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The aim of the paper is to investigate possible combinations of a “grammar logic”, i.e., a reasoning
method that establishes properties of strings — given properties of their atomic parts —, with a “feature
logic”, i.e. a system of constraints that are intended to somehow refine the grammar logic.

The paper begins with lengthy descriptions of Lambek’s syntactic calculus (the example “grammar logic”)
and both a feature constraint logic and a feature term logic. It would have been sufficient to mention
the completeness theorem for Lambek’s calculus and the existence of a satisfiability test for the feature
constraint logic. Also, the “singleton sorts” of Section 3 play a role only in the coding of 3SAT in Theorem
8, and the section about future work is about Lambek calculus without features.

The original contribution of the paper is contained in Sections 4 and 5, discussing semantics and proof
theory of possible combinations of Lambek’s logic with feature logic. Common to both combinations is
the idea of fibred structures.

1 Fibred Structures

Let S C (2S+, oy =+, 4, b%)bc Basecar be a standard (string) model for Lambek’s calculus, with - as string
concatenation on the set level, its residuals — and <, and finitely many basic categories b C St as
sets of nonempty strings over S. To fibre S basically means to split the syntactic categories of Lambek’s
calculus into various pieces, motivated by the classification by means of feature-value bundles used in
unification based grammars. That is, S is to be expanded to a fibred structure M = (S, A, F), where

i) A is a first-order (resp. feature) structure used to interprete terms t as elements (resp. subsets)

49 of the universe D* of A, with respect to environments g : Var — D4,

it) F = (Fy)peBasecat is a family of “fibring” relations F, C bS x D, such that

b° = J{b(d) | de D*}, where b(d) := {7 €b°|TF,d}. (1)

The structure on D" is used to collect several b(d)’s according to properties of and relations between such
d € D#. Actually, the fibring relations Fj are not essential, but only that the objects d of the structure
A define properties b(d) of strings, related to b5 as expressed in (1). Hence, everything could also be
done using relations b C St x D* and then b(d) := {7 € S* | 7bd} to define b° if needed.!

LIf one does not agree with the authors’ argument against replacing atomic categories of Lambek’s calculus by feature
terms at the beginning of Section 5 — indeed, how many distinctions between base categories should the grammar logic
be allowed to make, and what is left to the constraint system? —, one could further simplify the setting so that an object
d € D represents a property {7 € ST | 7 Fd} of strings, via a single FF C St x D4,
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Syntactically, basic categories b of Lambek’s calculus have to be replaced by formulas b(t) with first-order
(resp. feature) terms ¢t. Two modes of combininig Lambek’s logic with feature logic are investigated,
“simple” and “complementary” fibring.

2 Combination by Simple Fibring

This combines “feature term logic” with Lambek’s (propositional) logic, and is motivated by a possible
first-order version of Lambek’s calculus. In the first-order case? , the atomic formulas b(t) are interpreted
as

@M = {r € b5 | 7 F,t49} = b(t49), 2)

and in the feature term case, where terms denote subsets of DA —with 49 = {g(z)}—, as
@M ={7€b® |Fd(rFpdnd et} =| J{b(d) |d et} (3)

For the feature term case, the formula b(t) denotes “the elements of b° which also have property t in
some sense”, i.e. via the fibring relations F,. Note that this vage intuitition of what 7 € b(t) could mean
cannot completely motivate (3). It allows strings 7 € [b(t)]*¢ N [b(—=t)]™9, which both have property t
and =t “in some sense” — a strange notion of ‘having a property’ for which I see no need in grammatical
descriptions, not even to model ambiguity.?

Now, using the interpretation (3) of atomic formulas with feature-terms, the analogy to the first-order
Lambek calculus runs into both a syntactic and a semantic problem, if one tries to support proof search
by unification.

