On Constraint-Based Lambek Calculi

Jochen Dorre

Institut fir Machinelle Sprachverarbeitung (IMS)
University of Stuttgart, Germany
email: Jochen.Doerre@ims.uni-stuttgart.de

and

Suresh Manandhar

Language Technology Group

Human Communication Research Centre
University of Edinburgh, Scotland

email: Suresh.Manandhar@ed.ac.uk

(To appear in Blackburn, de Rijke (eds.): Specifying Syntactic Structures, papers from the Logic,
Structures, and Syntax workshop, Amsterdam, Sept. 1994.)

Abstract. We explore the consequences of layering a Lambek proof system over an arbitrary
(constraint) logic. A simple model-theoretic semantics for our hybrid language is provided for
which a particularly simple combination of Lambek’s and the proof system of the base logic is
complete. Furthermore the proof system for the underlying base logic can be assumed to be a
black box. The essential reasoning needed to be performed by the black box is that of entailment
checking. Assuming feature logic as the base logic entailment checking amounts to a subsumption
test which is a well-known quasi-linear time decidable problem.

Key words: (Lambek) Categorial Grammar, constraint-based grammar, combination of logics,
HPSG

1 Background

In recent years there has been a growing awareness of a need to design grammar log-
ics that incorporate both the resource-mindedness of categorial grammars and the
typed constraint-based approach of HPSG [15] [16]. We believe that the long-term
goal of this enterprise is to provide an incremental and largely deterministic model
of sentence comprehension within a constraint-based setting — something that
current HPSG lacks. The constraint-based basis is important, since this provides
an excellent knowledge representation, engineering and structuring environment

for NLP.

Although, there has been a lot of work on finer systems of categorial grammars
[11] [12] none directly build on a unification based framework. In a system such as
that of Moortgat’s [10] categories can be built using tuples containing type, syntaz
and structure in the spirit of UCG [23]. However, feature descriptions cannot be
employed for instance to describe the syntax. Thus the consequences of a more
direct and perhaps more pragmatic approach remains unexplored. In this paper,
this is precisely what we do.

UCG [23] and CUG [21] provided the initial integration of such an approach.

However, both lacked a rigorous model-theory. Even worse, their underlying
unification-based proof system is incompatible with the straightforward model

14 Jochen Dérre and Suresh Manandhar

theory of feature-based categorial types (where feature terms take the place of
basic categories like in (cat: s)/(cat: np & case: acc)), when making the following
two basic assumptions, which we believe are uncontroversially desirable in such a
theory.

1. The denotation of complex types should be composed in the same way as
in standard semantics for (Lambek) categorial systems. No matter whether
we use string semantics or ternary frame semantics [6], types denote sets of
objects and a complex type A/B or B\ A denotes a left-, resp. right-residual
w.r.t. a join operation (or relation) ®, i.e., those ‘functional’ objects which
when joined with a B object (to their left, resp. right) yield an A object.

2. Feature terms should induce a subtype ordering on categories in the sense
that more specific types should denote subsets of less specific ones (e.g.
[cat: np & case: acc] C [cat: np]).

Now, this implies that, for instance, A/B® B’ = A (“when something is the join of
A/B and B’, then it is of type A”) if and only if B’ is a subtype of B. On the other
hand this sequent is derived in the unification-based systems whenever B and B’
unify. Note that there is an essential difference between the two views in that our
model theory postulates an asymmetry between B and B’ i.e. B’ is informationally
more specific than B. In order to refer to one of the two approaches, we will talk
of subsumption-based vs. unification-based argument binding.

Here, we explore the consequences of adding a Lambek proof system over an arbi-
trary (constraint) logic while following the subsumption-based argument binding
approach, i.e., the one evolving naturally from the model-theoretic view. We
provide a simple set-theoretic semantics for our hybrid language and show that
the Lambek proof system carries over to this hybrid logic and furthermore the
proof system for the underlying base logic can be assumed to be a black box. We
study primarily the case where the essential reasoning needed to be performed by
the black box is that of entailment checking. Assuming feature logic as the base
logic entailment checking amounts to a subsumption test which is a well-known
quasi-linear time decidable problem [2] [20].

Section 2 reviews linguistic motivation in favor of the subsumption-based approach,
which we borrow from recent work by Bayer and Johnson [3]. The formal frame-
work for our combined logics will be the (easy) extension of Lambek’s calculus
with subtyping and is presented in Section 3. Next, we define in Section 4 the
layered Lambek system over arbitrary base logics (for the description of basic
types) as well as the special case, where feature logic is emplyed. Section 5 closes
with a discussion on conceivable limitations and the possibility of having both the
subsumption-based and the unification-based approaches in one system.

2 Double Coordinations

Recently, Bayer and Johnson [3] have given an analysis of agreement phenomena in
coordinations, which strongly supports the view of subsumption-based argument

On Constraint-Based Lambek Calculi 15

binding and which we review here as the primary linguistic motivation for our
approach. Consider examples 1a—d.

