CUF — A Formalism for Linguistic Knowledge Representation

Jochen Dorre and Michael Dorna

Institut fiir maschinelle Sprachverarbeitung
Universitat Stuttgart
D-W-7000 Stuttgart 1

email: {jochen,michel}@ims.uni-stuttgart.de

Abstract

We describe the formalism CUF (Comprehensive Unification Formalism), which has been
designed as a tool for writing and making computational use of any kind of linguistic description
ranging from phonology to pragmatics. The motivations for its major design decisions are
discussed.

CUF is an offspring of the line of theory-neutral universal grammar formalisms like PATR-
IT [SUP'83] and STUF-II [BKUS88, Dor91, DR91]. Like these it is based on defining feature
structures and relations over these as encodings of linguistic principles and data. However,
it is radically more expressive, since it allows the definition of arbitrary recursive relational
dependencies without tying recursion to phrase structure rules. Complex restrictions needed
in semantic interpretation like anaphora resolution and presupposition checking can thus be
stated in the same description language as the syntactic restrictions, providing the basis for
highly integrated linguistic processing.

CUF can be roughly characterized as a feature structure description language similar to
Kasper/Rounds logic [KR90] combined with the possibility of stating definite clauses over
feature terms. Moreover, feature structures are typed, with the types possibly being ordered in
a hierarchy. The CUF type discipline allows for an axiomatic statement of global restrictions on
the structures in which the program is to be interpreted providing enough redundancy in the
descriptions to detect mistakes without burdening the grammar writer with tedious repetitions.

Although it is useful to think of CUF as a kind of pure (typed) PROLOG in which first-
order terms have been replaced by feature terms, there are two important respects in which
this analogy is misleading. First of all, CUF makes a clear distinction between the purely
declarative logical specification and the control statements which are used to guide the proof
procedure without compromising the logical semantics of the specification. Second, we use a
syntax especially well suited for a direct description of feature structures.

The connection to logic programming can be explored even further by taking into ac-
count that CUF is an instance of constraint-logic programming (CLP) of the very general
Hohfeld/Smolka scheme [HS88]. This provides us not only with a sound and complete proof
procedure, but also equips us with the right paradigm to attack the efficiency problems associ-
ated with highly modular specifications, as for instance proposed by GB theory.

1 Introduction

The formalism CUF (Comprehensive Unification Formalism) is one of the results of the ESPRIT
project DYANA.! One major aim of the project was to establish the formal foundations of grammar
formalisms which would cover as many as possible of the extensions to simple unification formalisms
that had been proposed in the linguistic literature, especially in the fields of Head-Driven Phrase

IESPRIT Basic Research Action 3175: Dynamic Interpretation of Natural Language

Structure Grammar (HPSG, [PS87] and Lexical-Functional Grammar (LFG, [KB82]). Hence, the
name CUF. These extensions included formal devices like disjunction, negation, typing feature
structures, operators for set or list manipulation, constraints to express functional uncertainty, sub-
sumption relations, or even arbitrary functional and relational dependencies in features structures
as well as nonmonotonic devices. [DEW190] gives a catalog of these potential extensions, describing
their linguistic relevance as well as the technical difficulties of their integration.

1.1 Relational Dependencies

The formalism that was designed as a result of this first study, however, departed radically from the
view of adding more and more “extensions” to a PATR-II-like base formalism [DE91]. Instead the
reducibility of most of the above mentioned extensions to a very general form of relational depen-
dency was exploited, resulting in a very simple though very expressive specification language. We
can think of these relational dependencies as a generalization of the well-known template mechanism
of PATR-II in two ways. Firstly, we can add parameters to templates as in

TRANSITIVE(VFORM) :=

Next, we stop regarding templates merely as macro notation, but instead allow them their own
ontological status. Thus we regard a “template call” like any other device to describe feature struc-
tures as a unary predicate denoting the set of described structures. Note that it now makes sense
to have “templates” with recursive definitions as in:

vcomp_star(X) := X ; (vcomp: vcomp_star(X)).

With this definition we can simulate a functional uncertainty constraint f; vcomp* = f, (the infinite
disjunction f; = fo V fivcomp = fo V frvcompvcomp = foV ...) by conjoining to the description
of fi the term vcomp_star(f,). These generalized templates are called “sorts” in CUF.2

Another example is the 2-place parametric append, which given feature-structure encodings® of
two lists “yields” the concatenation of these. If we use more than one definition, these are taken
disjunctively as in PROLOG.

append(elist, L) := L.
append(’F’:F & ’R’:R, L) := ’F’:F & ’R’: append(R,L).

Some remarks on syntax are in order here. Feature terms are constructed using boolean operators &
(conjunction), ; (disjunction), and ~ (negation), as well as feature selection (<feature>: <feature
term>) over atomic forms of feature terms, which are atoms and types (written in lowercase) or
variables (uppercase). Parametric sorts are feature terms as well, as are their arguments. Hence,
we can use the term ’R’: append(R,L) to describe a feature structure with an ’R’-feature, whose
value has to be the concatenation of whatever structures are bound to R and L.

Now, an untyped CUF specification is just a collection of such definitions. There are no special
descriptive devices like lexical entries or grammar rules, since CUF resembles the DCG formalism
in treating grammar rules simply as a macro notation for definite clauses of a special form (see

[DE91)).

2There are a lot of other formalisms (TFS, STUF-III, UD, TDL, ALE) that have taken the same step and have
introduced means to define what we like to term general relational dependencies. The unary form is sometimes called
“type”. We refrained from using this notion, since types in logic or in programming languages are normally used to
classify syntactic entities, whereas the CUF sorts are not intended to be used in that way. Actually, sorts are pretty
useless for syntactic type checking, since it is in general undecidable whether a feature term denotes some (or only)
structures of a given defined sort. Nevertheless, CUF supports real types, which structure the universe more coarsely
than do sorts, but which are used for type checking and type inference (see below).

3We use the features *F’ for first element and ’R’ for tail of the list, as well as the atom elist for the empty list.

