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Modal operators were introduced into categorial grammar by Morrill and his col-
leagues at Edinburgh. Inspired by the exponential operators of linear logic [9], they
realized that modal operators could be exploited to gain increased forms of resource-
sensitivity in the course of grammatical deduction. In particular, in just the same
way as the exponential operators of linear logic can be used to license such resource-
sensitive operations as contraction and weakening in an environment in which these
operations are not generally valid, so can comparable operators be used to license
other forms of structural sensitivity—such as permutation or associativity—in an
environment in which such operations are not generally available. Because there are
various forms of resource sensitivity, a number of different modals might be called
for—one modality governing each structural property. An ambitious attack along
these lines can be found in volume 5 of the Edinburgh Working Papers in Cogni-
tive Science, entitled Studies in Categorial Grammar, edited by Morrill and Barry,
and containing a number of path-breaking papers, explaining the many interesting
linguistic applications of this line of research and setting forth a proof theory and
a model theory relative to which the logical properties of the various systems could
be explored.

This work prompted more probing questions. One question that arose involves
the completeness of the envisioned modal extensions with respect to the intended
semantics. Versmissen [10] showed that completeness does not always hold. Another
question was prompted by the observation that modalities could be used both to
allow certain behavior or to block certain behavior. For example, in Morrill’s paper
[6], modal operators are used to indicate the possibility of extraction from a given
domain. But they can just as well be used, as noted in lecture notes of mine [8]
and independently, with much more thoroughness, by Morrill [7], to indicate the
impossibility of extraction from a given domain.

The situation is reminiscent of attempts to control the applicability of transfor-
mational operations, as the question arose in Generative Grammar in the 1960’s.
If one attempts to recast transformational grammar in the language of sequents,
transformations take the form of structural rules. But many transformations were
formulated in ways that did not allow them, on empirical grounds, to apply with
complete generality. This led to the introduction of ‘rule features’ which could be
associated with critical elements in such a way that a given transformation, ordi-
narily optional, might be required to apply or might be prevented from applying.
In the terminology of Lakoff [3], such cases were ‘absolute positive exceptions’ and
‘absolute negative exceptions’. The analogy that is of interest here involves the fact
that modalities and rule features both provide a mechanism for increasing control
over inference. But there is this important difference: in the case of rule features,
the control mechanism is an ad hoc device introduced from outside the system of
categories; in the case of exponentials and modalities, the control system is inte-
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grated into the underlying logic. In fact, this difference is critical for the results
that Kurtonina & Moortgat present, which depend fundamentally on the fact that
O¥ is the residual of ©.

1 Residuated modalities

Kurtonina & Moortgat express the fact that < is residuated with residual O in
terms of the biconditional:

OCA—>Bo A O'B

An alternative way of seeing this, following Blyth & Janowitz (see [1], [4]), is to
note that & and O are both isotone and we have ¢ o O+ < 1 < OV 0 ©. Isotonicity
here means that the following derived rules both hold:

A— B A— B
CA—- OB A 5 OB

The required compositions mean that we have:

OMYA 5 A and A— OVOA

These properties are immediate consequences of the sequent rules below:

r—-4 I[(A)°] -+ B
Bl o504 ToasB L9
re— A I'[A] -+ B
o+ ( o+
1RO r—-ovA I[(0+A)°] - B [L07]
For example, we have
A— B A=A
(A)* > OB and (OVA)° > A
CA -+ OB Om+A — A

The importance of the fact that ¢ and O form a residuated pair stems from
a simple property: if f: A — B and g : B — C are residuated functions, with
residuals fT : B — A and gt : C — B, respectively, then go f : A — C is a
residuated function with residual (go f)T = fT og™t. (This is Theorem 2.8 of Blyth
& Janowitz [1].) Since f, f,g,g" are all isotone and the composition of any two
isotone functions is again isotone, then the compositions g o f and f+ o gt are
isotone. Moreover, to see that the required inequalities hold, note:

gofoftogh<golpogh=gogt<lc
Iu<ftof=ftolpof<ftogtogof

Given this result, we now turn to the question of what we can express using
composition of residuated functions by adding < and its residual OV to a logic
based on a binary product.
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2 Composition of residuated mappings

The simplest compositions of ¢ and e are the following:

(O—)e—, —e(0—), O(-e-)

Note that the first two are asymmetric and each is non-commutative. Moreover, it is
obvious that the last gives us a product that we can easily distinguish from (—e —).
Kurtonina & Moortgat exploit these properties in their embedding functions. Let
us examine the compositions a little more closely.