The syntactic problem is this. At first sight, it seems conceivable that feature-graph unification can play
the same role in such a system as first-order unification does in resolution-based proof systems for the
first-order case. For example, — cf. the discussion following Theorem 3 — a mismatch between an argument
and the antecedent of a functor category can be resolved by feature unification. As in first-order logic,
this would turn the goal

num : sg

pers_3rd>—)s(true)l>s(true)

n(num:sg),n<

into
num : sg num : sg
n(pers:?)rd)’ n(pers:3rd>_>5( true ) > s ( true )

and lead to the axiom s(true) > s(true) using —-rules, although we do not use instantiation of variables
to refine the feature terms envolved. Thus, feature unification sometimes does turn a goal sequent U > A
into a refined provable sequent. It then would be a matter of category subsumption and lexicon entries to
check whether the lexical assignment U to atomic parts of the input string “lifts” to the refined assignment
or not.

But the example is misleading, because only a local modification of the sequent was needed. What
really? goes wrong with this idea is the following. While in first-order logic, an instantiation (of terms
for variables) of a proof gives another proof (of a specialized claim), a similar property with feature-term

2We skip the treatment of quantifiers for the first-order version. The precise notion of feature term is fairly irrelvant.
3 A restriction to functional relations Fj or the modified definition

[b(&)]M9 = {7 €5 |Vd(r Fyd - d € t9)}

would force [b(t)]M:9 N [b(—¢t)[M>9 = and still make the basic Propositions 3 and 4 true. Maybe definition (3) enters the
authors’ completeness proofs, of which I did not have a full version.
4i.e. instead of the lack of ground terms, as the authors claimed in an earlier version of the paper.
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refinements (which are not based on variable substitutions) apparently does not hold — due to the locality
of the refinement as opposed to the global refinement by substitution.

To overcome this problem of proof syntax, I propose the following quite natural trick: use structure sharing
to ensure that the proof is linear in the relevant terms, i.e. abstract from different occurrences. That is, we
only use atomic formulas b(z) with variables as terms, and keep an envioronment [z 1= t1,..., Ty = t,]
naming the feature-terms of the former proof by the variables used to replace them. Now if the Lambek-
proof needs an identity z; = z;, apply feature-unification to (¢;,¢;) and let the refined feature-term be the
shared entry for z; and z; in the environment. Thus, all feature term refinements — not just substitutions
— are global to the proof, and certainly Lambek-derivations are preserved under such operations, just as
they are under substitution of first-order terms.

The second, semantic problem comes dircetly from the meaning of basic formulas b(t) as given in (3).
While for each individual d € D, the set b(d) is an arbitrary subset of b, the meaning of b(t) depends
monotonically on the size of the set 49 C D“. Hence, the semantic validity

E b(tAs) > b(t) (4)

has to be reflected in the proof rules, as is done in the paper. But note that (4) is already in conflict with
a unification-based proof system, which turns any goal b(¢;) > b(t2) into an axiom of the form b(¢) > b(t)
with syntactically identical terms.

Can we fix this problem as well — giving up definition (3), of course, whose motivation wasn’t terribly
convincing anyway? Let us step back and consider why a first-order version of Lambek’s calculus does
allow unification-based proof methods. Basically, it is because there is no other notion of equality between
terms involved but syntactic identity, and the method (of substitution) to refine different terms to the
same one can be used to refine proofs as well.

To put it differently, in the first-order case we have Lambek’s calculus, except that instead of finitely
many basic categories b we have infinitely many b(t). But the notion of proof does not change (until we
add quantifiers), only that instead of an axiom b [> b we have all the b(t) > b(t), etc. — the same b has
to be replaced by the same b(t) everywhere in a proof. What we gain are proofs that are schematic in
their free individual variables. In particular, free individual variables in a sequent are read universally
quantified (with the whole sequent as scope) — an important difference to what the authors do with
variables in their second method of ‘complementary’ fibring.

If we want, of course we can have the same with feature terms. But then the semantics must faithfully
respect the syntactic notion of identity of terms. For example, we need

E b(t) bb(s) < [ t=s, (5)

which contradicts (4). For the fibred structures M = (S, A, F) this means that we must have F}, C 2P *
instead of Fy C D4, so that each subset C C D defines a property b(C) C b in an arbitrary way. Tt
then no longer matters whether we use individuals d or sets C' of individuals to parameterize the basic
categories.

The system sketched above, with an environment of shared feature terms and only variables instead of
terms in basic formulas, would fit to such a semantics (if we perform a substitution [z;/z;] on the proof
when unifying the corresponding terms in the environment).