1.2 Expressive Power

It should be clear by now that our formalism is as expressive as (pure) PROLOG, allowing the
definition of arbitrary first-order predicates. However, this expressivity alone does not turn CUF
into a programming language. Unlike PROLOG, CUF does not assume a fixed processing strategy.
Instead, we want to regard CUF definitions as purely logical specifications that can be used to
accomplish diverse computation tasks. For instance, in the case of grammatical descriptions, the
definitions should be usable for parsing and for generation.

The actual processing strategy for each task has to be defined on a separate level. No extra-logical
control constructs, like for instance the cut in PROLOG, are mixed into the logical part of the lan-
guage. This strict separation of logic and control facilitates grammar development and maintenance.

1.3 Type Discipline

The philosophy behind CUF’s type system is the following.

e Types are used to coarsely prestructure the universe of feature structures. This includes the
(indirect) specification of a type hierarchy as well as the declaration of which features are com-
patible with which types and what the types of their respective values are, i.e. the declaration
of which data structures are considered as legal.

e Typing is not obligatory, i.e., the grammar writer is free to add or omit type information which
would support error-checking during compilation and may lead to short-cuts in the proof. The
system tries to infer missing type information.

e Types are an alternative means of describing sets of feature structures, and complement the
descriptive device of sorts by providing full negation on a propositional level. Types are thus
just ordinary feature terms like sorts, with a logical semantics. No specific syntax for typing
is needed.

The type system of CUF is described in detail in Section 2.3.

1.4 Acknowledgement

It should be mentioned that although CUF was developed and implemented on its own, its de-
velopment was largely influenced not only by the existing STUF-II system, in the development of
which the first author was involved, but also by the ideas that at the same time lead to the system
STUF-IIT [Sei92]. These ideas have been worked out jointly with Roland Seiffert at IBM Germany
[DS91].

2 CUF- The Language

This section describes the language constructs of the declarative specification language of CUF
together with their logical semantics. For those not interested in the formal details we have tried to
describe the semantics of CUF informally in the text while giving the precise formalization only in
figures.

Fig. 1 presents an overview of all kinds of language constructs that can be used to compose a CUF
program, including its control part, which is described in Section 3.

CUF program

logical part: CUF specification

typing information

e type (hierarchy) axioms

o feature declarations

e sort declarations

e clauses (defining sorts)

control part: CUF control statements (task dependent)

¢ delay patterns
e index declarations

e subgoal order declarations®

“not yet implemented

Figure 1: Possible Parts of a CUF Program

2.1 Feature Algebras and Feature Terms

In order to give an adequate formalization of CUF expressions, we need the notion of a feature
algebra. This is only a slight generalization of the well-known concept of a feature structure [Shi86,
KR86, KR90] by dropping the restriction that it has a single root, i.e. we are talking about general
directed graphs whose edges have a “deterministic” labelling (no two edges leaving one node are
labelled the same) and some of whose terminal nodes are labelled. Edge labels and terminal node
labels come from the two alphabets F of feature symbols and C of constant symbols, respectively.

The central building block of our language is the notion of a feature term, which informally denotes
a set of feature structures. Now, an interesting point to note about feature algebras is that there
is a natural correspondence between a node and the structure of its extension, i.e. the subalgebra
of all nodes which are reachable via feature paths from that node. Hence, instead of talking about
sets of (single-rooted) feature structures as the denotations of feature terms, we can use a single
feature algebra as a domain of interpretation and let feature terms denote subsets of this domain.
This way of modelling is in fact essential if we want to express that parts of the structures denoted
by different terms are actually shared.

Features and constants are primitive notions in CUF which cannot be defined to have a specific
meaning. They play roles similar to term constructors and atoms in PROLOG. What corresponds to
predicates are the sorts (alphabet S) and the types (alphabet T).

A type is a primitive form of feature term and is always interpreted as a subset of the interpretation
feature algebra. Hence, by the above considerations, we can think of it as denoting some set of feature
structures. As mentioned in the introduction, types are used to coarsely structure the universe of
feature structures. We will see below that only certain sets of feature structures can be defined as

Alphabets: F feature symbols (letters £, g, h), including the symbols ’F’ and ’R’

C constant symbols (letters a, b, c), including the empty list symbol []
S sort symbols of any arity (letters s, arity function ar)
T type symbols (letters t), including top, bottom, afs, cfs, list,

nelist, elist
VAR variables (letters X, Y, Z)

In order to keep the semantic notions simple, we assume that sorts and types are first mapped
to predicates before getting an interpretation, i.e. with each n-ary sort symbol s we associate a
predicate ps of arity n + 1 and with each type symbol t a unary predicate p;. The combined set
of these predicate symbols will be denoted by P.

Figure 2: Symbol Sets

Definition 1 (Feature Algebra) A feature algebra A is a pair (D*,-A) consisting of the do-
main (or carrier) DA, which is a nonempty set, and the interpretation function -* defined on F
and C such that:

o fA is a unary partial function on DA for each feature symbol f;
e a* € DA for each constant a € C;

o ifa# b then a* #b* (a,b€C);

e no feature is defined on a constant.

Definition 2 (Extended Feature Algebra) An ertended feature algebra is a feature algebra
(DA, -A) whose interpretation function is also defined on P such that:

e p* is a nonempty subset of (DA)* for each p € P\{Poottom} of arity k;

A _ A, A —
b ptop_D ’pbottom_m'

Figure 3: Definitions: Feature Algebra, Extended Feature Algebra

types.

Sorts may have feature terms as arguments, in which case they are called parametric. An n-place
sort denotes an n + 1-place relation over the nodes of the interpretation feature algebra, which
again we will consider informally as an n + 1-place relation over feature structures. The additional
parameter comes from the fact that a sort expression s(t1,...,t,) will denote a set like any other
feature term, i.e. sorts are notated in a functional style. We will make this more precise in the
examples below.

Variables denote single objects (nodes) of the interpretation feature algebra, i.e. are first-order.
They can only occur in clauses and are always interpreted local to a clause.

The symbols of types, constants, sorts, features and variables are required to be pairwise disjoint.