(1) a. Kim [yyp [y became | [; [pp wealthy | and [yp a Republican][]
b. *Kim [yp [y grew | [z [pp Wealthy | and [\jp a Republican]|
c./d. Kim grew [pp wealthy | / * [Np a Republican |

Clearly, the contrast between (la) and (1b) should be explained on the basis that
become admits AP and NP complements, whereas no NP complement is allowed to
follow grew. Assuming that we do not want to give coordinations a metagrammat-
ical treatment, but attempt a phrase-structure analysis, then the question arises,
what category should be given a coordination like in (1a). In most ‘unification-
based’ approaches to grammar this kind of polymorphic coordination is accounted
for by requiring that in a coordination the feature structure of the coodination sub-
sumes (or as a stronger condition: is the generalisation of) all the feature structures
of the coordinated elements. This is captured by a coordination rule like

XO — X1 CO’I’I,j X2
where Xy C X7 and Xy C Xy

(cf. [18]). Due to the additional assumption that types AP, NP, VP, PP are rep-
resented with the help of two binary features +v and +n as {+v, +n}, {—v, +n},
{+v,—n}, {—v, —n}, respectively, the polymorphic subcategorisation requirement
of become can be encoded as +n. We now may assume category +n also for
the coordination in (la), because this subsumes both AP ({+wv,+n}) and NP
({—v,+n}). (1b) is correctly ruled out, since grew requires the coordination to be
{#+n,+v}, and thus it cannot satisfy the subsumption constraint for the NP.

This approach to coordination, however, does not carry over to ‘double coordina-
tions’ considered in [3], where in addition the verbal part consists of a coordination:

(2) a. * Kim [grew and remained] [wealthy and a Republican |.

Assuming a standard encoding of subcategorisation information on the verb the
coordination rule here would predict a weakening (generalisation) of the subcate-
gorisation requirements of two conjoined verbs (see Fig. 1). With the above rule
a phrase “v; and v3” would admit any complement whose type subsumes the type
that v1 selects for as well as the one vs selects for. This fits with the data as long
as the complement(s) have maximally specific types (i.e. AP, NP, VP, or PP).
However, the analysis breaks down, if the complement is itself a coordination. For
such a double coordination construction an analysis using the above coordination
rule would lead to a complete relaxation of any subcategorisation requirements
(any combination of verbs can take any combination of phrases as complement),
since we simply may assume the structure to be [] (empty information), and
all subsumption and equality constraints of this analysis are trivially met.

In fact, a construction “v; and v9” has to allow for just those complements that
can follow vy by itself, but also can follow vs by itself, imposing the requirements of

16 Jochen Dérre and Suresh Manandhar

{COMP: [N: +ﬂ /)/ [N: +J IS
’ - 1) con [
{COMP: |::\I/ ﬂ CONJ {COMP: [N: +ﬂ | ‘ |

| ‘ | wealthy and a Republican

grew and remained

Fig. 1. Overgeneration of the coordination rule in the unification-based setting

both verbs together. E.g., only an AP complement may follow grew and remained.
But we also cannot assume the type requirements of the two verbs to simply
get unified, because they may be inconsistent. At least, this is suggested by the
following German sentences cited originally by [17] and [9].

(3)a./b./c. Er findet und hilft *Méanner /*Kindern / Frauen
he find-Acc and help-pDAT men-Acc children-DAT women-ACC+DAT

Bayer and Johnson have a simple and convincing analysis accounting for this phe-
nomenon. They devise a simple extension to LCG (Lambek Categorial Grammar)
in which basic types are replaced by propositional formulas built solely from propo-
sitional variables, A (conjunction) and v (disjunction). Apart from the original
LCG rules only the following two rule schemata are needed:!

é if ¢ F ¢ in propo- Aconj A Condition: no undischarged

¢y’ sitional logic A o hypothesis in any conjunct

The first deals with propositional formulae, the second with coordination. Now, the
polymorphic verbs become and remained can simply be categorised as vp/npvap.
A coordination like wealthy and a Republican receives category npvap by using the
weakening rule P twice. However, when we want to conjoin grew and remained
using co, we need to strengthen the argument category of remained to be ap (cf.
Fig. 2). Thus the ungrammatical double coordination (2) is correctly reject-
ed. Recasting the analysis in terms of logic, the fact that the subcategorisation
information acts as a premise of an implication — logically, functor categories
can be seen as implications — is responsible why in a coordination of verbs this
requirement gets strengthened (the category of the coordination becomes a com-
mon weakening of all the conjoined verb categories).

Interestingly, since subcategorisation requirements are encoded as ‘feature infor-
mation’ that must be entailed by the respective complement, there is no need to

! Rules are assumed to be in the format of Natural Deduction.

On Constraint-Based Lambek Calculi 17

remained [ap] ! P

vp/npvap npvap wealthy a Republican
grew and vp /e. ap and np
vp/ap conj vp/ap /it npvap P conj npvap
vp/ap “ npvap «

Fig. 2. Partial proof tree showing rejection of (2) in [3]

1 2
findet [nparaccndat) P hilft [npaaccndat]
vp/npnacc npaacc / vp/npndat npnadat /
e e
vp Jit und' vp Jin
vp/npnraccendat conj vp/npnraccndat Frauen
vp/npnraccndat “° npnracceadat ;
vp

Fig. 3. The LCG analysis of (3c)

view different grammatical cases like dative and accusative as mutually inconsis-
tent information as in the consistency-based approach. For instance, the German
verb helfen may require an object to have dative case without disallowing it to be
accusative as well, in other words, helfen would be specified as vp/npadat. Actual-
ly, this view of grammatical cases seems to be necessary to deal with the difference
in grammaticality between (3c) and (4).

(4) * Er findet und hilft Manner und Kindern.