In this technical sense, I believe it is quite simple to have the perfect analog to a (quantifier-free) first-
order version of Lambek’s calculus: we only have to change the syntax of proofs a bit to get shared terms
and replace first-order by feature-graph unification. However, whether any of these systems is the right
one for the intended grammatical descriptions, is another matter.
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3 Combination by Complementary Fibring

The “simple fibring” mode of combining feature logic and Lambek’s logic — adding feature terms as
arguments to basic categories in the way as is done in the paper — does not allow a proof system
consisting of Lambek’s calculus and unification. The reaction of the authors is to propose another mode
of combination, called “complementary fibring”, which is a combination of Lambek’s logic with “feature
constraint logic”.

Syntactically, atomic formulas b of Lambek’s logic now are replaced by formulas b(z), i.e. unary predicates
applied to variables (as first-order terms). Feature constraint formulas concerning these variables are
imposed as global side conditions. The intention® is that feature term refinements are described by the
constraints, and the replacement of terms by variables in the formulas is to guarantee that refinements
operate globally in a proof.

From the proof theoretic point of view, this combination of Lambek’s and feature logic is designed in
a way that resembles fairly well current implementations of grammar formalisms that are based on an
enrichment of logic programming by appropriate data structures. In fact, the aim of this approach is:

“We want as solutions for a given goal G those consistent feature constraints ¢ for which it (6)

holds that all fibred models M of ¢ are also models of G.”

The way to achieve this is to replace atomic formulas b in Lambek’s calculus by formulas b(z) with
variables x, interpreted in fibred structures M = (S, A, F) as

[b(z)]M9 = {7 €b° | T Fyg(z) }. (7
Instead of sequents Aq,..., A, > A one considers annotated sequents G of the form
01 1AL, .., 00 1t Ap D o it Ao, (8)

where the A; are categories and the ¢; feature constraint formulas. Such an annotated sequent G is
satisfied in M under an assignment g if

AgE@ A...ANp, and [A]M9---[A,]M9 C [Ag]M9. (9)

The authors then give a complete proof system that determines from a goal sequent G those consistent
feature constraint formulas ¢ whose fibred models M, g (i.e. where A, g |= 1) satisfy G. These 1 con-
stitute the solutions of the goal sequent G. In this way, aim (6) is fulfilled, but why is this the right
aim?

The reader has to speculate in what sense the authors intend to use these notions to define a language.
My first guess was the following. Let LA be a lexical assignment over the string structure S, whose
entries v : (p :: A) are words v € ST paired with categories A and feature constraints ¢. Presumably we
have free(y) C free(A) and no two (p :: A) have variables in common, since different lexical entries don’t
know about each other. Let M = (S, A, F) be a fibred structure that satisfies the lexicon in the sense
that for all v : (p :: A) € LA, we have A, g = ¢ and v € [A]™9. One is tempted to think the language

defined by LA in its model M, g, with respect to a possibly complex category S(z1,...,Z,), is

L(M,g) := {’Ul - Up (10)

n€IN, vy :(p1::A1),...,vn: (pn it A,) € LA,
M, g satisfies 1 :: Ay,...,0p 0 A, D g S

and then let the language defined by LA be the intersection of the languages of its models, for example.
But this was mislead by the paper’s emphasis on the fibred structures. In fact, no intuitive underlying

5According to personal communication with J.Ddrre, the combination I proposed above is equivalent to the “comple-
mentary fibring”; but I am not totally convinced that it is.
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notion of semantic validity for annotated sequents is used in the authors’ construction. (In particular, the
feature constraints on the resulting category need not be implied by those on the assumed categories.)

Apparently, it was rather the possible combinations of proof strategies for Lambek’s calculus and cons-
traint solving that steered the “complementary fibring” idea. From this proof theoretic perspective, the
language defined by a lexicon LA ought to be

L(LA) := {1}1 v

ne€IN, vi:(p1:41),...,0n: (pn 1 An) € LA, (11)
v :(p1 i A1)y yon : (pn i An) D> ps 2 S is provable [’
in analogy to the notion for Lambek categorial grammars. But how can we rely on this analogy if we do
not work with string sets [ :: A]J*9 here that are combined using the connectives of Lambek’s system
with their standard semantics?

