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1 Introduction: ambiguity and disambiguation

The idea of analyzing an expression as the (ordinary logical) disjunction of its disambiguations has been
criticized on the grounds of both computational intractability (e.g., Reyle [5]) and logical untenability (e.g.,
van Deemter [1]). Concentrating on the latter, let us fix a set ®q of formulas, closed under disjunction V,
and a semantic interpretation [¢]a of formulas ¢ € ®¢ relative to a first-order model M, under which the
disjunction ¢ V 9 of two formulas ¢ and i € ®, is interpreted by the operation U of union,

[eVvidlu = [elmU[¥]um -

The use of union above is adopted mainly for the sake of definiteness, the crucial point being that there is a
fixed binary function F' such that for all ¢ and ¢ € ®¢ and all models M, [ V¥]p = F([¢la, []ar)- That
is, the interpretation of V is uniform over all models M, suggesting that the disjunction of two unambiguous
formulas is also unambiguous. By contrast, an expression that is ambiguous between (say) two unambiguous
formulas ¢ and 1 should be interpreted as either ¢ or ¢ (but not both!) according to some unspecified
information that must be supplied at the meta-level. With this in mind, let us introduce a binary connective
e that is interpreted relative also to some item ¢ embodying that information. More precisely, let ® be
the closure of ®¢ under e as well as the connectives in ®q, with each formula in ® interpreted relative to
a model M and to an item ¢ that will be described shortly. Abusing notation, let us write [¢]ar,; for the
interpretation of ¢ € ® relative to M and ¢, defending the abuse by arranging the interpretation of a formula
in ®¢ to be independent of 1,

[0]]M,z = [0]]M for 8 € &g .
(Similarly, for connectives from ®4 such as V,
[eVelm: = el Y¥la

for all ¢ and ¢ € ®, and not just in ®¢.) It is natural to call a formula in &g unambiguous inasmuch as its
interpretation does not require the “disambiguating” item 3.

1.1 Total disambiguations

The simplest example of item ¢ considered below is a linear order < on ¢ disambiguating ¢ e v as follows:

[po¢lm< = {[“’]]M*< ifp <9 1)

[¥]a,< otherwise.

(A similar meta-theoretic “or” connective is proposed in van Deemter [1], the additional step taken here
being the introduction of the item i supporting its formal interpretation. The necessity of that additional

*My thanks to Hans Kamp, Peter Krause, Uwe Reyle, Emil Weydert and Ede Zimmermann for helpful discussions.
IWithout loss of generality, let us insist that if the expression can also mean both, then the formula ¢ A 9 should be added
to the set of its disambiguations. The same goes for ¢ V 9.
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material is the essential intuition behind the present work.?) Up to semantic equivalence =, <, defined by

p=m< M [e]m<=[lm<

the connective e is symmetric (because < is anti-symmetric) and associative (because < is transitive)

poy =y ey
bo(pey) =p< (Bop)ey.

The interpretation (1) of e is particularly natural in case [¢]a,< is an element of some set 2, a proper subset
true C Q of which picks out the formulas “true” under that interpretation. Then the theory of a family M
of models relative to a particular order (i.e., disambiguation) < is

Th(M,<) = {¢ : (VM € M) [¢]m,< € true} .

A basic shortcoming of the interpretation (1) of e is the absence of a notion of context in disambiguating
formulas.

For a context-dependent notion of disambiguation, let us fix a binary operation  : ®; x &y — Pq
merging formulas, with the intuition that the first argument 6 in 6"y represents the context in which the
second argument ¢ is asserted. Now, taking the item ¢ to be a function 6 — < from unambiguous formulas
6 (€ ®g) to orders <% on @, extend the operation " to an operation i : ®;, x ® — ® relativized to i as
follows

. Mg if p <%

Ai —
0% (pey) = { 0"iq) otherwise 2)
for 6 € &g and p, 1 € . Note that the first argument of ¢ is unambiguous, as is the value assigned to 6" .
The present paper concentrates on unambiguous contexts, touching only very briefly on ambiguous contexts

(in §4.2).

1.2 Partial disambiguations

Ambiguity arises when there are two or more possible items (7,7, .. .) to consider, suggesting an interpretation
of a formula relative to a family of such items. Assuming an independent pairing of models with items, this
step can, in turn, be analyzed by weakening an order < on formulas to a binary relation R on formulas,
families of which collapse to their unions or intersections. This assertion will be made precise in Propositions
5 and 6 below. For now, suffice it to say that a formula ¢ will be interpreted relative to a model M and
binary relation R on formulas (in the case of context-independent disambiguation).