For any type X, we write Ax for the left translation function with action ¥ +—
X oY and px for the right translation function with action ¥ — Y e X. The
residual /\} of Ax is the function with action Z — X\Z. And the residual p§ of
px is the function with action Z — Z/X.

Now, examine the compositions of left and right translations with <& below,
paying attention to the fact that the residual (f o g) of two residuated functions
f and g is g7 o f* and to the very critical assumption that O+ = O¥:

Ax0<C: Y XelY
AxoO)t=0+0Xt: Z0 O¥HX\2)

pxoC: Y OYeX
(px o)t =0t opt: ZwOYZ/X)

Codx: Y O(XeY)
(Codx)t=XxFoO+: Zm X\OVZ

Oopx: YO eX)
(Copx)t =phoo+: ZD4Z/X

These compositions give some insight into the embedding translations that Kurton-
ina & Moortgat propose. Because: first, any embedding translation must respect
residuated functions and their associated residuals; and second, the left and right
translations are determined by how the mapping acts on products.

Consider first the embedding translation § : F(DNL) — F(INL<) of Defini-
tion 3.1 of Kurtonina & Moortgat’s paper. DNL is a logic with two asymmetric
structure-building operations and two corresponding product type-constructors e;
and e,.. Thus, we have the following residuated left- and right-translations in DNL:

Axe;: Y=»XeoY
pPxe;: Y—»YeX
Axe,: Y » XeY
pxe.: Y —»Ye X

For atomic types p, we have pf = p: that is, § restricted to the set of atomic types
Ais 1 4. Now, for the two products e; and e,., we have

(Ao B =0A*e B* and (Ae, B)! = A* e OB*

These rules determine the other properties of § completely. In particular, if we think
of  as acting on both objects and maps (as in category theory), the information
about products above can be construed as a succinct statement of the following
actions of f on basic maps:
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:AA.I = AOA”
1 pBe > ppr 0 QO
:)‘A.r = )\Aﬂ o O
1 pPB®r > PoBH

T T T ¢

From these facts, and the fact that any embedding is a morphism of residuated map-
pings and their residuals, the action of § on the residuals /;,\s, /r, \» is completely
determined:

(A/1B) = (pj; &1 (A))* (B\tA) = (A & (4))*
= (ppe)* (A% = (Apen)* (A"
= ((pper)*)*(4%) = ((Ape1)*)* (A7)
= (pp: 0 O)H(4%) = X§ pa (A)
= (0% 0 k) (4%) VT
= O%(pps (AY))
= O%(A*/B*)

Symmetrically, we have:

(Ao, B)F = ((ppe})(A))" = A*/OBF
(B\rA)* = ((Ape})(B))* = O¥(BH\ AF)

The embedding transformation f : F(NL) — F(NLP<) of Definition 3.3 is
determined in a similar way by the combination of the action 14 on atomic types
and the action f : A e B — O A* ® B*. This forces the action of § on the residuals /
and \ in just the way Kurtonina & Moortgat observe.

In the case of the embedding transformation f : F(INL) — F(L<) of Definition

3.5, we have the information

(Ae B) = O(A" e BY)

We interpret this as a way of stating the data:

ﬁ:)\AF—)OO)\Au
t:ps > Gopp

Then, since (4/B) = p};(A), its image under § will be the application of the residual
of pﬁB to A*. Since (O o pp:)t = pk, 0 OF, we have f : A/B — OVA!/B?, just as
required.

The same reasoning applies to the composition of embeddings that Kurtonina
& Moortgat use to extend their preliminary results to the full cube of logics they
consider.