Inspecting the authors’ proof system, we find Lambek’s calculus (with atomic categories b(z)) and the
‘linking’ rule

(A1,..., A, > Ag)o
01 AL,y o A Do it Ao’

if (po A ... A pp)o is consistent, (12)

where o is a substitution of variables by variables. The authors’ operational reading of this rule is
reasonable: to proof the annotated goal sequent, try to prove the sequent 4,,..., A, > Ay with Lambek’s
calculus; in doing so, certain variables occurring in atomic categories have to be identified, which gives
a substitution ¢ and, possibly, a proof of the specialized sequent (Ajy,..., A4, > Ag)o. The constraints
; on previously distinct variables & now are strengthened constraints p;o on possibly identical variables
zo. The consistency check tests whether parameterizing feature ‘objects’ satisfying the accumulated
constraints exist.

Admittedly, this is a combination of feature constraint logic with Lambek’s logic, where unification is
used to specialize a derivation in the Lambek calculus to a proof. But the combination of the two logics
is very loose. Annotated sequents

P10 Ag, . on i Ap Do i Ao

can be seen as pairs {p, G) of a sequent G of a calculus for a first-order logic (not necessarily Lambek’s)
and a constraint formula ¢ (not necessarily about features). Nothing — if not through the lexicon! —
hangs on the fact that the constraint is obtained as a conjunction of constraints in the assumptions and
the right hand side formula. The constraint just acts as a filter that refutes some otherwise provable
sequents; it is not intimately connected with the logic. Hence, this “complementary fibring” is possible
for any subsystem of first-order logic and an arbitrary constraint logic about terms that has a decidable
satisfyability check.

What I find irritating about rule (12) is that it can only occur as the final rule in a proof, because
the annotated formulas ¢; :: A; are not allowed in Lambek’s rules. Also, I miss an intuitive semantics
according to which the rule is sound. (Do you see this from the completeness proof?). One could imagine
a variation

(Al,...,An [>A0)0'
(p1:: A1, o, pn it Ay B g 2 Ag)o’

if (pg A ... A p,)o is consistent, (13)

— and here the o could as well be omitted. This would be sound and express a ‘specialization’, under
(o AM = ﬂ{TEAM’g |g: Var = DA, Agl=}. (14)

Note also that using (14), lexical entries 7 : (¢ :: A) get a polymorphic interpretation: 7 has all the catego-

ries A(dy,...,d;) where the parameters dy, ..., dj satisfy the condition p(z1,...,z). If we reinterprete
the connectives according to

(p:A)-(:B)=(pA¥) = (A-B), (p:4) > (= B)=(pAv): (4 B),
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we would obtain (¢ :: A)M - (p 2 A = 9 :: B)M C oM for example, and so it might be that one could
obtain a system like Lambek’s, but with a modular treatment of the constraints spread over the rules for
the various connectives. How this relates to the computationally more efficient system alluded to in the
paper, I cannot say. But note that because of

E o@) s b(@) b o) =b@) < e, (15)

we again would have a monotonicity built into the logic, and could not simply use Lambek’s rules and
unification.® Since this is speculation that needs substantiation by further research, better let us return
to the paper.

Accepting the authors’ aim (6), the completeness theorem they present gives a semantics to their proof
system, and hence to some current grammar formalisms that combine (i) a proof system for a consequence
relation in the area of linguistic reasoning with (ii) methods of constraint solving to check additional
constraints on proofs. In that sence, in spite of all critical remarks so far, the paper constitutes a real
contribution to open problems. It may also well be that the complexity results, which I did not check
carefully, give a better understanding of the computational aspects of some current systems.

However, I must confess that I did not fully understand the intuitive motivation behind the “comple-
mentary fibring”, nor did I find the model theoretic semantics for this approach illuminating. This is
probably because the completeness result is not about validity in the expected sense. Maybe the mixture
of consistency (of relations between category names) and consequence (as inclusions between named string
sets) in the definition is strange only in the general case, but more natural when implicit assumptions
were added. These would have become apparent via a presentation of linguistic examples!

4 Comments

Let me make two more fundamental remarks that I find are to be considered in building a “logic” of
reasoning with features.