1.3 Outline of present paper

The present paper first considers context-independent disambiguation, investigating not only partiality but
also the compositionality of the semantics. The paper then turns to the context-dependent theory, which
arises from the context-independent case by shifting to a “dynamic” perspective (e.g., Kamp and Reyle [4]).

Henceforth, M will denote a (first-order) model, < a linear order on ®, referred to simply as an order,
and R a binary relation on ®.

2 Context-independent disambiguation

Throughout this section, we will assume an interpretation of e given by line (1) above, with [¢]m.r € {0,1},
true = {1}, 0 =0 and 1 = {0} (so that V is given by U, etc.).

2Van Deemter [1] also hints at an approach via modal logic, suggesting (as others have) that an expression ambiguous
between ¢ and 1 be characterized as Mean(y) V Mean(1)), rather than ¢ V ¢ (or Mean(y V 9)). To what extent the present
connective can be viewed in modal terms is taken up briefly in §4.1.
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2.1 Compositionality examined locally

Call (M, <) composite if =7, is a congruence with respect to @ — or equivalently, there is some function
¢ such that for all ¢ and ¢ € 9,

[[<P°¢]]M,< = |[80]]M,< J [[¢]]M,< .

Dropping subscripts for the sake of simplicity, note that to say that = is a congruence with respect to e is
to assert the following implication for all formulas ¢, ), ¢’ and 7,

p=<Y pZEY ¢'=¢p Y =9y
¢ <Y

7

whence

Proposition 1. (M, <) is composite iff there is a linear order < on the equivalence classes [p] = {1 :
@ =m,< Y} such that

< = {(»¥) : vZu<vand[p] <]} U {(¢,¥) : ¢=pm< v and p <} .

Indeed, given a model M, the orders < that make (M, <) composite can be formed as follows. For every
unambiguous formula ¢ € ®g, let |p| = {p € o : ¢ =p ¥}, and order {|¢| : ¢ € $p}. Following the
inductive generation of formulas, throw in formulas with occurences of e into the appropriate equivalence
classes |¢|, at the end ordering each enlarged equivalence class.

Of course, there is no reason to expect that a natural choice of (M, <) should be composite. One may
argue that the compositionality of e is more suitably reconsidered “globally” over a collection of pairs (M, <).

2.2 Ambiguity through variation

Ambiguity arises when considering two or more disambiguations (i.e., orders). Relative to a collection Z of
pairs (M, <), the projections of the interpretations of ¢ are defined by

[¢]7 = {M : [¢lar,< = 1 for some < such that (M, <) € I}
[e]ly = {M : [¢lar,< = 1 for all < such that (M,<) € I},

inducing obvious equivalences =3 and =Y on formulas. But first let us compare projections induced by
different collections Z and 7'.

Proposition 2. Let O and O' be two collections of orders on formulas, and let M be a family of models.
Then

Jo=U0" implies [¢liuxo = [eliuxor
and
ﬂ 0= ﬂ O'  implies [‘P]]Y\AXO = [W]]XAXO’

for every formula p € ®.

The proof is trivial, although the following two points are perhaps worth making. The reference to cartesian
products is crucial, as the argument breaks down if M x O is replaced by some complicated subset of it.
Secondly, the converse fails already for the case of singleton families O, since the ordering between say e-free
formulas ¢ and 1 that are equivalent in M makes no difference to the interpretation (over M) of p e 1.

Another useful fact is

Proposition 3. For all collections T and I' (of model-order pairs) such that T C T,

[/ < I[el3
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and

[]7 2 [el7
for every formula p € ®.

Again, the proof is immediate, the crucial point being (as in Proposition 2) that |[go]]§2 is determined “dis-
tributively” at each (M, <) € Z.

2.3 Compositionality reconsidered globally

A family M of models is fixed throughout this section. For @ € {3,V}, call a collection O of orders Q-

composite (relative to M) if E)%txo is a congruence with respect to e. O is undecided on a pair ¢, of
formulas if O has orders < and <’ such that ¢ < ¢ and ¥ <" p. O is undecided if it is undecided on every
pair of distinct formulas (i.e., every pair (p, ) of distinct formulas ¢ and 4 is in [ O).