Frauen simply needs to be of type npaaccadat and then the extended LCG of [3]
correctly accepts (3c) (cf. Fig. 3). Also, (4) is rejected (see Fig. 4), since Manner
und Kindern receives the weaker type npa(accvdat), and hence does not match
the combined requirement of findet und hilft.

3 Lambek calculi with subtyping

The general approach we take can be seen as adding Lambek slashes to some simple
logical system, some base logic, for describing grammatical categories. However,
seen from the outside the only effect of such base logics on the Lambek layer —
so-to-speak the intercategorial layer — will be that they define orderings between
‘basic’ categories, more precisely subtype orderings. For example, we might want
to allow for basic category descriptions like the above npraccasg and npaace (or
if we want to employ feature logic [np & case: acc & num: sg] and [np & case: acc])
together with the stipulation that whenever something is of the former type, it is
also of the latter. So before looking at Lambek systems over arbitrary base logics,
we first give a rigorous treatment of the almost trivial extension to Lambek calculi
where the set of basic types B is assumed to come with some subtype ordering <.
The combination schema defined later on, in which a base logic for the description

18 Jochen Dérre and Suresh Manandhar

Manner Kindern

npracc und npndat
findet und hilft npa(acevdat) conj npa(accvdat)

co

vp/npnraccadat npn(acevdat)

Fig. 4. The LCG analysis showing blocking of (4)

of categories is employed, will be an instance of Lambek systems of this kind.
Specifically, in the case of feature term descriptions, the subtype ordering will be
the well-known feature term subsumption relation.

3.1 SYNTAX AND SEMANTICS

Assume as given a set of basic types B = {b1,b2,...} on which a preorder <
(the subtype ordering) is defined, i.e. we require < C B X B to be reflexive and
transitive. If by < by, call by a subtype of by and by a supertype of b;.

Definition 1 The set of formulae F of L< is defined inductively by:
1. if b is in B, then b is in F;
2. if A and B are in F, then A/B and B\A are in F.

Definition 2 A (string-semantic) model for L< is a Kripke model (W, -, [-]), where

1. W 1is a nonempty set;
2. - : WxW — W is an assoctative operation; and
3. []: F 2V maps formulae to subsets of W and satisfies:

a) [b1] C [b2] whenever by < ba;
) [A/B] = (| ¥y € [B] (- y € [A])}; and
c) [B\A] ={y | Vz € [B] (z-y € [A])}.

Let us in parallel to L< consider the logics resulting from extending with sub-
typing the variations NL, LP and NLP of Lambek’s calculus. Here N abbreviates
“nonassociative” and P abbreviates “with permutation”. We define models for
NL< [respectively LP<; respectively NLP<] as in Definition 2, but simply allow-
ing (requiring) the second component - of models to be an arbitrary [respectively
commutative and associative; respectively commutative] operation.

3.2 GENTZEN CALCULI

There is a well-known common formulation of the proof system of all these Lambek
logic variants in form of a Gentzen sequent calculus. The extension needed to cover
subtyping is the same for all variants and almost trivial.

On Constraint-Based Lambek Calculi 19

In Gentzen calculi claims of the form U = A are derived, which can be read
as “formula A is derivable from the structured database U”, where a structured
database (or G-term) is built from formulae using the single (binary) structural
connective ©.

The denotation mappings [-] in our models are naturally extended to G-terms by
defining (symbols U and V' will henceforth always denote G-terms)

[UeV]={zeW |Jz,yeW (z=z-yAz e [U Aye[V]}

A sequent in each of our logics is a pair (U, A), written U = A, where U is a
G-term and A € F. We call a sequent U = A walid, if for all string models

(AJ,‘) b1:>b2 if bljbz
V=B UA=C UoB=A
(/L) U[A/BOV]=C (/R) U= A/B
V=B UA=C BoU= A
(\L) U[VeB\4] = C (\R) U= B\A

V=>4 U[4=>C

(Cut) —wi5

Fig. 5. Gentzen calculus NL<

Now the logical rules for all variant systems are the same and shown in Fig. 5.
The notation U[X] in rules /L, \L and Cut stands for a G-term U with a distin-
guished occurrence of the (sub-)G-term X, and by using U[Y] in the same rule we
denote the result of substituting Y for that occurrence X in U[X]. The variations
between the four logics comes from their different use of the so-called structural
rules ASSOCIATIVITY and PERMUTATION, by which the G-term connective ® may
be forced to obey the appropriate combination of being associative or not and being
commutative or not. However, we do not assume these rules explicitly, but rather,
as it is standard, let them be implicit in the notion of G-term for the respective
logic by taking G-terms modulo the respective combination of these rules. For
instance, in L connective ® is assumed to be associative, which allows us to see
G-terms simply as (nonempty) sequences (strings) of formulas with ® denoting
concatenation.

The only departure from standard Lambek calculus is the axiom scheme. It is the
straightforward generalisation needed to generate all valid sequents of two basic
formulae.

3.3 SOUNDNESS AND COMPLETENESS

Let us now check that our proof systems are indeed sound and complete. In the
following completeness theorem the case of L< already follows from an argument

20 Jochen Dérre and Suresh Manandhar

given in [7], showing that the product-free Lambek calculus (i.e. L< where < is
the identity) augmented by a set of additional axiom schemata R is sound and
complete w.r.t. the class of string-semantic models satisfying R. The proof here is
a straightforward adaptation of this argument, however we give it for all Lambek
variants simultaneously.

Theorem 3 U = A is derivable in L< [resp. NL<, LP<, NLP</ iff U = A is

valid (with the respective condition on the structural connective ®).

