)(p7)

The interpretation of (11) is thus summed up by the equations

p3 = [| [u1 | boy u1] ⇒ p1]
p1 = [u2 | girl u2] ; p7
p7 = [| adores u1 u2]

From which it is easily derived that

p3 = [| [u1 | boy u1] ⇒ [u2 | girl u2, adores u1 u2]]

5. Ambiguous Logical Forms
Let us look at our two Logical Forms in (9) and (11) again. They were described
by two sets of formulas. In particular (9) was described by

s1 < np2, s3 s3 < np6, s7

plus some other formulas, while (11) was described by

s3 < np6, s1 s1 < np2, s7

plus the same set of other formulas. The relation between the given sets of formu-
las and the trees is that between a logical theory (set of sentences) and its minimal
models. Now if we want to have a representation for both trees at the same time,
we must find a theory that has exactly these two trees as its minimal models. Such
a theory will be hard to find if we confine ourselves to the language we have been
using thus far (unless of course we resort to using disjunctions), but if we take an
idea from Marcus et al. [1983] (see also Vijay-Shanker [1992]) and allow the lan-
guage to talk not only about the relation of immediate dominance but also about its
reflexive transitive closure (dominance), it can be straightforwardly done. In the
following set of sentences the symbol <* denotes dominance.

smax <* s1 s1 < np2, s′ s′ <* s7
smax <* s3 s3 < np6, s′′ s′′ <* s7

27

Assuming that np2 and np6 cannot denote the same object (as they carry different
indices this will be ruled out automatically), there are two minimal models of this
theory that conform to the general axioms for binary branching trees, one in
which smax = s1, s′ = s3 and s′′ = s7, and another in which smax = s3, s′′ = s1 and
s′ = s7. Essentially, these two minimal models are (9) and (11). In (13) we find a
complete underspecified representation for these two logical forms. The third
column again gives a system of equations for the Ambiguous Logical Form, as
we shall baptise the description in the first and second columns. Clearly, the
interpretation can only be a partial one this time, as there are no obvious
semantical analogues to the relation of dominance.

(13) smax <* s1
smax <* s3
s′ <* s7
s′′ <* s7
s1 < np2, s′ index(np2) = 2 p1 = Q2(u2)(p′)
s3 < np6, s′′ index(np6) = 1 p3 = Q6(u1)(p′′)
np2 < det4, n5 Q2 = D4(P5)
np6 < det8, n9 Q6 = D8(P9)
s7 < e10, vp11 p7 = P11(v10)
vp11 < v12, e13 P11 = R12(v13)
index(e10) = 1 v10 = u1
index(e13) = 2 v13 = u2
lex(det4) = a D4 = λPλvλp([v |] ; P(v) ; p)
lex(n5) = girl P5 = λv[| girl v]
lex(det8) = every D8 = λPλvλp[| ([v |] ; P(v)) ⇒ p]
lex(n9) = boy P9 = λv[| boy v]
lex(v12) = adores R12 = λv′λv[| adores v v′]

Unwieldy representations such as the one in (13) are to be avoided of course and
the characteristics of this Ambiguous Logical Form can be conveniently summed
up in the quasi-tree (the term is Vijay-Shanker’s) in (14). Here dashed lines stand
for dominance. It should be kept in mind that Ambiguous Logical Forms such as
the one in (14) are not trees themselves but stand for descriptions of sets of trees.

28

(14)

S

NP1

Det

every

N

boy

S

S

NP2

Det

a

N

girl

S

S

S

e1 VP

V

adores

e2

Let us take stock. The interpretation part of (13) is again best summed up by a re-
duced system of equations as in the second column of (15). The relevant part of
the description of the immediate dominance relation is given in the first column.

(15) smax <* s1 p3 = [| [u1 | boy u1] ⇒ p′′]
smax <* s3 p1 = [u2 | girl u2] ; p′
s′ <* s7 p7 = [| adores u1 u2]
s′′ <* s7
s1 < s′
s3 < s′′

Clearly, by a route different from the one taken in Reyle [1992], we have arrived
at an example of an Underspecified Discourse Representation Structure (UDRS).
It seems that Reyle’s UDRSs naturally emerge from a continuous interpretation of
Ambiguous Logical Forms. Note, that our UDRSs, unlike Reyle’s, essentially are
expressions in a syntactically sugared classical logic plus some information about
admissable substitutions of one expression for another.

There are many ways to monotonically add information to (13) so that it admits
of only one tree as a minimal model. The addition of smax = s1, for example, will
do. On the basis of (13), this sentence, minimality, and general assumptions
about trees, it can be inferred that s′ = s3 and s′′ = s7. Assuming that the latter
identities correspond to the identities p′ = p3 and p′′ = p7, the reading where every
boy gets wide scope will be obtained.