4.1 Approximation

Somehow I did expect that the notion of fibred structure comes with an approximation relation d C d’
between elements of its feature structure A. This relation ought to be reflected by the fibring of basic
syntactic categories, in the sense that

dEd € DA = [b(d)M C [b(d)M. (16)

For example, what happens with [b(z)]*9 = b(g(z)) if the constraints on z approach inconsistency —
does g(z) approach nonexistence, and b(g(z)) the empty set? Since we don’t habe (16), both in the simple
and the complementary fibring combination there is no systematic connection from relations between the
feature objects d € D* to relations between the sets b(d) of strings they are correlated with. The feature
structure just provides some names to denote sets of strings. I am unable to see why a theory of grammar,
as inclusion statements between sets of strings, should care about inconsistency of relations between the
names of these sets — when the naming is arbitrary.

4.2 Parametrization of basic categories

In a sense, a similar question affects the first-order version too: what is the parametrization of bS
into subsets by means of terms good for, compared with, say, using additional predicates? Somehow a

6Bounded quantification Vd € ¢.7 € A(d) simply is different from unbounded quantification Vd. T € A(d).
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linguistic motivation is needed to justify the specific kind of terms used, because the terms now say what
a ‘legal’ category name is, and this can hardly be totally independent of the denotations of the categories.

The authors’ hints that (feature) terms encode “partial information” and “provide a general means for
structuring data” as in logic programming could be more specific. In my view, the main point in having
the b(t)’s is that the set of basic categories now becomes infinite — which is hardly needed —, and
partially ordered by the subsumption relation of their term parts.

The puzzle is what it logically means to use category names b(t) structured according to a particular
kind of terms. (Note that the structure of category names in categorial grammar is directly reflected in
the string semantics.) The only answer I see is that the term structure gives the possibility of grammar
rule schemata, if rules may have free individual variables (which implicitly are universally quantified)
appearing in the terms of the complex category names.

The structure of terms allowed determines what can be expressed schematically, and hence needs some
motivation. For example, abstraction over linguistically reasonable classes of predicates ought to be ex-
pressible as abstraction from part of the term structure in grammar rules. If there is a logical advantage
in using feature terms rather than first-order terms, it ought to be related to the possibility of abstraction
over refinements, a kind of subtype quantification.

But does all this make sense unless we assume that the hierarchical organization of basic category names
b(t) corresponds to a similar organization of the string sets b(t)*9 denoted? Otherwise, wouldn’t it
amount to an endless reorganization of category names, if linguistic abstractions just had to be squeezed
into a particular discipline of stating generalizations as schematic in the names of string sets?

In contrast, the semantics of the combined fibring, based on (7) alone, does not share this view. I do not
believe that the hierarchical organization of category names is reasonable without something like (16),
i.e. a corresponding hierarchy in the boolean structure of string sets.

5 Summary

The paper uses the idea of fibring to understand possible combinations of Lambek’s logic with two versions
of feature logics. The authors’ preferred combination has a simple-looking proof system that seems to
describe some current grammar formalisms fairly well, but its semantics is presented as a mixture of
satisfaction and validity that is fairly unfamiliar. I am not convinced that this complication is necessary,
and hope that further efforts result in simpler solutions.

The paper” suffers from a missing analysis of what the logical status of features in grammatical descrip-
tions really is, and how partial information is used in language specification (cf. section 4.2) and parsing.
Without such an analysis, I think, there is no way to answer convincingly what kind of combination
between feature “logic” and Lambek’s logic is to be aimed at. A presentation of clear intuitive aims to
be established by such combinations is needed, and could also give criteria for success or failure of the
various combinations.

My personal problem with this paper is not about technical soundness and accuracy, but about lack
of motivation, examples and preciseness of goals. There were several design decisions I found incom-
prehensible — for example, why are only basic categories parameterized? —, and some discussions of
alternatives that I found incomplete. The guiding ideas ought to be brought out clearer in a final version,
and hopefully the proposals made in the comment are judged as a support in this direction, and not as
mere criticism.

Acknowledgement: I would like to thank Martin Emms for several discussions about these matters.

7In the versions I have seen. Some of the critical remarks here may not apply to the final version; to escape from a loop
of comments and improvements, I did not cross-check with the latest version.
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