Now that all basic concepts have been introduced we can proceed to give the syntax and formal se-
mantics of feature terms. The syntax specification in Fig. 4 is to be read as a context-free production,
in which s and ¢ (sometimes with indices) denote feature terms.*

4Parentheses (“(”,)”) can be used too. In order to avoid parentheses we assume the following operator prece-
dences (highest to lowest): : ~ & ; | . <.

Form Significance Denotation [-]2
s,t = s(ty,...,tn) sort symbol s/n {do| (do,...,d,) €p?

AL ds € 1)

| ¢ type symbol pit

| ¢ constant symbol {c*}

| X variable symbol {a(X)}

| f:t selection {d € DA| fAd) €[]}

| s&t conjunction (intersection) [s]2 N [

| s;t disjunction (union) [s]A u [t

| s negation (complement) DA\[s]A

Figure 4: Syntax and Semantics of Feature Terms

We have to add two remarks on the syntax of feature terms. First, the use of negation is restricted:
it is not allowed to use a sort in the scope of a negation. This is a consequence of restricting our
clauses (defined later) to be definite. Second, some further feature terms are lists and strings in the
syntax of Edinburgh PROLOG, of which the latter will be treated as constants.®

The denotations given in Fig. 4 are interpreted relative to the interpretation feature algebra A (an
extended algebra) and a variable assignment «, which maps variables to elements of D, It should
also be noted that although constants and variables pick out single objects in the interpretation
feature algebra A, we let their occurrences in feature terms always denote (singleton) sets in order
to have a uniform syntax.

Example 1 Saturated phrases of HPSG ([PS93]) can be described by a CUF feature term

synsem:loc:cat:subcat: []. O

Example 2 To require two variables X and Y to denote the same object we can write X & Y.
To express inequality we write X & ~Y or "X & Y. Hence, a path inequation {f) # (g), denoting
structures in which the root’s f-path and the root’s g-path lead to different nodes, can be expressed
by the feature term f:X & g:~X. O

Example 3 A variable X will be restricted to a type type by the conjunction X & type. This can
be useful in a feature term where we want to restrict parameters of a sort or restrict the range of a
feature to certain types:

f: (X & nelist) &
g: append(X, Y & nelist) &
h: Y

In this example the type nelist for non-empty lists restricts the denotation of both parameters of
the sort append/2 and also the values of the features £ and h. O

5The list constructor [|] maps to a feature term with the features ’F’ and ’R’. Thus, the second clause of
append on page 4 could equivalently be written append([F|R],L) := [F|append(R,L)]. As in ProLoG [a,b,c,...]
abbreviates [al[bl|[cl...|[]...]1]1]. Strings are notated by enclosing characters in quotation marks (").

2.2 Clauses

A sort definition consists of one or more clauses of the form

S(tl, ...,tn) = t().
where s is sort of rank n and the t; are feature terms. Such a clause states that the denotation
of the given sort expression (left-hand side) covers at least the denotation of ¢y (for each variable

assignment). What this means precisely for the associated predicate ps of s is expressed in the
following conditional (where « is a variable assignment).

(o, .- dn) € pt if For (do € [to] 2 A - Ady € [ta]2)
Example 4 The Head Feature Principle® of HPSG can be implemented as:

head_feature_principle :=
synsem:loc:cat:head: Head &
dtrs:head_dtr:synsem:loc:cat:head: Head.

The example illustrates that path equalities can be expressed in CUF in terms of variable sharings
of path values. O

Example 5 A list of elements of type synsem can be defined as:

J.

[synsem|list_of_synsem].

list_of_synsem :
list_of_synsem :

Remark: A more general definition like

list_of (X)
list_of (X)

1.
[X|1list_of(X)].

is also a possibility for defining lists of certain elements of one type. This, however, is pretty useless
in most cases, since because of the logical variable X all elements of this list have to be identical! To
get the intended effect, X would have to be a variable over types, i.e. a second-order variable. The
current CUF system does not support higher order variables. O

2.3 Type Information

CUF allows for the specification of a type hierarchy through a set of propositional type axioms.
Types can then be used to restrict the interpretation of features as well as parametric sorts. This
is done using feature declarations, which declare domain and range types of a feature, and sort
declarations, which declare argument and result types for sorts.

s,t — t type symbol
| ¢ constant symbol
| s&t conjunction (intersection)
| s;t disjunction (union)
| ~s negation (complement)

Figure 5: Syntax of Type Terms in CUF

2.3.1 Type Axioms

Type axioms are essentially boolean expressions over type and constant symbols.” Fig. 5 presents
the syntax of type terms. Here s and t are type terms. Notice that these are simply feature terms
without variables, sorts or features. The formal semantics is as above.

There is also some additional syntactic saccharine to allow a more compact notation for type axioms.
First of all the equality operator = (corresponding to equivalence) and the subtype operator <
(corresponding to implication) are supported. Both can be eliminated in the usual way (s < t means
~s; t). Another notational device are disjointness constraints

til ..o | th.

These may appear by themselves as axioms or as the right-hand side of an equality axiom
s=t;| ... | t, or as the left-hand side of a subtyping axiom ¢; | ... | ¢, < t. They are
used to express the pairwise disjointness of the named types. The isolated form is considered as a
short form of the conjunction over all formulas ~(¢; & t;) such that 1 < ¢ < j < n, i.e., all pairs of
different t; and t; have to have empty intersections. The other two forms, where disjointness con-
straints are embedded, express the conjunction of the disjointness — seen as an isolated constraint

— with the original formula in which the operator ‘| ’ is replaced by ‘; ’ (see Fig. 6).%
il o D tn = Njgicjen (i & L)
s=t1l ..l th = (s=t1; ... ;tn)/\/\15i<j§n~(ti&tj)
til ol ta<t = (s ot <) A Njcicjen (i & L)

Figure 6: Interpretation of Disjointness Constraints

By using these transformations all kinds of type axioms can be expressed as type terms. So the
formalization of the semantics can be restricted to these cases.

As a side effect, the usage of a symbol in a type axiom classifies (defines) it as a type or constant.

6This principle encodes the percolation of head attributes along the head projection line.