6. A grammar yielding underspecified representations
In the previous section we have presented Ambiguous Logical Forms as certain
zero order descriptions (sets of literals, to be precise) such that more than one
Logical Form could possibly be a minimal tree model of such a description. The
question now is how to generate such descriptions. Obviously, it will not do to
generate a set of Logical Forms first and then somehow extract the strongest de-
scription such that all trees in the set satisfy that, as our desire not to have to gen-

29

PS Rules l-descriptions s-descriptions

(1) T → S lD = I(lD) pM = [w | w is w0] ; pD

(2) T → Τ S lM < lD1, lM < lD2, lD1 ≠ lD2

I(lD2) = lD2

pM = pD1 ; pD2

(3) S → S′ lM <* lD,

B(lD) = lM, I(lD) = I(lM)

—

(4) S′ → NP′ VP lD1 = lD2 = lM pM = PD2(vD1)

(5) S′ → S′′ S lM < lD1, lM < lD2, lD1 ≠ lD2,

I(lD1) = lD1, I(lD2) = lD2

pM = ZD1(pD2)

(6) S′′ → IMP S lD2 = lM ZM = CD1(pD2)

(7) VP → NEG VP′ B(lM) <* lk < lm <* lM,

I(lM) <* lk, lD2 = lM

PM = PD2

pk = ZD1(pm)

(8) VP → VP′ lD = lM PM = PD

(9) VP′→ Vdt NP′ NP′ lD2 = lD3 = lM PM = UD1(vD2)(vD3)

(10) VP′ → Vt NP′ lD2 = lM PM = RD1(vD2)

(11) VP′ → V in PM = PD

(12) VP′ → Vpa S lM < lD2, I(lD2) = I(lM) PM = YD1(pD2)

(13) NP′ → NP I(lM) <* lD = lk < lm <* lM pk = QD(un)(pm)

vM = un

(14) NP′ → PRO vM = vD

(15) NP → DET N lD2 = lM QM = DD1(PD2)

(16) N → N RC lD1 = lD2 = lM PM = XD1(PD2)

(17) RC → RPRO S lM < lD2, I(lD2) = lD2 XM = VD1(pD2)

(18) X → X CONJ X lM < lD1, lM < lD3, lD1 ≠ lD3,

I(lD1) = lD1, I(lD3) = lD3

xM = CD2(xD1)(xD3)

Table 1. Annotated Phrase Structure Rules

erate all possible readings of a text was our motivation for considering
Ambiguous Logical Forms in the first place. Instead, we shall give a toy grammar
which is meant to illustrate how our variants of Underspecified Discourse
Representation Structures can be generated directly.

The annotated phrase structure grammar, which is given in Table 1, is not
unlike the grammars that are employed in LFG. The idea is that the grammar not
only generates c-structures and f-structures via sets of c-descriptions and f-
descriptions, but that it also simultaneously generates the semantic equations (s-
descriptions) we have met before and a set of l-descriptions which partly
determine scoping possibilities. In Table 1 we do not show how f-descriptions are
being generated, as this is a familiar process. The l-descriptions will not be unlike
the sentences in the first column of (15) and thus say something about the Logical

30

CATEGORY EXPRESSION TRANSLATION TYPE

DET a λPλvλp([v |] ; P(v) ; p) [[π]π[]]
no λPλvλp[| not([v |] ; P(v) ; p)] [[π]π[]]
every λPλvλp[| ([v |] ; P(v)) ⇒ p] [[π]π[]]

NP John λvλp([v | v is John] ; P(v)) [π[]]
N girl λv[| girl v w] [π]
V in stinks λv[| stinks v w] [π]
Vt adores λv′λv[| adores v v′ w] [ππ]
Vpa believes λpλv[w′ | w′ is w, [w | Bvww′] ⇒ p] [[] π]
RPRO whoi λpλPλv(P(v) ; [ui | v is ui] ; p) [[][π]π]
NP′ ei ui π
PRO she ui π
IMP if λpq[| p ⇒ q] [[][]]
NEG doesn’t λp[| ¬p] [[]]
CONJ and λpq(p ; q) [[][]]

or λpq[| p or q] [[][]]
Table 2. The Lexicon

Form of the expression, while c-structure is just surface structure. The elements
of an l-structure are called labels.

We shall use the convention that each non-terminal in a rewrite rule corre-
sponds to a constant in the set of l-descriptions and to a variable in the set of s-de-
scriptions. lM denotes the label corresponding to the mother category, lD and lD1
the label corresponding to the leftmost daughter, lD2 that corresponding to the sec-
ond daughter, etc. Similarly, a variable xM in the s-description corresponds to the
mother node of the local tree covered by the rule, xD or xD1 to the leftmost daugh-
ter, etc. Rules may also introduce constants and variables that do not directly cor-
respond to nodes in c-structure (e.g rule (7) introduces lk, lm, pk and pm). These
must be instantiated by fresh constants and variables (if lk is instantiated as, say,
l15, pk must be instantiated as p15 and similarly for lm and pm). B is a function
which sends a label corresponding to a c-structure node to the label corresponding
to the nearest S node dominating that node in c-structure and in a similar fashion I

sends labels to the nearest dominating label that corresponds to a quantifier scope
island.