PROOF. The direction from left to right (soundness) is shown by the usual induc-
tion on length of proofs. Validity of axiom instances directly follows from model
condition (3a). For the other direction, we construct the canonical model CM as
follows. Let CM = (W, ®, [-]) with (W, ®) being the free algebra generated by ©
over the formulas (modulo the respective structural rules) and let [-] be defined as

[A] == {fueW | Fu= A}.

Here - I stands for I' is derivable in the respective logical system. Observe that
due to the reflexivity of < all sequents derivable in the original Lambek calculus
(resp. in its variants NL, LP, NLP) are also derivable here.

1. CM is a model: we check the conditions (a)—(c) in the definition of [-].

a) Suppose by < by. Then U € [by] iff F U = by, but then with Cut on
b1:>bg,|_U:>bg.
b) We need to show for all U € W, A, B € F:

FU=A/B iff VW e W (FV = Bimplies FU ©V = A).

So, suppose for arbitrary U, A, B, and V, - U = A/B and F V = B.
The latter gives, using /L on A = A, A/BOV = A, and hence with Cut,
FU®V = A. For the converse assume U, A, B such that the condition of
the right-hand side holds. With V' = B we then get F U ® B = A, since
F B = B is true. But then, by /R we derive the required U = A/B.

¢) symmetrical

2. CM invalidates underivable sequents: for suppose I/ U = A, hence U ¢ [A].
But clearly U € [U] contradicting the validity of U = A.

This completes the proof. O

3.4 SOME PROPERTIES OF THE CALCULI

It is helpful to classify the occurrences of subformulas in F-formulas and sequents
into positive (polarity = +1) and negative (polarity = —1) as follows.
Definition 4 (positive/negative subformula occurrences)

— A occurs positively in A.

On Constraint-Based Lambek Calculi 21

— If the polarity of B in A is p and B has the form C/D or D\C, then the
polarity of that occurrence of C [resp. D] in A is p [resp. —p].

Next we extend the subtyping relation < to complex types by stipulating
if A< A" and B’ < B then A/B < A'/B' and B\A < B'\A'. (1)

Evidently, with this definition we remain faithful to the intended meaning of sub-
typing, namely that it denotes the subset relation.

Lemma 5 If A <X B, then for any L< model [A] C [B].
Using completeness we trivially obtain

Theorem 6 If A < B, thent A= B.

The following two derived rules make explicit the monotonicity properties of deriv-
ability with respect to subtyping on the left- and on the right-hand side. They are
specialisations of C'ut taking into account Theorem 6. Be warned that the notation
U[A] stands for U with a G-term occurrence A (not an arbitrary subformula).

UB]|=C U= A

(strengthen L) U4 =0 ifA<B (weaken R) U= B

ifA<B

3.4.1 Cut elimination

An important result is that the Cut rule is redundant, since from this decidability
(in fact even N'P-easyness) directly follows. Cut-free proofs have the nice property
that the length of the proof is bounded linearly by the size of the sequent to be
proven. So, let us in the following call NL_, the system comprising of the rules and
axiom shown in Fig. 5, except for the Cut-rule.

Theorem 7 (Cut Elimination) U = A is derivable in NL< iff it is derivable in
NLZ.
(A proof is given in the appendix.)

3.4.2 Context-freeness

We show here that the addition of subtyping to the calculus of Lambek categorial
grammars does not extend their generative capacity. A categorial grammar based
on L< can always be compiled out into a (possibly much larger) Lambek categorial
grammar (and hence, also into a context-free grammar).

Assume as given a system L< = (F, l_L<) and a finite alphabet 7 of lexical entities.

Definition 8 An L< grammar G for T is a pair (o, S) consisting of the lexical
assignment o : T + 27 such that for any t € T, a(t) is a finite set of types, and
the distinguished (sentence) type S € F.

The language generated by G is

LG) := {t1...ta € T" [3B1... By (F_ Bi...Ba = SA \ Bi € a(t:))}
- =1

22 Jochen Dérre and Suresh Manandhar

Theorem 9 (Context-freeness) For any L< grammar G the language L(G) is
context-free.

(A proof is given in the appendix.)

4 Layering Lambek over some base logic

We now describe how the abstract placeholder of the subtype ordering is sensibly
filled in in constraint-based Lambek grammar. As explained above we assume
some specification language (or base logic) whose purpose it is to allow for more
fine-grained descriptions of the basic categories. Before we proceed to describe a
concrete choice of base logic, let us first consider abstractly what we demand of
such a logic and how an integration with Lambek logic can be defined generally in
a way exhibiting the desired properties.

Formally, we assume a base logic BL consisting of:

1. the denumerable set of formulae BF
2. the class C of models b of the form (W, [-]°), where:

a) W, is some nonempty set
b) [-]° : BF ~— 2" maps formulae to subsets of W,

We will be interested in logical consequence between two single formulae, i.e., in
the relation ¢ F=g| 1 Sgef Y0 € C ([¢]° C [¢]) for all ¢, 4 € BF. We also assume
a sound and complete deduction system kg for answering this question. Note
that =gy is a preorder. Now we define the layered Lambek logic L(BL) over some
given base logic BL as follows.

Definition 10 The logic L(BL) is the logic Lig, over basic types BF.

This means, we let L(BL) simply be a subtyping Lambek logic L< taking as <
the consequence relation over BL-formulae. Thus we inherit the complete and
decidable (provided |=pg| is decidable) proof system of L, but also its limited
generative capacity.