7 Actually, what we call constants in the syntax of our language is a special form of type, which more accurately
could be termed constant type. Nevertheless, we will continue to call them constants and only if it is not clear from the
context we shall describe whether the singleton set or the element itself is meant. The system distinguishes constant
and type symbols by requiring that constants are written in enumeration braces like {a,b,c} when appearing in a
type axiom. Such an enumeration is nothing else than a disjunction. This special syntactic form is needed, because
symbols in type axioms are considered by default as (non-constant) types.

8Notice that the disjointness operator is not a binary logical connective. Instead it can be regarded as logically
denoting ; (OR) with a side effect of asserting additional axioms, which actually enforce the disjointness of the
types in such a group. Even if we restricted disjointness constraints to pairs of types the meaning of s = ¢1 | t2 is
different from the meaning of s = t1 xor t2, with xor being the logical exclusive-or connective. The latter merely
require s to denote the same as (t1 ; t2) & “(t1 & t2).

10

Example 6 In HPSG ([PS93]) there are two disjoint types of signs. So, we simply write
sign = phrase | word.

to partition the universe into phrasal and lexical signs. The following declaration has a similar effect:

phrasal < sign.
word < sign.
word | phrase.

The last axiom denotes the disjointness of lexical and phrasal signs too. But the subtype axioms
are not exclusive. There can be elements which are signs but neither phrases nor words, i.e., the
term sign & “phrase & “word, which would be inconsistent when using the equation above, is
satisfiable here. O

Example 7 To define an agreement type for a German grammar we can describe a cross classifi-
cation of person, number and case attributes in the following way:

agreement = person & number & case.
person = first | second | third.
number = plural | singular.

case = nom | dat | acc | gen.

Remark 1: Observe that we are not using features here. These types can be used to clas-
sify whole feature structures, for instance, as nom & third & singular, thereby excluding the
other possibilities. We can even include dependencies between certain combinations of types as in
gender < third & singular, which could be used to express that only third singular forms are
subclassified for gender.

Remark 2: It should be mentioned that the first axiom is not necessary to guarantee the compati-
bility of the types person, number, and case, like in some other systems. In CUF any interpretation
of the types which is not invalidated by the axioms is possible. Hence, in the absence of other in-
formation, intersections of types are not considered to be empty. O

Example 8 The two values of a boolean type can be defined by boolean = {-,+}. Further we can
define the values of specific features to be certain enumeration types such as person = {1, 2, 3}
or case = {nom, acc, dat, gen}. Of course, the features using these ranges have to be defined
too. O

Sometimes it takes considerable effort to declare all constants in a description. Therefore we have
included an automatic constant classification for all non-parametric non-defined symbols used in
clauses. Furthermore, we allow the use of strings which are classified as constants (see section 2.3.2).

Finally a remark on conjunction of feature terms containing constants: according to our logic the
conjunction of a constant and a selection as well as the conjunction of two non-identical con-
stants is inconsistent. The compiler detects these immediate inconsistencies and reports a type
error (constant-complezr clash and constant-constant clash, respectively).

2.3.2 Basic Structure of the Universe

The following built-in types predefine the structure of the universe: top (the universe), bottom
(the empty denotation), afs (atomic feature structures), cfs (complex feature structures), list

11

(lists), elist (the empty list), nelist (non-empty lists), string (strings), and the denotation of
the empty list, the constant [].° The interpretation of top and bottom is fixed as the universe and
the empty set. The following axioms define the relations between the other built-in types in the
notation introduced above:

top = afs | cfs.
list = elist | nelist.
elist = { [] }.

string < afs.

Additionally each constant type automatically becomes a subtype of afs and each type used as a
domain of some feature (see below) becomes a subtype of cfs.

The features F’ and R’ define a list structure. They come with the following built-in domain-range
restrictions:

’F’: nelist — top and
’R’: nelist — list.

They are used as internal selectors of the first element and the tail of a list, respectively. Since
features are defined on nelist, this type automatically becomes a subtype of cfs.

In general it is not allowed to use these built-in types in type axioms, because this can change
the structure of the universe, i.e. the logic. The only exception is the usage of a built-in type as a
supertype, because this cannot change the denotation of the supertype. For the same reason it is
not allowed to use a built-in type as a domain for a user-defined feature.

Example 9 If we did not restrict the possible domains for features, we could define a feature dummy:
top — top. By this definition we would describe a logic containing no constants. (They would all
cause type errors.) O

2.3.3 Feature Declarations

Declarations of features are bundled with respect to a common domain type. They have the following
format:

to H- f]_:t]_, fz:tz, ey fnltn.

where t; is any type term and f; is any feature symbol. By this declaration each feature £; gets a
domain ty and a range t;.

Example 10 A definition of the HPSG type “sign” and its features has the form

sign = word | phrase.

sign :: phon: nelist,
synsem: synsem,
gstore: list.
phrase :: dtrs: constituent_structure.

9Notice that our syntax allows the use of elist and [] interchangeably in the clauses part, whereas in the type
information part [] is written in braces.

12

Remark: In the original HPSG theory ([PS93]) the range of feature gstore is a set. Currently
CUF does not support sets, so we have to simulate a set in the form of a list. O

By using the same feature symbol in different declarations we may get a form of polymorphism
which we call feature polymorphism. Such a feature is called a polyfeature.

During grammar development it is often convenient not to have to define all features. We therefore
allow undefined features in clauses. If the CUF system finds an undefined feature in a clause, it will
generate a warning and assume a standard definition. This standard definition does not restrict the
domain and the range in any way.

2.3.4 Sort Declarations

A sort s of rank n can be restricted by a declaration to have arguments of a certain type. Sort
declarations have the form

s(ty, ..., tp) —> to.
where t; are type terms. tg is the type of the (implicit) result argument of the corresponding relation.

Example 11 The sort append/2 can be declared and defined in the following manner:

append(list, list) -> list.
append([], L) := L.
append([F|R], L) := [Flappend(R,L)].