We assume that relative clauses and coordinations give rise to scope islands,
but that sentence complement constructions do not. The equation I(lD2) = lD2 in
rule (17), for example, captures the fact that the S is a scope island here, while the
equation I(lD2) = I(lM) in rule (12) merely says that the next scope island dominat-
ing the S is the island dominating the VP′. The grammar rules that really let things
happen are (3), (7) and (13). Rules (7) and (13) send scope bearing elements
afloat, merely demanding that the label corresponding to the nearest scope island
(and in the case of (7) also the label of the nearest S) must dominate the label of
the scope bearing element and that the latter dominates the label of the node where
it was generated. Rule (13) moreover generates a discourse referent that interprets
the NP′ (and thus functions as the semantic equivalent of a trace), while this dis-
course referent is simultaneously used in the interpretation of the quantifying ex-
pression. This renders coindexation of quantifiers and their traces at the level of
syntax superfluous. Rule (3) creates a possible adjunction site where floating

31

scope elements can land. It makes sure that two labels correspond to what
conventionally would have been one S node. Immediate domination of one node
over another is not required: the first label need only dominate the second and the
possibility that scope bearing elements intervene is left open (see also Vijay-
Shanker [1992]).

In Table 2 we have given a simple lexicon for the fragment. Since we want to
be able to deal with embedded clauses and since embedding of clauses usually
leads to intensional constructions, all basic relations are now given an extra
argument w, a discourse referent which always stands for the current world of
evaluation. The first rule of Table 1 makes sure that this referent is set to the value
of w0, the actual world, at the outset, but later quantifications over worlds in
intensional constructions may change this value. In the translation for believe, for
example, the current world is temporarily stored in referent w′ while it is
simultaneously required that the value p of the embedded sentence will hold in all
worlds w which are doxastic alternatives for the subject v in w′ (Bvww′ says that
w is a doxastic alternative for v in w′). In the translation of the embedded sentence
w will again become the current world of evaluation.

We shall assume that some other part of the grammar will coindex relative pro-
nouns and their ‘traces’ and let these indices play a role in the translation of these
elements. With respect to pronouns we follow a different strategy: pronouns will
not be indexed themselves, but addition of an equation vk = ui, where vk corre-
sponds to a node labelled PRO, will only be allowed if (a) some equation p = A
can be shown to hold on the basis of equations that have already been generated
and (b) ui can be shown to be accessible from v in A on the basis of the accessi-
bility calculus below (to be provided in the full paper).

(16) T,0

S,1

S′,2

NP′,3

NP,5

DET,6

every

N,7

boy

VP,4

VP′,8

V t,9

adores

NP′,10

NP,11

DET,12

a

N,13

gir l

As a first simple example to see how the grammar works (more extensive exam-
ples will be given in the final version of this paper), we can have a look at our

32

every boy adores a girl sentence again. The grammar will obviously assign the c-
structure in (16) to the sentence. We have annotated each non-terminal in this
structure with a different number. This can be done in any order. The grammar
will connect l-descriptions and s-descriptions to the local trees of this c-structure
in the following way. The topmost local tree, which has resulted from the rule
T → S, will give us descriptions l1 = I(l1) and p0 = [w | w is w0] ; p1. The
application of S → S′ gives l1 <* l2, B(l2) = l1 and I(l2) = I(l1). Continuing in this
way (a boring task best left to a computer, once understood), we find the
descriptions l3 = l4 = l2 and p2 = P4(v3) corresponding to the S′ → NP′ VP rule
and see that the descriptions I(l3) <* l5 = l14 < l15 <* l3, p14 = Q5(u1)(p15) and v3
= u1 correspond to the leftmost local tree covered by the NP′ → NP rule. We
follow the tree top-down here, but it is clear that any alternative order will give the
same results.

In the end, after some very elementary reasoning, we see the following familiar
picture emerge: essentially the UDRS that was given in (15).

(17) l1 <* l14 p0 = [w | w is w0] ; p1
l1 <* l16
l14 < l15 p14 = [| [u1 | boy u1 w] ⇒ p15]
l16 < l17 p16 = [u2 | girl u2 w] ; p17
l17 <* l2 p2 = [| adores u1 u2 w]
l15 <* l2

Disambiguation corresponds to strengthening the l-description, with the under-
standing that the result must remain consistent with the axioms for unordered
trees. As soon as the resulting description entails an equation lk = lm, we may add
the corresponding equation pk = pm to the s-description.