Note that every formula of L(BL) has an outer (possibly empty) Lambek part,
which composes some BL-formulae with the connectives / and \, but no BL con-
nective may scope over formulae containing / or \ (hence the term ‘layered logic’).

The reader will have noticed that Bayer and Johnson’s logic presented in Section 2
is a layered logic of this kind, where BL is instantiated to be propositional logic
(restricted to connectives A and V).

It may be a bit surprising that the generative capacity is not affected by the choice
of the base logic. Even if we admit full standard first-order logic, we do not exceed
context-free power. We see a cause of this in the fact that there is no direct
interrelation between L(BL)-models and base models. Only on the abstract level
of the consequence relation =g| the notion of base model enters the conditions on

On Constraint-Based Lambek Calculi 23

L(BL)-models.? On the other hand L(BL) enjoys a particularly simple and modular
proof system. Proofs can be built by decomposing the Lambek part of a goal
sequent with the usual rules until one reaches pure BL-sequents (Lambek axioms).
Those are then proved in pure Fg| by independent proofs for each sequent, i.e.,
the proof system g can be considered a black box.

4.1 FEATURE LOGIC AS BASE LOGIC

We now consider the consequence of choosing feature logic as the base logic. For
this variant of the logic to be complete we need a proof system for deciding ¢ = v
i.e. checking whether ¢ entails 1. Proof systems for deciding entailment between
feature constraints are well known (cf. [2] [1]).

We provide a simple entailment checking for a restricted feature logic with the
following syntax:

b, — x variable
a atom
T top
1 bottom
f:¢ feature term

Jdz(¢) existentially quantified variable
¢ & 1) conjunction

Since the semantics of feature logic is well known, we do not provide a model
theoretic semantics here (cf. [19] for details).

As a first step in determining the entailment ¢ =f 1 we translate the constraints
z = ¢ and = 1 into normal form by employing normalisation procedure for
feature logic (see [19]). A normal form translation of the constraint = ¢ results in
a constraint of the form 3z ...z, ¢’ where ¢' is a conjunction of simple constraints.
In our case, these are of the form : z = a,z = T,z = 1,z = f : y. Thus, normal
form translation of z = (cat : np & case : acc) gives Jyoy1(z = cat : yy & yo =
np & © = case : y; & y; = acc). The normal form translation, apart from
providing a simplified conjunction of constraints, also decides consistency of the
initial formula.

Now we describe a simple method for deciding ¢ = % in the general case where
both ¢ and 1) are consistent. Let Jzg...z, ¢ (resp. Jyo...ym ') denote the
normal form translation of z = ¢ (resp. = =). For simplicity of presentation,
we assume that the existentially quantified variables zy...x, and yg...y,, are
disjoint. Since the existential quantification in 3zg...x, ¢’ is not needed in the

2 As an alternative to our model conception, consider the option of defining an L(BL)-model
in a such way that it contains a base model as a part. For instance, when given a base model b,
we could stipulate

[¢] = [¢]° for all ¢ € BF.
instead of condition (a) on [-] (assume W, C W). (In our model conception such models are
allowed, but not required). A consequence of this option is that certain logical behaviour of
BL-formulae may get exported to the Lambek level leading to incompleteness there. E.g., when
BL contains a constant (or formula), say FALSE, denoting the empty set, any sequent of the form
U[FALSE| = A will be valid.

24 Jochen Dérre and Suresh Manandhar

simplification procedure, we remove this from consideration. We then apply the
entailment checking procedure given in Figure 6 to ¢' =f Jyg ... ym ¢ calling ¢’
the context and Jyg ... Ym ' the guard.

z=a& L o - Yn ¢

SAt
(Om)x:a&qSI:FLEIyO...ynx:a&zp

c=f:y&dFErp Iyo...yn ¥

SFeat
()wa:y&qu:FLﬂyo---ynxzf:y&¢

: c=f:y& dFErL Iyo---Yi-.-yn [y/yil
SFeatEzxist
()w=f:y&¢|=FL3yo---yi---ynw=f:y¢&¢

Fig. 6. Entailment checking in simple feature logic

The rules given in Figure 6 are to be read from bottom to top. These rules
simplify the guard with respect to the context. The rules SAtom and SFeat are
self-explanatory. In rule SFeatEzist the notation [y/y;]1) means replacing every
occurrence of y; with y in 1. Once the entailment checking rules terminate, entail-
ment and disentailment can be decided by inspection.

— ¢ EfL ¢ if entailment checking of ¢' EpL Jyo...ym ' simplifies ¢’ to a
possibly empty conjunction of formula of the form y; = T.

— ¢ FEpL ¥ (i.e. ¢ disentails 1) if entailment checking of ¢’ E=r Jyo .- ym ¥’
simplifies to the form z = a & ¢' = Jyo---Ym = = 7 & 7' [or the form

z=7& ¢ FrL Fo---Ym = = a & 9] where 7 is one of:
- b with a, b distinct
- fiz
— ¢ EfFL ¥ is blocked if neither of the above two conditions hold.

This completes the basic building blocks needed to implement a proof system for
a Lambek calculus with feature logic as the base logic.