Proposition 4.

(i) If O is undecided on p,1), then

[[‘P]]?\/lxo U [["/’]]?\AXO
[[SD]U\AXO n [[d’]]XAxo -

|[(p s d)]]?\/txo
[‘P b 1/"]]\.‘/1\A><O

(ii) If O is undecided, then it is both 3- and V-composite, and (assuming the usual semantics for V and A)
peoi EEIV[XO PV
pep EXAXO eAY
for all formulas ¢ and .
Proposition 4 lends some support to both disjunctive and conjunctive reductions of ambiguity. Of course, it

is clear from the proof of Proposition 1 that union and intersection are not the only possible compositional
interpretations of e.

For Q € {3,V}, a singleton set {<} is typically not Q-composite, whence Propositions 3 and 4 suggest
that if a collection O of orders is to be made (J-composite, then it is more promising to add orders to O
than to take away orders from it.> But is there a most economical method? Given a set O of orders, let

0%¢ = m{(’)' : O' D0 and O is Q-composite} .

If O9 is Q-composite, then it would certainly be the least one containing ©. Unfortunately, the assumption
may fail because

() two distinct orders can induce the same interpretation by differing on M-equivalent e-free formulas.

3The existential case is particularly simple, the condition that O is 3-composite being captured precisely by the following
implication (for all formulas @, %, ¢’ and 4’, and every < € O)

p=y 92y ¢=¢ ¢=y
@< c0) ¢ < ¢

(suppressing for notational simplicity the subscript M X O on 53).
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2.4 From orders to normal relations

In view of Proposition 2 and (}), it is natural to interpret e relative to an arbitrary binary relation R on
formulas. Proposition 4 suggests two possibilities, yielding two different connectives o5 and ey*

¢, if Ry but not YRy
[peav]mr = § [Wlmr if 99 Ry but not @Ry

lelar,r U [¥]m,r otherwise

[e]n,r if Rt but not ¥Ry
loovYlmr = [¥]am,r if ¥ Ry but not Ry

lelar,r N [¥]m,r otherwise.

A formula ¢ (built from eg rather than e) is interpreted relative to a family M of models and R in the
obvious way

[elrmr = {MeM : [plur=1}.
Proposition 5. Given a non-empty family M of models and a non-empty family O of orders,

[ e ¥luxo = lpeavlmuo
[oe %/’]]Yuxo = [pevylmno
for all unambiguous formulas ¢ and ¥ € ®q.
Proof. Straightforward inspection of the cases: M € [p o 1/)]]5\2/“(0 and M & [pe 1/)]]%“(0, for Q@ € {3,V}. 4

In the case of V, Proposition 5 provides a linearization principle, under which a partial order can be reduced
to its set of linearizations. But now, not only does Proposition 2 anticipate Proposition 5, it also suggests
that a family R of relations be collapsed to its union | JR or its intersection [ R to capture the projections
of the interpretations of a formula relative to a family 7 of pairs (M, R), where R € R. (The essential
difference here between orders and relations is that the latter are closed under unions and intersections.)
Repeating the definition in §2.2 but this time for ¢’s built from e3 and ey (and < weakened to R), set

[¢]7 = {M : [¢]ar,r = 1 for some R such that (M, R) € T}
[¢) = {M : [¢]m.r =1 for all R such that (M,R) € } ,

an immediate consequence of which is

Proposition 6. Given a non-empty family M of models, and a non-empty family R of relations,

|[80]]/3\A><7z = |[<P]]M,u7z
[(p]]XAxR = [[‘P]]M,mn

for every formula p € ®.

”

To get rid of the annoying “but not ...
relation R on formulas to

clauses in the interpretation of eg, let us “normalize” a binary

R = {(p,¢) : pRyY but not YRy} ,

observing that
[elve = [elur

for every formula ¢. A relation R on @ is said to be normal if R = R.

4To simplify the notation, we will reuse [-] for the present modification to relations, relying on context to determine the
sense in which [:] is used, and appealing implicitly to the smooth generalization from the connective o to o5 and ey. Also, it
goes without saying that henceforth, the full set ® of formulas refers to the result of closing the set &g of unambiguous formulas
under o3 and ey (as well as the connectives from ®g).