Remark: The sort declaration here really restricts the possible usages of append/2. To see this
assume the feature term append ([], atom) without any declaration of append/2. By virtue of the
first clause the denotation (the instantiation of the result argument) would be “atom”. With the
declaration above this term will cause a type error since its denotation would be empty. O

2.3.5 Semantics of Type Information

A type system of a CUF specification, i.e., a set of type axioms, feature declarations, and sort
declarations, has a logical interpretation and contributes to the semantics of the whole program in
just the same way as the clauses do, namely by restricting the possible models. However, contrary to
the clauses defining sorts, it is decidable for a type system whether a given feature term is satisfiable
with respect to it or not. This fact is used during compilation, when, after having checked the
consistency of the type system itself, each feature term of a clause is tested for satisfiability with
respect to it. Unsatisfiable feature terms indicate a type error.

Actually, the logic used for the type system is only slightly more powerful than propositional logic.
In order to support this claim, we present here a formalization of the type logic which is a variant
of propositional modal logic.'®

First, observe that feature algebras can be seen as a special kind of Kripke structures in which
worlds are the nodes and accessibility is given by the feature transitions between nodes.!! However,
there is not only this semantic correspondence, which we will have a closer look at immediately, but

10For modal treatments of feature logics see also [Bla92, BS92, Rea91].
' More precisely, since there is more than one feature and features are partial functional, we are talking about
partial functional multiframes.

13

also syntactically a feature selection acts like a modal operator. We regard a formula f: ¢, where ¢
is some feature term, as true at a node of the feature algebra if it has an f-successor and ¢ is true
at that node. Features are sentence operators with a semantics completely analogous to the modal
possibility ©.

Let us consider the modal logic over the propositional variables T (the types) and the possibility
operators F (the features). To emphasize the modal interpretation of features we shall write (f)¢
in the place of f:¢. Fig. 7 presents the interpretation structure as well as the satisfaction relation

M =, ¢ (read: ¢ is true in M at node n).

Structure M = (N, {Rs | feF},{Vi|teT})
where N CIN
Ry C N x N is a partial function for each f
Vi C N for each t
t iff n eV
(f)o iff In: nRin' AM = ¢
ot M. g A ME,
) M 6

n

3 3

<X
TTTT

Figure 7: Deterministic Propositional Modal Logic

Now, the purely propositional type axioms state general relationships between types that hold at
every node of the structure, i.e., they have to be valid (true at every node) in a model. Recall, that
besides the user-defined type axioms there are type axioms for built-in types as given in Section 2.3.2.

To express the meaning of feature declarations in this logic, we have to consider all domain-range
pairs that are defined for a given feature. Say, f : D+ Ry, ... f : D, — R, are the domain-range
restrictions for f, then the logic underlying these restrictions is given by the axioms

(f)top < V?:l Di
Vi, D; = cfs
Dy = (f)R:

Dy = (f)Rn

The first axiom states that Dy = \/I_, D; is exactly the domain of f, which implies that f is total
on this subset of the universe.!? The second axiom takes care of the fact that elements of D; are
classified as complex feature structures, i.e., they cannot be constants. The other axioms reflect the
fact that specific domains come together with specific ranges.

In order to check consistency of the propositional axioms we employ a propositional theorem prover.
It is interesting to consider what has to be done additionally to guarantee consistency of the system
including the axioms containing the feature modalities. First, observe that for a feature with only
one domain-range restriction we actually have to do nothing. We can just interpret the feature such
that its domain is D; and its range is R;. This trivially validates the two axioms {f)top +» D; and
D, — {f)R;. However, when using polymorphic features inconsistencies due to feature declarations

12Note that our choice of interpreting the feature declarations such that f has to be total on Dy is no actual
restriction for the type language. Suppose we wanted to state a feature declaration f : D +— R without the requirement
that f is defined everywhere in D, then we simply write D> < D and D’ :: f:R letting the new symbol D’ denote the
subset of D where f is total.

14

may result, as is illustrated in the next example. In the section on the implementation below we
will describe a method with which the information about domain-range restrictions can be used
to calculate new type axioms, such that consistency of pure type terms with respect to the whole
axiom system (including those induced by feature declarations) can be checked by only looking at
the propositional ones.

Example 12 Let f : D; — R; and f : Dy — Ry be two domain-range restrictions for f and let
R; | Ry be an axiom. Now, we can conclude D & D2 = {f)(R; & R2) = (f)bottom = bottom.
This conclusion could not be drawn without the axioms with the feature modalities. O

A sort declaration s(ty,...,t,)— > to cannot be expressed in this logic. The corresponding axiom
in first-order logic is

Vzo...zn: s(To,...,Tn) = to(zo) A ... Atn(zn),
where the t;(z;) are the corresponding first-order translations for the modal formulae ¢;.

As mentioned earlier, welltypedness of a feature term now simply means satisfiability together with
all axioms of the type system.

2.3.6 Types vs. Sorts

Ontologically, types and argumentless sorts are the same. Both denote subsets of the universe of fea-
ture structures. Also, both can be defined to have certain features and to have certain relationships
to other types/sorts. There are, however, two important differences in the definability of these two
kinds of feature terms which are also an explanation for their different procedural treatment. Sorts
may employ variables in their definitions, types don’t. This causes types to be insensitive to the
graph structures of their elements. Actually, whenever some feature graph is an element of a type,
then so is its tree unfolding. In other words, types can only differentiate between feature structures
that differ in some path values or in the definedness of some paths, whereas sorts can require certain
path equations or inequations to hold, i.e., they can describe structural coreferences. On the other
hand types can be defined using full propositional logic, including full negation, whereas sorts are
defined through definite clauses.

Procedurally, types are handled in the unification part of the resolution algorithm, i.e., after each
step, type consistency is checked. Sorts, however, drive the resolution in general with their definite
clauses.

3 CUF — The Implementation

The current CUF system (Version 2.25) consists of a compiler, an interpreter and graphical interface
with a debugger, i.e. a development tool for CUF descriptions. The implementation was done in
Quintus PROLOG and C under UNIX and X. The named parts of the system are presented in this
section schematically. Furthermore, we explain how the declarative CUF specifications are treated
procedurally.

3.1 Compiler

The compilation steps are presented in a schematic way because we think things are getting clearer
with a little abstraction from details. E.g., in practice it is not always necessary to do all the
compilation steps mentioned below for the compilation of a CUF description.