5 Discussion

The initial motivation for conducting this research was the lack of a model-theoretic
semantics for unification-based versions of categorial grammar, standing in con-
trast to the apparently clear intuition of what categorial types over feature terms
should mean. We were guided by the insight (or basic assumption) that a func-
tor type A/B, according to the traditional semantics, may always be applied to
subtypes of B (yielding an A), but not necessarily to supertypes. Combined
with the idea that feature terms as basic types essentially provide a means to

On Constraint-Based Lambek Calculi 25

express fine-structuring of types, i.e., subtyping, this led us to devise a simple
model theory embodying just those assumptions, which however is accompanied
with a subsumption-based (though equally simple) proof system. This work in
a sense complements work by Dorre, Konig and Gabbay [4], in which a model-
theoretic counterpart of the unification-based proof system is constructed using
the paradigm of fibred semantics (cf. [8]).

One important issue for grammar logics upon which we have remained silent up
to now is semantics construction. There was no need to address it so far, because
our logic is completely neutral in that respect and does not involve any commit-
ment to one of the two familiar approaches to construct semantics. We either can
please the categorial grammar purist and use the Curry-Howard(-van Benthem)
correspondence to view rules as recipes to cook up lambda terms (cf. [22]). Or
we may contend aficionados of the HPSG way and employ an additional layer in
which semantic formulae are built up by unification, as we will see below.

In a Lambek-van Benthem system, as is well-known, each type is paired with
a semantic formula and L-rules trigger function application and R-rules lambda
abstraction on these formulae. Since this does in no way interfere with our exten-
sion, we can apply this method unchanged.

On the other hand, if we were to adopt a HPSG style semantics, then variable
sharing across categories is needed, i.e., we cannot come by simply adding to
the feature structures of basic types a SEM feature, since no information can be
‘percolated’ out of local trees. What we propose here is to use the combination
scheme of [4] and combine L(FL) with another layer of feature constraints. In that
second feature-logical layer, however, unification is employed to match categories.
We describe here in short how this construction works.

Double Layering To each basic type in an L(FL) formula associate a new variable.
On these variables we then can impose (feature) constraints noted in a top-level
conjunction as a third component of a sequent. E.g., an HPSG-like lexical assign-
ment for the control verb persuade would be of type (unification-layer variables
written as superscripts)

([cat: np)X \ [cat: s]%) / [cat:np]¥ /| ([cat: np]¥ \ [cat: s & v form:inf]?),

together with constraints on the variables X,S,Y,Z. For instance, we might
require that S is constrained to be a persuading relation as given by:

RELATION persuade
INFLUENCE X
INFLUENCED Y
SOA—ARG Z

S = | CONTENT

A proof proceeds as in the system L(FL), but additionally maintains as a global
environment a feature constraint @, initially the conjoined feature constraints of
all formulae in the goal sequent. Whenever we apply the axiom schema on some
[b1]% = [b2]Y, we add X =Y to ®, normalize, and continue if the result is consis-
tent. This simply means, we unify the feature graphs (encoded as the constraints)

26 Jochen Dérre and Suresh Manandhar

of X and Y. Thus the composition of the content structure proceeds in exactly
the same way as in HPSG (or other comparable unification-based frameworks).

The important point here to note is that unification-based and subsumption-based
argument binding can be combined into a single logic? and complement each other.
Speaking in HPSG terms, we have the flexibility to choose which parts of a sign
we want only to be matched and which parts to be unified, when it is combined
with others in a local tree.*

On the processing side we believe that the separation of a subsumption-based
layer (of context-free power) and a unification-based layer offer similar benefits
like the distinction between c-structure and f-structure in LFG. For instance, we
can easily precompile the formulas of the subsumption layer into a type hierarchy
of atomic symbols and thus may be able to employ efficient indexing techniques
during parsing.

A final point we want to make concerns other extensions to the original Lambek
calculus which appear to be prerequisites for many linguistically interesting anal-
yses. By that we mean for example Moortgat’s non-directional slash operator 7,
allowing for non-peripheral gaps, his operator {} for generalised quantifiers, Mor-
rill’s multimodal and discontinuity operators, structural modalities etc. (cf. [13]).
We believe that our extension of subtyping is well compatible with (at least most
of) these additional devices and offers an orthogonal extension to these.

6 Conclusion

We have shown that a simple and happy marriage between constraint-based gram-
mars and categorial grammars is technically feasible with an appealingly simple
model theory. Our hybrid grammar logic permits extant categorial proof systems

3 in much the same way as we can add a unification component for feature structures to a
context-free grammar to obtain LFG.

% The reader might wonder whether there is a simpler way to allow for information percolation
through variable binding. Suppose we would use the strategy “after having checked that the
category serving as actual argument (the complement sign) is subsumed by the functor type’s
argument description (the respective slot of the subcat list of the head), just unify the two”.
Hence, variables in the subsuming type would be bound, possibly carrying that information
to other parts of the functor type’s structure. For instance, we could have a modifier type
Jz[cat: z/cat: z] or a coordination type Jz[cat:z\cat:xz/cat:z], the result type of which would
depend on the type(s) of its argument(s). But consider what happens, when we apply that
coordination type to two arguments of different types:

cat: (npvap) © Iz[cat: z\cat: z /cat:] O cat: np

Using /L and \L this reduces to cat: z plus the two sequents cat: np = cat: z and cat: (npvap) =
cat:x. Now, if we choose to first prove the first, z gets bound (globally) to np and the second
sequent fails, but choosing the other order z = (npvap) and the proof succeeds. This means
that our naive proof procedure is sensitive to the order of rule application. In other words, to
guarantee the completeness we would have to search for a particular sequence of rule ordering.
This is an undesirable situation that we want to avoid, since it will result in a vastly inefficient
proof procedure.