41



2.5 Compositionality one more time

Given a family M of models, call a binary relation R on formulas Q-composite (relative to M) if =g is
a congruence relative to eg. R is composite if it is both 3- and V-composite. Proposition 1 generalizes to

Lemma 7. Let M be a family of models, R be a normal relation, and R be the binary relation {(y, ) : @R
and ¢ Zm,r Y}

(i) R is 3-composite (relative to M) iff the implications

YRY ' =mpre V' =MmpY
not 'Ry’

eRY @' =pmre ¢ =mprt not o Ry
[¥Im,r C [@]m,r

hold for all formulas @,1, " and 9'.

(ii) R is V-composite iff the implications

PRY O =mpre V' =MmpY
not ' Ry

oRY ' =mpre P =mr¢ not ¢ Ry
[elm,r € [¥]m,r

hold for all formulas ¢, 4, " and 1'.

(iii) R is composite iff the implication

SDRZ/J @' =M,R P Y’ =MRY
(p/Rwl

holds for all formulas p,, ¢’ and 1'.

Proof. Under normality, parts (i) and (ii) follow easily from the definitions, while part (iii) is an immediate
consequence of parts (i) and (ii). -

The trivial relation on formulas that contains every pair of formulas is manifestly composite. Before
passing to that relation, however, let us define the composite closure of a relation R (given a family M of
models) to be the least relation containing R that is composite (relative to M). If it exists, it could only be

RM = ﬂ{R' : R' D R and R’ is composite relative to M} .

Examining the matter more constructively from the point of view of adding to R, it is somewhat disturbing
to note that with every addition to R, [y 3 ¢]m,r increases (or stays the same) whereas [¢ ov ¥]a,r
decreases (or stays the same). By carefully applying, however, part (iii) of Lemma 7 (in accordance with the
inductive generation of formulas), we can nevertheless establish

Theorem 8. Every normal relation R has a composite closure.
Proof. Fix a family M of models, and a normal relation R. We will construct R™ in stages such that
RM = RU (JRn,
n<w

where
RyCRiCRyC--- .
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Let Ry = R — {(¢,%) : ¥ =m,r ¢}, and for every n, form R,y; from R, by applying an operation © that
maps a binary relation R’ and a set ®' of formulas to the binary relation

((¢,0) €®' x @ : (Ip,0) 9B, ¢ Zaam p, and ' =pa ¥}
derived from part (iii) of Lemma 7. More specifically, let
R,y1 = R, U O(R,,®,)
where @ is, as before, the set of unambiguous formulas, and
@1 = cd({peayy 1 v, €D} U {povy : g, €Dy}

®n

and cl(®') is the closure of ®' under all the logical connectives except o3 and ey. Observe that |J
includes all formulas, and that for every n and all ¢ and ¢ in ®,,,

n<w

Y =m,rur, ¥ it (Ym >n) ¢ =mrur, ¥
(i-e., Rny1 — R, is disjoint from @, x ®,), whence, writing R, for RUJ,, ., Bn,

R, = O(R., (] @) .

nw

That is, R, is composite, by Lemma 7, part (iii). Moreover, R,, is the least extension of R that is composite
because every R, is disjoint from =g, .

The case where R is not normal is left to the abnormal reader.

3 Context-dependent disambiguation

Let us now turn to an interpretation of e based on line (2). This interpretation builds on a binary operation
A ®y x Dy — P that merges unambiguous formulas, the first argument of which is regarded as a context
in which the second argument is uttered.

The step from the previous section to the present one can be reversed by freezing the present items i
at some fixed context (or restricting to ¢’s that are constant functions). Keeping lessons from the context-
independent case in mind, let us define a contezt-dependent disambiguation to be a function ¢ mapping an
unambiguous formula § € &, to a normal relation R’ (on ®), generalizing line (2) to

i if @ R%p
0" (peayp) = < 0Ny if yR%p

0" (p V) otherwise

Mg if @R%p
0" (povy) = 0" if pR’p

0™ (o AN ) otherwise.

Caution: it is understood above that V is interpreted as union (or, as an operation on binary relations,
non-deterministic choice), and A as intersection (both of which would require extending the basic apparatus
of Kamp and Reyle [4]). Assuming (as we will) that @ is closed under V and A, the equations above extend
in a natural way® to turn ¢ into a function from ®o x ® into ®,.