The compilation of a CUF description can be divided into the following parts:

15

e File Handling: file access; scanning and parsing; symbol table management; dependency
checking between already compiled files and new ones using occurrence tables;

e Translation of Type Information: translation of type axioms, feature and sort declarations;
treatment of polyfeatures; building of the axiom system;

e Clause Translations: negation transformations; disjunction extraction; clause compilation;
code optimization.

A further part is the compilation of interpreter control statements which will be discussed in Sec-
tion 3.2.

3.1.1 File Handling

The incremental compiler treats several physical files of CUF descriptions in a quasi-parallel manner
as if it were only one logical file. If a file was changed and should be compiled, “dependent” parts
of previously compiled files will be recompiled. This is necessary because parts like feature or sort
declarations are represented in the internal structures generated during the compilation. So if some
of these declarations were changed, the parts in which they were used have to be recompiled.

This recompilation step does not start from scratch. It suffices to start with a scanned and parsed
internal representation of the CUF description code. So the file access is restricted to the compilation
of a new file.

The symbol table makes sure that the symbols used in several parts of a CUF description, e.g. in
several files, have always the same usage, i.e. that the sets of constant, type and sort symbols are
pairwise disjoint. E.g. a type symbol used in a type axiom must not be defined as a sort.

3.1.2 Translation of Type Information

This part of the compilation treats type axioms as well as feature and sort declarations. It prepares
these constructs for the compilation of clauses, i.e. some of the gained information will be added to
the internal clause representation.

Starting with type axioms the compiler builds incrementally an axiom system which will be used
for type unification, i.e. for testing satisfiability of conjunctions of type terms. Feature declarations
as well as sort declarations are translated into declaration tables. During the translation of feature
declarations the axiom system is extended by axioms stating that each domain is a subtype of cfs.
Next, the compiler classifies each feature into the class of either monofeatures or polyfeatures. A
monofeature has only one declaration, and a polyfeature has at least two of them. Under certain
conditions polyfeatures cause the addition of new axioms, which we explain in the following.

We have defined features as total functions over the union of the declared domains. So we have to
make sure that if there exists a non-empty intersection between some domains, the feature should
map into the intersection of the corresponding ranges. This is only possible if the intersection of the
ranges is also non-empty. On the other hand, if the intersection of the ranges is the empty set, the
domains must be disjoint too.

This is the basic idea of the algorithm which treats each feature and may increase the axiom system
dynamically. The procedure takes all i-tuples of domain-range pairs of each feature, respectively,
where ¢ < n and n is the number of declarations for that feature. If an i-tuple of ranges has no
intersection, an axiom will be added to the axiom system stating that the corresponding domains
must have no intersection. Since other range intersections could be affected by this new axiom, the
algorithm has to compute a kind of closure over these additions, proceeding until no axiom can be
added any more.

16

After a successful treatment of all polyfeature domain-range pairs the axiom system guarantees that
if there exists an intersection of the declared domains, then the intersection of corresponding ranges
is non-empty in at least some interpretation. Now the axiom system is complete, and each type and
constant is tested whether it has an empty denotation. In this case a type error will be reported.

3.1.3 Sort Translation

The last steps were primarily preparation steps for the clause compilation. Now, the global type
constraints will be added to restrict the denotation of feature terms. The main effect is that the
type information in declarations will be propagated by unification into the internal representation
of feature structures.

The first part of clause compilation transforms negated feature terms by pushing negation down
into the term structure as far as possible. The equivalences used for transformation are shown in
Fig. 8. We should highlight the elegant treatment of negated selections. Because a feature f is a

“cfs = afs

“afs = «cfs

“(f:t) = "Dy; £:7t
“(s&t) = “s; "t
“(s;t) = "s&"t

7t =t

Figure 8: Equivalence Transformations of Negated Feature Terms

total function on its domain Dy, the handling of negation is simplified a lot. “Dy is a propositional
formula where Dy is the disjunction of all declared domains of £. This part of the disjunction denotes
the part of the universe where f is not defined. The other part, on which f must be defined, will
be treated recursively by pushing down the negation in front of the value t of £. The equivalence
transformations produce a normal form in which only constants, types, and variables are negated.
So the interpreter can be restricted to handle these negation cases only.

The second part of the clause translation adds the “result parameter” to the sort to produce a
predicate (see Section 2.2). The translation function for feature terms is defined in Fig. 9. The
input of the translation is a “result variable” and a feature term which should be translated. The
output is a subgoal list. The type information is used for checking domains and ranges of features
and parameters of sorts.

The equalities “=" are implicitly handled by the internal unification of the typed feature structures

which are built from the equalities for each variable at compile time. The disjunctions d;, the
polyfeature constraints fdecl; and the inequalities “#” remain as goals in the subgoal list, i.e.,
they are delayed at this moment.

A definite clause will be compiled of a CUF clause a(t1,...,t,) := to in the following way:
a(Xo, X1,...,Xn) <« trans(Xo,to & Do), trans(Xi,t; & D1), ..., trans(X,,t, & D).

with new variable symbols Xq, ..., X, and a(D;,...,D,)->Dg. As in Fig. 9 we use the sort
declarations in this translation.

The translated clauses have the form h < C, B, where h is a relational atom which contains the
system internal representation of feature and type constraints in its parameters, B is a list of such
relational atoms, and C' is a list of unresolved inequalities and polyfeature constraints which are
treated separately from relational atoms.

17

trans(Xo, a(t1,...,t) = a(Xo, X1,...,Xn), trans(Xe, Do), trans(Xy,t1 & Dy), ..., trans(Xn, t, & Dy)
with new variable symbols X; where ¢ > 0, and a(Dy,...,D,)->Do.

trans(X, c) = X=c
trans(X,t) = X=t.
trans(X, Y) = X=VY.
trans(X, f:t) := (¢) if f is a monofeature: X = £:Y, X = Dy, Y = Ry, trans(Y,t)

with new variable symbol Y and f: Dy — Ry.
(31) if £ is a polyfeature: X = £:Y, X = Dy, trans(Y,t), fdecl;(X,Y)
with new variable symbol Y and fdecl;(X,Y):= (X # D, VY = R))
for all £: D, — R;, and Dy = Vl D;.
trans(X, ~t) X # Y, trans(Y, t) with new variable symbol Y.
trans(X,s & t) trans(X, s), trans(X, t).
trans(X, s ; t) = d; (X,l_/") with new sort symbol d; and the clauses:
d; (X,Y) « trans(X, s).
4; (X,Y) « trans(X, t).
Y holds all variables of (s ; t) that are nonlocal to s or t.