In addition there is a semantic problem namely that it becomes rather difficult to provide a
sensible semantics to categories B\ A and A/B. In particular, what we witnessed in the example
above is that the denotation of A in B\ A (or A/B) is going to be dynamic and contingent on
what A actually unifies with.

On Constraint-Based Lambek Calculi 27

to be carried over in the new system. Furthermore, the logic is parameterised over
arbitrary (constraint) logics as long as a reasoning mechanism for determining
entailment and consistency is provided. We believe that crucial to the success of
this approach is the novel use of subsumption (or entailment) checking as opposed
to just unification.

Appendix
Proofs of Theorems of Section 3.4

Cut ELIMINATION

The following lemma considers derivability of a special case of each of the two
derived rules above in NLZ, laying the seed for the Cut elimination proof. It is
stated as well as the Cut elimination theorem with respect to derivability in NL<,
the weakest of the four systems, but it should be kept in mind that these facts
about derivability hold a fortiori in the other systems as well.

Lemma 11 If Ulbe] = C [respectively U = b1] is derivable in NL; and by = by,
then Ulbi] = C [respectively U => by] is derivable in NLZ.

PROOF. By induction on the length of the proof of I' = U[bs] = C.

n =0: Then U = by and C = bz € BF [resp. U = b3]. By transitivity of g,
by = b3 (=Ul[b1] = C) [resp. U = b;] is an axiom.

n > 0: We distinguish cases according to the last rule used in the proof of I' and
state the bracketed cases separately:

/R: Then C = A/B and there is a proof of (U[bz2], B) = A of smaller length.
Hence by induction hypothesis (IH) we get (U[b1],B) = A and by /R

the required sequent.
[/R :] cannot be last step

/L: U contains distinguished occurrences of the two G-terms by and (4/B, V).
Hence, either by occurs in V, in which case by IH on V' = B the claim is
shown, or U = U[(A/B,V),bs], i.e. by occurs also in U[A] as a G-term
different from A. In this case the claim follows via IH on U[A, bs] = C.

[/L :] obvious, since we get by IH U[A] = bs.
\R, \L, [\R], and [\L] are completely analoguous. O

Proof of the Cut Elimination Theorem. We point out what needs to be
changed in the Cut elimination proof for standard Lambek calculus (cf., e.g., [5]).
Let the degree of an application of Cut be the number of occurrences of connectives
in the cut-formula A, the formula eliminated by applying Cut. Then the standard
argument goes by showing that whenever a sequent I' has a proof which contains
exactly one application of Cut, which is of degree d, and this is the last step in
that proof, i.e. the proof has the form

28 Jochen Dérre and Suresh Manandhar

Iy Iy

(Cut) T

then by a case analysis of the two steps introducing I'; and TI's, it follows that T’
is derivable from the premises of those steps involving either no Cut or only Cut
applications of lower degree. The arguments for all the cases carry over identically
to our system except for the case where one of I'’s premises is an axiom. So,
suppose I't = by = by with by being the Cut-formula. Then I'y = Ulbs| = C,
and whence by Lemma 11, ' = UJ[b;] = C has a cut-free proof. But also if
I's = by = by with by being cut, we get I'1y = V = b; and again by Lemma 11
the claim holds. O

CONTEXT-FREENESS

The following charaterisation of <, which is a simple consequence of its definition
for complex types, will be useful in proving the context-freeness theorem.

Lemma 12 A < B iff B is the result of substituting in A 0 or more negative
subformulae occurrences by, . .., by, of basic types by subtypes and 0 or more positive
subformulae occurrences by, ..., bl by supertypes.

Proof of the Context-freeness Theorem. We show how to construct for an
arbitrary L< grammar G = («, S) a finite set of (pure) Lambek grammars such that
L(G) is the union of the languages generated by these. Since Lambek grammars
generate only context-free languages [14] and context-free languages are closed
under union, L(G) is context-free.

Let B|, be the (finite) subset of B of basic formulae occurring (as subformulae)
in some «a(t;). Call for arbitrary A € F super™(A) (resp. super (A)) the set of
formulae A’ such that A’ is the result of replacing in A 0 or more positive (resp.

negative) subformula occurrences by, . .., b, of basic types by respective supertypes
from B|,. For instance, if B|, = {b1, b2} where by < by then super™ (b1/(b1/b1)) =
{bl/(bl/bl), bl/(bl/bg), bg/(bl/bl), bg/(bl/bg)} We now define

= super™ (S) = {S1,...,5m}
a(t) := {B'| 3B B € a(t), B’ € super™(B)}

W

The Lambek grammars seeked for are G; = (@, S;) (over the Lambek type system
Lyg) fori =1,...,m. We let L stand for the union of their languages and show:

L C L(G): Suppose w = t1,...,t, € L. Then there exists a j such that w is
generated by G, and hence there are B, ..., B}, such that B; € @(t;) and FL,,
Bi...B] = S;. But then there are Bi,..., B, such that B; € super™t(B;)
and B; € aft;). Since valid derivations in Lj; remain valid in L« we get

b, Bi-..B, = Sj and then with (strengthen L) and (weaken R) (due to
B; =< B! and S; =% S, cf. Lemma 12) also |—|_< B;...B,= S, i.e., w € L(G).

On Constraint-Based Lambek Calculi 29

L(G) C L: Suppose w € L(G), i.e., there are Bi,...,B, such that FL.