5More precisely, for all formulas ¢, and x € ®, assert

67i(x[p @39/ ¢]) if oR%¢
ohix = 0% (x[p 3 9 /9)) if pRY ¢
i(x[p o3 ¥/ V ]) otherwise

and similarly for ey, where x[¢/%] is x with all occurrences of ¢ replaced by .
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3.1 Representing context change potentials

This subsection draws on Fernando [2] to relate the merge * : ®¢ x $¢ — P to an interpretation of a formula
¢ € & as a context change potential (CCP) P(yp) C WSP x WSP on a collection WSP of world-sequence
pairs (wsp’s). To be more precise, fix a family M of first-order models, and let WSP be the collection of
pairs (M, f) where M € M, and f is a partial function from the set of variables (from which formulas in
®y are constructed) to the universe of M. To simplify notation, we will regard, in the sequel, a wsp (M, f)
as a model over an expanded signature, and assume that WSP = M, with variables occurring freely treated
as constants. Now, the intuition behind a CCP P(y) is that it specifies the input/output relation of ¢,
extending the interpretation [¢]ar of unambiguous formulas ¢ € &g analyzed in the previous section, by
returning outputs precisely on inputs M € M at which ¢ is true

[elar =1 it M € dom(P(p)) .
The merge operation ” is interpreted (“sequentially” or “incrementally”) by P as relational composition o,
where, by definition, R o R' = {(a,b) : (3¢) aRc and cR'b}. Adding further assumptions on P, let us record

these together as
Assumptions (in force throughout this section). For all ¢ and 6 € ®,,

(A1) dom(P() = {MeM : [¢]u =1}

(A2)  P(6"¢) = P(6) o P(y)

(A3)  P(=p) = {(M,M) : M € M —dom(P(p))}
for some unary connective = under which ® is assumed to be closed. Furthermore,

(A0) there is a formula T € & s.t. P(T) ={(M,M) : M € M} .

Assumption (A1) suggests a definition of the set ® 14 C P of M-absurd formulas as follows
Sp = {pedy : (VM €M) Mg dom(P(g))}
With (A1) in mind, define the equivalence =54 on ® by
p=mb it dom(P(p) = dom(P($))
Proposition 9. For all p,1 € ®y,
p=mty iff (VO € B) (00p € Dpg iff 07 € B p) .

Proof. The forward implication = follows immediately from (A1) and (A2). For the converse, suppose
© Zm ¥, say, M € dom(P(p)) — dom(P(¢)). Then, appealing to (A3), take 6 to be —).

As an equivalence on (unambiguous) formulas, =4 abstracts away the dynamic effects of the CCP’s inasmuch
as

I VIR

for every ¢ € ®,. Complementing the equivalence =44 on ® is the equivalence =™ on ® testing the other
side of "

6=Mp iff (Vo€ ®) (0 p€ driff ppcdpy),

6

which may very well be distinct since relational composition is typically not commutative.® Now, how do

the equivalences =4 and =™ behave relative to the merge *? It is immediate that
0=Mp o=m1 3)
0Np € Py iff pNYp € Py '

SDefining ima(P(p)) to be {M' : (IM € M) M P(p) M'}, it is immediate that ima(P(8)) = ima(P(p)) implies § =M p.
For the converse, however, it would be helpful to have a connective dual to —, or further assumptions such as in, for example,
Fernando [2] (concerning which note that ima(P(yp)) is different from D[P(¢)](0o), as defined there, since o, corresponds only
to a proper subset of M).
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To conclude further, under the same premisses, that 8" ¢ =4 p™1, it suffices (by (3), (A2) and the associa-
tivity of o) that for all ', 8’0 =M ¢'"p. Similarly, to deduce 8¢ =M p"ip, it is enough that "¢’ =pq ¢’
for all ¢'. Now, certainly
8=Mp =R
ong! =M A ‘PlAQO =m ‘P'A¢
and again the possibility that " is non-commutative prevents us from strengthening the conclusion of (3) to
0" p =r1 p™p and 87 =M p™¢p (which would then mean, by (A0), that =M is identical with =,4). Rather

than assuming ” is commutative, let us instead add

0=Mp bO=mp p=MY o=m

0,/\0 EM 0,/\p SD/\SOI EM ,(pA(PI

(A4)
to the list of assumptions above.” The preceding discussion then yields
Proposition 10. The equivalence =4 N =M is a congruence relative to . In particular, the implications

0=Mp 0=mp o=mY
0" =m p"Y

and

0=Mp o=M¢ o=m¢

9/\@ EM p/\d)

hold for all 6, p, » and ¥ € ®q.