Figure 9: Translation of Feature Terms in CUF

The intermediate code used by the CUF interpreter is an optimization of the translation code
given above. Disjuncts with empty denotation are removed, and if the user wants to expand all
deterministic goals, this will be done at compile time too. Furthermore, some inequalities can be
removed, e.g., if the arguments are no more unifiable or the arguments have been made identical in
an earlier step. Of course, the latter case would cause an error.

3.2 Interpreter
3.2.1 Control Statements

Currently CUF provides two kinds of control statements: index declarations and delay patterns.

The index declarations trigger the compiler to generate tables for sorts which should be indexed
over the first parameter of a sort, e.g. for lexicon access. The format of an index declaration is

index_table(sort/arity) .

Delay patterns allow the specification of user-defined strategies for the interpretation of CUF spec-
ifications. The circumstances under which the propagation of a sort should be delayed are described
by delay specifications. The format of delay patterns is

delay (sort/arity, Delayed Parameters) .

Delayed Parameters is a list of delay specifications of the form i: Path where the path statement is
optional. The positive integer i stands for the i*" parameter, so i < arity. 0 is used for the “result
parameter”. A delay specification for the i** parameter may look like 4:f1: ... :f,. This means
that if the value of the path £1: ... :f, is uninstantiated evaluation is delayed. If the list of delay
specifications has more than one element, e.g., for different parameters or different paths of one
parameter, the statements mean a conjunction of the delay conditions: “delay if A is variable and
B is variable”. Therefore, if one of the “delayed parameter paths” gets a value, the sort will be
expanded. Disjunction of delay conditions is expressed using more than one dalay pattern for the
same sort.

18

Example 13 append/2 as defined in Example 11 may cause problems with termination, if param-
eters are not sufficiently instantiated. The sort may generate lists containing only variable elements.
But if we define a delay pattern delay(append/2,[0,1]) which requires some instantiation of the
first or the result parameter, this problem and similar ones can be handled very elegantly. Notice
that with this delay pattern we would still be able to use append/2 in “reverse”, generating splits
of a given list, as in [a,b,c,d] & append(Partl,Part2). O

3.2.2 Proof Strategy

In order to prove a goal — given as a sort possibly with parameters — the interpreter basically
performs a kind of SLD-resolution with the clauses. The actual processing order can be fine-tuned
using the control statements described above. Of course, if no control of this kind is defined, the
interpreter works as well.

The semantic foundation for this proof procedure is given by the CLP scheme of Héhfeld and Smolka
[HS88]. According to this we can employ the generalized SLD-resolution as described in Fig. 10,
since we can view our clauses as consisting of relational atoms and of constraints, the satisfiability
problem of the latter being decidable. There, goals contain a number of relational atoms rz()a)
over distinct variables as well as a complex constraint (letters: ¢ and). Bodies of clauses have the
same form as goals and heads consist of one relational atom over distinct variables. Notice that with
these assumptions resolution involves only substituting X for X, in ¢ and solving the conjunction
of this constraint and ¢o. Actually, this differs only from ordinary (PROLOG) resolution in the fact

ro(X) A Rel Atoms A ¢y goal list

To (fg) “—r (X_"l) Ao A rn(fn) A ¢[f0,f1, ,fn] clause to be resolved with

r(X1) A ... Arn(X,) A Rel Atoms A1 result goal list (¢ is the solved form of
do N qﬁ[X',AX_:l, ... ,fn], if that exists)

Figure 10: Generalized SLD resolution step

that unification is generalized to constraint solving, i.e., partial solutions are not only stored as
variable bindings, but we also have to administer constraints restricting further variable bindings
in an internal state. However, SLD-resolution describes only the general scheme of the proof. The
actual strategy for goal selection, i.e. the computation rule, has a dramatic influence on the size of
the search space that has to be considered. It is this computation rule that is refined by the addition
of delay statements.

As a general strategy the computation rule employed in the CUF system always selects deterministic
goals, if such goals are present. A deterministic goal is a goal for which no choice point needs to be
introduced, i.e. for which only one clause has satisfiable constraints. Only if no such goals are left
over the left-most nondeterministic goal which is not delayed according to a delay statement will be
expanded. The search induced by the nondeterminism is performed depth-first, using chronological
backtracking. In the exceptional case where all goals are delayed, the first one of the goal list will
be expanded, optionally indicating this condition to the user. The user may restrict the recursion
using a depth bound. This guarantees termination, but the proof procedure is no longer complete.

3.2.3 Constraint Handling

As mentioned in Section 3.1.3 there are three kinds of constraints to solve in a prove of a CUF goal:
equality, inequality and polyfeature constraints. The extended unification for typed feature struc-

19

tures is used for solving immediately equality constraints during compile time as well as runtime.
But the translation generates inequalities too, which cannot always be resolved at compile time.
And if there exists polyfeatures we have to handle the constraints on feature domains and ranges
as well. So we have to say something more about inequality and polyfeature constraints.

The treatment of inequalitites is reduced to three cases:

e An inequality constraint is satisfied, if the unification of both arguments fails.

e An inequality constraint is never satisfiable, if the arguments are identical. In this case a prove
fails immediately.

¢ If none of the previous cases hold, delay the evaluation.

A polyfeature constraint fdecl;(X, Y) := (X # D; V Y = R;) is treated the following way:

If Y is subsumed by R;, or X and D; are not unifiable, the constraint is satisfied.
If Y and R; are not unifiable, then unify X and —D;.

If X is subsumed by D;, then unify Y and R;.

If none of the previous cases hold, delay the evaluation.

The constraints are handled always before an expansion of a nondeterministic goal (see Sec-
tion 3.2.2), or, if some are remaining in the end, these have to be checked too. If some constraints
cannot be resolved, they are reported together with the result.