3 Embeddings and composite modes

In the previous section, we saw how the properties of embedding translations are
determined by the action on atomic types—always taken to be 1 4—and by the ac-
tion on product types. Since a product type e; is simply an expression in the type
language of the corresponding structure-building operation (—,—)%, we can trans-
fer our discussion directly to the level of structures. This provides an alternative
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approach to the study of embeddings which may perhaps be seen as a syntactic
complement to the elegant semantic methods of Kurtonina & Moortgat, which de-
pend on judicious access to completeness properties in two directions in a beautiful,
symmetrical way.

Counsider again the translation of Definition 3.1 which embeds F(DNL) into
F(NLO), in a way determined by the identity on atomic types and the rules:

(Ae;B) 5 0A' e BY and (A, B) s A e OBt
Implicitly, this defines an embedding of both DNL and NL into NLO, as dia-

grammed below with ¢ the obvious insertion function mapping each (modal-free)
NL-structure to itself (as an element of NLO):

NL
N
NLO
8
7
DNL

This picture can be refined in the following way. We begin with the structure
language of NL<, which contains two structure-building operations: the binary
(—, —) and the unary (—)°. We define two new structure building operations °(—, —)
and (—,—)° as the respective compositions:

((=)%-) and (=, (=)°)
We now consider the logic (call it NL+2) built up from the structural operations

in the absence of structural rules. That is, starting with a set A of atomic types,
we have formulas F, structures T, and sequents S according to the specifications:

Fu=A|FeF|FooF |FesF||[cases for o/,0\, /0, \o]
Tu=F [ (T,T) | °(T,T) | (T,T)°

S:=T > F

The postulates of NL+2 take the standard form and there are no structural
rules (except for Cut, if we like).

Consider now the obvious embeddings determined by the correspondences be-
tween structures:

h: NL — NL+2 b: DNL — NL+2
(_7 _) = (_7 _) (_7 _)l —° (_7 _)
(_7 _)T = (_7 _)0

This yields the diagram:

NL

NL+2

A

DNL
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We now unpack the composite structure-building operations by associating them
with their definitions by the rule # determined by the action (defined on (—, —)):

This yields the embedding diagram:

NL
b
N\
NL+2 % NLo
b
/‘
DNL

And, for the embedding translation § of Definition 3.1, we have:

t=dob

4 Conclusion

A by-product of the above discussion is the fundamental question: which structure-
building operations can be defined as compositions of modalities with other op-
erations. A case in point can be found in the contrasting interpretations of the
commutative type-constructor ® in Hepple’s interesting approach to hybrid cate-
gorial grammars [2] and the approach advocated by Moortgat and me in [4, 5].

Both viewpoints wish to have a symmetrical product, so that, writing A ® B to
represent the application of this product to types A and B, we have:

A®B+<+B®A

Hepple wishes to have the additional valid arrows below, where we have decorated
the product operator with a superscript  to indicate that it represents Hepple’s
product, and where e is non-commutative, so that in general we have neither Ae B —
B e A nor its converse:

A" B> AeB and B7 A—> BeA

This all makes sense if we regard A ®7 B as defined by the modal composi-
tion &(A,B) (where the underlying structure-building operation (—,—) is non-
commutative), accompanied by the structural rule:

O[T, A)] = C
O[&(AT) = C

On this view, A ®" B and B ®" A represent different logical objects. They still
carry information about relative order, even though we allow either type to be
transformed to the other. This means that the following structural postulate is
motivated:
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o[T,A)]—-C
O[&(T,A)] - C

On the view advocated by Moortgat and me, A @/ B and B @M/° A are
different representations of a single logical object—namely, the type corresponding
to the structure-building operation of unordered pairing. It is also possible to think
of this in terms of a modalization Q(4, B) of an ordered structure (A4, B), as long
as we are willing to regard the modality © as a function mapping both (A, B) and
(B, A) to the unordered pair [A, B], so that we have O(A, B) = O(B, A). But the
natural interpretation of the modal © here is simply the forgetful functor mapping
ordered pairs to their less structured, unordered counterparts.

From this point of view, then, there are really two logical systems which share
a common notation. The relation between the two systems would be considerably
clarified by a study of the possibility of embedding one system into the other, in
just the same way that the modal embeddings studied by Kurtonina & Moortgat
have illuminated the relations among even such basic and well-studied systems as

NL and L.
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