Next, let us bring into the picture a context-dependent disambiguation i. Replacing * by "¢, the
equivalence =xq on ®( extends to an equivalence =pq; on @

e=pith (V0 € By) (0N € Dpy iff ONieh € Dpy)

Proposition 11. Given a normal relation R on ®, let i® be the context-dependent [sic] disambiguation that
maps every unambiguous formula to R. Then, the equivalence =xq,r (from the previous section) is identical
to the equivalence =4 ;n —

Y=pmir Y iff o=mRrY

for all p and ¢ € P.

As for the equivalence =M, the point is to extend the bounded quantification on ®o to ®. That is, let =M
be the equivalence on ®, given by

o=Mip iff (Vped) (0"pe driff phipe Bry) .

Proposition 12. For every context-dependent disambiguation i,
(i) =M C =M, and

(ii) =M ¢ =Mt iff for some p € ®, =M is not a congruence with respect to (.

The proof is immediate, with (A0) useful for part (ii).

7A model for (A0) to (A4) can be built from Kamp and Reyle [4], with
p=Mypandp=py it Plp)=P),

as explained in Fernando [2].
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3.2 Composite disambiguation
Fix a family M of models, and a context-dependent disambiguation i : 8 — R?. Call i M-composite if
(i) =m,; is a congruence relative to o3 and ey,

(i1) the rule
0=Mp 0=pmp o=mi?
0% =m,i pY
holds for all 8 and p € &y and all p and ¢ € P,

and
(iii) =M identical to =M-i.8
Two unambiguous formulas 6 and p are (i, M)-similar if
(i) =m,re and =aq,re are the same,
and, calling that equivalence =,

(ii) the implications
o Zp™y oRW ¢'=¢ =4y
(PIRP’(V

0" Z£p"b @Ry o'=p ¢Y=4
QOIRG'(,bI

and

hold for all formulas ¢, ), ' and ' € ®.
Theorem 13. Given a family M of models, a context-dependent disambiguation i is M-composite iff =M
is =M, and for all @ and p € ®y, if § =™ p and 6 =, p, then 0 and p are (i, M)-similar.
(Proof. Long, using Lemma 7 and Propositions 9 to 12.)

Partially ordering context-dependent disambiguations (z and i') pointwise,
i<i iff (V8 e do)i(f) Ci'(0),

and defining the M-composite closure of i to be the <-least M-composite context-dependent disambiguation
i’ such that ¢ < ', Theorem 13 yields

Corollary 14. For every family M of models, every context-dependent disambiguation ¢ has an M-
composite closure.

{From the construction of a composite closure (see the proof of Theorem 8), it follows that composite i’s are
determined at the unambiguous formulas. For example, there is a unique composite disambiguation 8 +— R’
such that for unambiguous ¢, 8§ and 1,

@Ry iff 6% CM 0"y,
where C™M is the pre-order
OCMp iff (Vo€ ®g) (0" p € ®pq implies p”p € Bpq)

on ®q, for which =™ can be decomposed as CM N JM. Of course, we might be interested more widely in
disambiguations whose fth relation includes R’ (plus possibly any number of other constraints).

8We make do with this condition, because of the problem in extending =™ to ® — ®o, to formulate the extension,

6=Mp =My o=pi¥

6Nip =M phigp ’

of the second rule in Proposition 10. See §4.2.
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4 Discussion

The present work approaches the problem of ambiguity from a semantic standpoint, freely generating finite
sets of unambiguous formulas under the hypothesis that two ambiguous expressions with the same set of
unambiguous formulas have the same meaning. This is not to deny that there may well be more to a natural
language expression than its set of disambiguated meanings; merely a claim that the “semantic” projection
of an expression is determined by that set — stopping short of a disjunctive view of ambiguity that equates
say {p, 1} semantically with {¢ V ¥}. An evaluation of this claim would require an account (completely
missing above) of how such sets of unambiguous formulas arise (e.g., through scope ambiguities).

Such an account would presumably build on methods from linguistics beyond the scope of the present
work. Concentrating on purer matters of logic, we might (as suggested by P. Krause) ask

In what sense can the constructs e5 and ey be described as logical connectives?