4 Future Work and Conclusion

Besides the descriptions of HPSG grammars CUF is currently being used for implementations of

e a theory of underspecified discourse representation structures, which gives an elegant solution
to some semantic scoping problems [Rey93, K6n92] and
e a grammar of German based on GB theory.

There is also work going on in refining the evaluation strategy. Currently we are testing an extension
of the resolution method by a memoization technique which is a generalization of Earley Deduction
[D6r93]. Furthermore, we plan to add macros for DCG-like grammar rules and for operators of
Lambek categorial grammar.

In conclusion let us state that CUF breaks with the traditional view of grammar formalisms, in
which labour is divided between linguists designing grammars inside the formalism and specialists
for parsing and generation developing the processing machinery for the formalism independently
from individual grammars. This division of labour is now (partly) supported inside the formalism
itself with the descriptive specification of grammar and (fine-tuning of) control being separate
parts of a CUF program. With this move we achieve a much larger flexibility in the specification
language without compromising declarativity. The ability to define new operators as well as, to a
certain degree, their procedural behaviour justifies to regard CUF more as a formalism toolbox of
formalisms in the traditional view.

Moreover, since descriptions of very different linguistic fields from phonology to semantics can be
expressed in terms of relations between feature structures and since CUF’s evaluation strategy is
especially well suited to strongly interacting constraints of very different parts of a description, we
expect it to be an ideal basis for highly integrated linguistic processing.

20

References

[BKUSS|

[Bla92]

[BS92]

[DE91]

[DEW+90]

[D&r91]

[D&r93]

[DR91]

[DS91]

[HS88]

[KBS2]

[K6n92]

[KR86]

[KR90]

Gosse Bouma, Esther K6nig, and Hans Uszkoreit. A flexible graph-unification formal-
ism and its application to natural-language processing. IBM Journal of Research and
Development, 32(2):170-184, March 1988.

Patrick Blackburn. Modal logic and attribute value structures. ITLI Prepublication
Series LP-92-02, Institute for Language, Logic and Information, University of Amster-
dam, March 1992. To appear in Diamonds and Defaults, edited by M. de Rijke, Studies
in Logic, Language and Information, Kluwer.

Patrick Blackburn and Edith Spaan. A modal perspective on the computational com-
plexity of attribute value grammar. Logic Group Preprint Series No. 77, Department of

Philosophy, University of Utrecht, Heidelberglaan 8, NL-3584 CS Utrecht, April 1992.

Jochen Dérre and Andreas Eisele. A Comprehensive Unification-Based Grammar For-
malism. DYANA Deliverable R3.1.B, ESPRIT Basic Research Action BR3175, Jan.
1991.

Jochen Dorre, Andreas Eisele, Jiirgen Wedekind, Jo Calder, and Mike Reape. A Sur-
vey of Linguistically Motivated Extensions to Unification-Based Formalisms. Dyana

deliverable R3.1.A, ESPRIT Basic Research Action BR3175, 1990.

Jochen Dorre. The Language of STUF. In O. Herzog and C.-R. Rollinger, editors, Text
Understanding in LILOG, Lecture Notes in Artificial Intelligence 546, pages 39-50.
Springer-Verlag, 1991.

Jochen Dérre. Generalizing Earley deduction for constraint-based grammars. DYANA
deliverable, 1993. This volume.

Jochen Dérre and Ingo Raasch. The STUF Workbench. In O. Herzog and C.-R.
Rollinger, editors, Text Understanding in LILOG, Lecture Notes in Artificial Intelli-
gence 546, pages 55-62. Springer-Verlag, 1991.

Jochen Dérre and Roland Seiffert. Sorted Feature Terms and Relational Dependencies.
IWBS Report 153, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W.
Germany, February 1991.

Markus Hohfeld and Gert Smolka. Definite relations over constraint languages. LILOG
Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W. Germany,
October 1988.

Ronald M. Kaplan and Joan Bresnan. Lexical-Functional Grammar: A formal system
for grammatical representation. In J. Bresnan, editor, The Mental Representation of
Grammatical Relations, pages 173-381. MIT Press, Cambridge, Mass., 1982.

Esther Kénig. Generation from underspecified discourse representation structures. Sub-
mitted for publication, Nov. 1992.

Robert T. Kasper and William C. Rounds. A logical semantics for feature structures.
In Proceedings of the 24th Annual Meeting of the ACL, Columbia Unwversity, pages
257-265, New York, N.Y., 1986.

Robert T. Kasper and William C. Rounds. The logic of unification in grammar. Lin-
guistics and Philosophy, 13(1):35-58, 1990.

21

[PS87]

[PS93]

[Rea91]

[Rey93]

[Sei92]

[Shig6]

[SUP+83]

Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semantics. CSLI Lecture
Notes 13. Center for the Study of Language and Information, Stanford University, 1987.

Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Draft of June
24, 1991. Course materials of C. Pollard, 3rd European Summer School on Logic, Lan-
guage and Information, Saarbriicken, Germany. Will be published by Chicago University
Press and CLSI Publication, 1993.

Mike Reape. An introduction to the semantics of unification-based grammar formalism.
Deliverable R3.2.A, DYANA — ESPRIT Basic Research Action BR3175, 1991. to

appear.

Uwe Reyle. Dealing with ambiguities by underspecification: Construction, representa-
tion, and deduction. To appear in the Journal of Semantics, 1993.

Roland Seiffert. How could a good system for practical NLP look like? In Coping with
linguistic ambiguity in typed feature formalisms, pages 83-92, Workshop at the 10th
European Conference on Aritificial Intelligence, Vienna, Austria, 1992.

Stuart M. Shieber. An Introduction to Unification-Based Approaches to Grammar.
CSLI Lecture Notes 4. Center for the Study of Language and Information, Stanford
University, 1986.

Stuart M. Shieber, Hans Uszkoreit, Fernando C.N. Pereira, J.J. Robinson, and
M. Tyson. The formalism and implementation of PATR-II. In J. Bresnan, editor,
Research on Interactive Acquisition and Use of Knowledge. SRI International, Artificial
Intelligence Center, Menlo Park, Cal., 1983.

22