10.

11.

12.

13.

14.

15.

16.

17.

18.

By...B, = S and B; € aft;). Assume A is a proof of this sequent in
L< and relies on the axiom instances by = b}, ..., by = b}, (i.e. b; < b). If
we replace these instances by by = b, ..., b} = b}, but keep the rest of the
proof structure, we obtain an L4 proof of a sequent Bj...B] = S’ where
B! € super™(B;) fori=1,...,n and S’ € super™(S) (note that the left-hand
sides of axioms appear as subformulae in positive occurrences on left-hand
sides or negative occurrences on right-hand sides of derived sequents). Hence
B} € a(t;) for all 1 <i < n and S’ = S; for some 1 < j < m, implying that
w is generated by G . O

References

Hassan Ait-Kaci and Andreas Podelski. Functions as passive constraints in life. ACM
Transactions on Programming Languages and Systems, 16(4):1-40, July 1994.

Hassan Ait-Kaci, Gert Smolka, and R. Treinen. A feature-based constraint system for
logic programming with entailment. Research report, German Research Center for Artificial
Intelligence (DFKI), Saarbriicken, Germany, 1992.

Sam Bayer and Mark Johnson. Features and agreement. In Proceedings of the 33nd Annual
Meeting of the ACL, Massachusetts Institute of Technology, Cambridge, Mass., 1995.
Jochen Dérre, Esther Konig, and Dov Gabbay. Fibred semantics for feature-based grammar
logic. Journal of Logic, Language and Information. Special Issue on Language and Proof
Theory, to appear.

Kosta Dosen. Sequent systems and groupoid models I. Studia Logica, 47:353-385, 1988.
Kosta Dosen. A Brief Survey of Frames for the Lambek Calculus. Bericht 5-90, Zentrum
Philosophie und Wissenschaftstheorie, Universiotdt Konstanz, 1990.

Martin Emms. Completeness results for polymorphic Lambek calculus. In Michael Moortgat,
editor, Lambek Calculus: Multimodal and Polymorphic Eztensions, DYANA-2 deliverable
R1.1.B. ESPRIT, Basic Research Project 6852, September 1994.

D. M. Gabbay. Labelled deductive systems, vol 1 (3rd intermediate draft). Technical Report
MPI-1-94-223, Max Planck Institut, Saarbriicken, Germany, 1994. 1st draft Manuscript
1989; 2nd intermediate draft, CIS-Bericht 90-22, CIS, University of Munich, 1990; to appear.
Oxford University Press.

Robert J. P. Ingria. The limits of unification. In Proceedings of the 28th Annual Meeting of
the ACL, University of Pittsburgh, pages 194-204, Pittsburgh, PA. 1990.

Michael Moortgat. Labelled Deductive Systems for Categorial Theorem Proving. Working
paper, OTS, Rijksuniversiteit Utrecht, Utrecht, The Netherlands, 1992. also in P. Dekker
and M. Stokhof (eds.) Proceedings of the Eighth Amsterdam Colloquium.

Michael Moortgat and Dick Oehrle. Lecture Notes on Categorial Grammar. Lecture notes,
Fifth European Summer School in Language, Logic and Information, Lisbon, Portugal,
August 1993.

Glyn Morrill. Categorial formalisation of relativisation, pied piping, islands and extraction
sites. Technical Report LSI-92-23-R, Department de Llenguatges i sistemes informitics,
Universitat Politécnica de Catalunya, Barcelona, Spain, September 1992.

Glyn Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer, 1994.

Mati Pentus. Language completeness of the Lambek calculus,. In Proceedings of Logic in
Computer Science, Paris, 1994.

Carl Pollard and Ivan Andrew Sag. Information-Based Syntaz and Semantics: Volume 1
Fundamentals, volume 13 of Lecture Notes. Center for the Study of Language and Informa-
tion, Stanford, CA, 1987.

Carl Pollard and Ivan Andrew Sag. Head-driven Phrase Structure Grammar. Chicago:
University of Chicago Press and Stanford: CSLI Publications, 1994.

Geoffrey K. Pullum and Arnold M. Zwicky. Phonological resolution of syntactic feature
conflict. Language, 62(4):751-773, 1986.

Stuart M. Shieber. Constraint-based Grammar Formalisms. MIT Press, Cambridge, Mass.,
1992.

30

19.

20.

21.

22.
23.

Jochen Dérre and Suresh Manandhar

Gert Smolka. Feature constraint logics for unification grammars. Journal of Logic Program-
ming, 12:51-87, 1992.

Gert Smolka and Ralf Treinen. Records for logic programming. Journal of Logic Program-
ming, 18(3):229-258, April 1994. A short version appeared in the 1992 Joint International
Conference and Symposium on Logic Programming, Washington D.C.; Nov 9-12, 1992,
pages 240-254. The MIT Press. A preliminary version appeared as DFKI Report RR-92-23,
August 1992.

Hans Uszkoreit. Categorial unification grammar. In 11th International Conference on Com-
putational Linguistics, COLING-86, 1986.

Johan van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.

Henk Zeevat, Ewan Klein, and Jonathan Calder. An introduction to Unification Categorial
Grammar. In Nicholas J. Haddock, Ewan Klein, Glyn Morrill, editor, Edinburgh Work-
ing Papers in Cognitive Science, volume 1, pages 195-222. Centre for Cognitive Science,
University of Edinburgh, 1987.