Interpreting these constructs requires adding (in the simplest case) a binary relation to a model — which is
broadly reminiscent of Kripke semantics for modal logic. The basic difference, however, is that in the present
case, the binary relation is imposed on formulas, rather than on semantic entities (called worlds). This gives
rise to the question as to whether semantic equivalence is a congruence with respect to these connectives —
a question to which the bulk of the present work is addressed.

4.1 Variations on a theme from Kripke

Insofar as the interpretations of e5 and ey depend on a disambiguation in the same way that the existential
and universal modalities in modal logic depend on an accessibility relation, it is natural to frame the problem

of
(*) axiomatizing e3 and ey on the basis of properties imposed on the disambiguations.

For starters, it is easy enough to see that if a normal relation R is transitive, then the interpretation of eg
(relative to R) is associative; and if R is symmetric, then its normalization Ris empty, and ey becomes
either V or A.? The problem (*) can also be posed globally, interpreting eg relative to a family Z of pairs
(M, R) where R has the prescribed properties. If 7 is a cartesian product M x R, then Proposition 6 suggests
collapsing R to either |JR or (1 R. But what if Z does not have such a form? Presumably, the arguments
would grow in complexity as M must be varied along with R. For instance, given a collection ® of formulas,

call (M, R) &-charitable if for all ¢ and ¢ € &,
[eAN—¢|mr =1 implies @Ry .

Rather than considering &-charitable pairs, the notion of charity can also (and arguably more naturally) be
phrased relative to a family M of models as follows: a relation R is (M, ®)-charitable if for all p and ¢ € P,

[ AN Y]mer =M implies @Ry,

so that R need not depend on a fixed M € M (but rather on M as a whole). In any case, neither definition
of charity captures the importance of context, concerning which, I think the example in the last paragraph
of §3.2 comes closest (degenerating to the second notion of charity above, if the context is frozen).1® We can
go on, but for now let us just say that the matter of choosing “interesting” collections Z of pairs (M, ) and
investigating the associated theories

QD) = {p: V(M) eT) M e [¢]F}
9 A particularly natural property (that vaguely smells of compositionality) is that R satisfy the following condition:
¢1RY1, ... and @Ry,  imply  a(e1,...,¢n) R a(1,...,%5)

for every n-ary connective a.

10 Another constraint on disambiguation mentioned in van Deemter [1] is “a tendency towards equal interpretation of different
occurrences of a given expression throughout a discourse” (§5.1) called coherence. Under the present approach, coherence
suggests a stability during the interpretation of a discourse in either the context or the disambiguations determined by the
evolving contexts.
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for @ € {3,V} is begging for attention. Just as modal logic can be analyzed in a first-order language (if not
a first-order logic), so too might the present systems, the main difference, to repeat, being that the relations
are defined on formulas (or, assuming composite interpretations, on particularly simple sets of worlds), rather
than on worlds.

4.2 Further work: ambiguous contexts and some generalizations

It is curious, as pointed out to the author by U. Reyle, that the first argument of i should be restricted to
unambiguous formulas (€ ®g). The reason is that an assumption of total disambiguation is built in by the
requirement that every pair (6, ) in &5 x ® be mapped by ¢ into an unambiguous formula. But suppose
0"ip can be ambiguous, delaying its disambiguation until further information is available. Then it is only
sensible to expand the domain of i from ®; x ® to ® x ®. More precisely, allowing the value R’ of a
disambiguation 7 at 6 to be abnormal, define

A if @R%y) but not YR
ONia) if Y R%p but not R
0% (o V1) if yR%p and pR%)

[ 07 (p @3%) otherwise

0% (pe39) = <

A if ¢ R%) but not YR
. OMiah if ¥ R%p but not R
Ai —
G7eev ) = N gr(paw)  if YR'p and pR')

[ 07 (p ov ¥)) otherwise

so that if neither ¢ Rt nor ¥Ry, then the disambiguation of peg 1 is postponed. Further generalizations are
provided by taking () to be a function from ® x ® to @, allowing i(8)(p, %) to be some formula other than
¢ or 1 that presumably resolves only part of the ambiguity in ¢ eg . In addition to extending the domain
of ¢ to ®, some mechanism for disambiguating contexts must also be introduced that complements i. Clearly,
the present work is at best an initial step towards a formal analysis of the interpretation of ambiguity, a
more general approach to which is adopted in Fernando [3].
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