References
Allen, J., 1995, Natural Language Understanding (2nd edition), The Benjamins /

Cummings Publishing Company, Redwood City, CA.
Alshawi, H. (ed.), 1992, the Core Language Engine, MIT Press, Cambridge

Mass.
Asher, N., 1993, Reference to Abstract Objects in Discourse, Kluwer, Dordrecht.
Asher, N., and H. Wada, 1989, A Computational Account of Syntactic, Semantic

and Pragmatic Factors in Anaphora Resolution, Journal of Semantics.
Backofen, R., J, Rogers and K. Vijay-Shanker, 1995, A First-Order

Axiomatization of Trees, manuscript.
Bos, J., E. Mastenbroek, S. McGlashan, S. Millies and M. Pinkal, 1994, ‘A

Compositional DRS-based Formalism for NLP Applications’, in H. Bunt, R.
Muskens and G. Rentier, eds., Proceedings International Workshop on
Computational Semantics, Institute for Language Technology and Artificial
Intelligence, Tilburg, 21-31.

Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspars, H.
Kamp, M. Pinkal, M. Poesio, S. Pulman and E Vestre, 1994, The State of
the Art in Computational Semantics: Evaluating the Descriptive Capabilities of
Semantic Theories, FraCaS deliverable D9.

33

Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspars, H.
Kamp, M. Pinkal, M. Poesio, and S. Pulman 1995, Evaluating the State of
the Art, FraCaS deliverable D10.

Dalrymple, M., J. Lamping and V. Seraswat, 1993, LFG Semantics via
Constraints, in Proceedings of the Sixth European ACL, Utrecht 1993, 97-
105.

Eijck, J. van, and H. Kamp, forthcoming, ‘Discourse Representation Theory’, to
appear in J.F.A.K van Benthem and A. ter Meulen (eds.), The Handbook of
Logic in Linguistics, Elsevier Science Publications.

Groenendijk, J. and Stokhof, M.: 1990, Dynamic Montague Grammar, in L.
Kálmán and L. Pólos (eds.), Papers from the Second Symposium on Logic
and Language, Akadémiai Kiadó, Budapest, 3-48.

Groenendijk, J. and Stokhof, M.: 1991, Dynamic Predicate Logic, Linguistics
and Philosophy 14, 39-100.

Halvorsen, P.-K. and R.M. Kaplan, 1988, Projections and Semantic Description
in Lexical-Functional Grammar, in Proceedings of the International
Conference on Fifth Generation Computer Systems, Tokyo, 1116-1122.

Kaplan, R.M. and J. Bresnan, 1982, Lexical-Functional Grammar: A formal sys-
tem for grammatical representation, in J. Bresnan (ed.), The Mental
Representation of Grammatical Relations, The MIT Press, Cambridge, MA,
173-281.

Kaplan, R.M., 1989, The Formal Architecture of Lexical-Functional Grammar,
Journal of Information Science and Engineering 5, 305-322.

Marcus, M.P., D. Hindle and M.M. Fleck, 1983, D-theory: Talking about
Talking about Trees, in Proceedings of the 21st ACL.

Muskens, R.A.: 1991, Anaphora and the Logic of Change, in Jan van Eijck (ed.),
JELIA ’90, European Workshop on Logics in AI, Springer Lecture Notes,
Springer, Berlin, 414-430.

Muskens, R., 1994a, ‘A Compositional Discourse Representation Theory’, in P.
Dekker and M. Stokhof, eds., Proceedings of the Ninth Amsterdam
Colloquium, Institute for Logic, Language and Computation, University of
Amsterdam, 467-486.

Muskens, R., 1994b, ‘Categorial Grammar and Discourse Representation
Theory’, Proceedings of COLING 94, Kyoto, 508-514.

Muskens, R., 1996, ‘Combining Montague Semantics and Discourse
Representation’, to appear in Linguistics and Philosophy.

Poesio, M., 1994, Ambiguity, Underspecification and Discourse Interpretation,
in: H. Bunt, R. A. Muskens and G. Rentier (eds.), Proceedings of the
International Workshop on Computational Semantics, Tilburg, 151-160.

Pulman, S.G., 1994, A Computational Theory of Context Dependence, in: H.
Bunt, R. A. Muskens and G. Rentier (eds.), Proceedings of the International
Workshop on Computational Semantics, Tilburg, 161-170.

Reyle, U., 1993, Dealing with Ambiguities by Underspecification: Construction,
representation and deduction, Journal of Semantics 10, 123-179.

Schubert, L.K. and F.J. Pelletier, 1982, From English to Logic: Context-free
computation of conventional logical translation, American Journal of
Computational Linguistics 8, 165-176.

34

Vijay-Shanker, K., 1992, Using Descriptions of Trees in a Tree Adjoining
Grammar, Computational Linguistics 18, 481-518.

