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Abstract

In this paper we compare grammatical inference in the context of simple
and of mired Lambek systems. Simple Lambek systems are obtained by tak-
ing the logic of residuation for a family of multiplicative connectives /e, \,
together with a package of structural postulates characterizing the resource
management properties of the ® connective. Different choices for Associativity
and Commutativity yield the familiar Lambek systems NL, L, NLP, LP. Se-
mantically, a simple Lambek system is a unimodal logic: the connectives get
a Kripke style interpretation in terms of a single ternary accessibility relation
modeling the notion of linguistic composition for each individual system.

The simple systems each have their virtues in linguistic analysis. But none
of them in isolation provides a basis for a full theory of grammar. In the second
part of the paper, we consider two types of mized Lambek systems. The first
type is obtained by generalizing residuation to families of n-ary connectives,
and by putting together the different arities in one logic. We focus on resid-
uation for unary connectives, hence on mixed (2,3) frames, as these already
represent the complexities in full. We prove a number of elementary logical
results for unary families of residuated connectives and their combination with
binary families.

The second type of mixed system is obtained by combining a number of
unimodal systems into one multimodal logic. The combined multimodal logic
is set up in such a way that the individual resource management properties of
the constituting logics are preserved. But the inferential capacity of the mixed
logic is greater than the sum of its component parts through the addition of
frame conditions with the corresponding interaction postulates regulating the
communication between the component logics.

The Appendix presents a number of new proof-theoretic invariants for the
logics discussed.

*The materials in this paper prepare the ground for the sections on multiplicative connectives in
a chapter on categorial grammar for the Handbook of Logic and Language (Van Benthem and ter
Meulen (eds), Elsevier, to appear). Earlier versions of the paper were presented at the ‘Deduction
and Language’ workshop, London, March 1994, and the Rome workshop on Lambek Calculus, May
1994. I thank the editors of the Handbook and the audiences at these workshops for comments.
I have greatly benefited from discussion, and joint work, with Natasha Kurtonina, Glyn Morrill
and Dick Oehrle. All errors are my own.



1 Residuation: simple Lambek systems

This paper traces the ramifications of Residuation in a variety of categorial type
logics. To set the scene, we briefly present the concept of residuation in general
algebraic terms as it arises in the study of order-preserving mappings. In Moortgat
and Oehrle ([24]) the reader can find a more thorough treatment with reference to
the source material (such as [12, 6]).

Residuated pairs

Let A = (A,C4) and B = (B,Cpg) be partially ordered sets. Consider a pair of
functions f : A — B and g : B — A. The pair (f,g) is called residuated if the
inequalities of (x) hold. Alternatively, a pair of functions (f, g) is characterized as
residuated by requiring f and g to be isotone (}), and by having the composition
of the functions satisfy the inequalities of (}).

(*) feCpy iff zCy4gy

(f) ifzCay (¢ CEpy) then fo Cp fy (9z Ca gy)
¢! fgzCpz, zCagfe

Dunn’s papers on ‘gaggle theory’ ([10, 11]) provide an excellent survey of the many
guises under which Residuation presents itself in (intuitionistic, modal, relevance,
dynamic, temporal, linear,...) logic, and in Lambek style type logics — the object
of our investigation which we now turn to.

Binary multiplicatives

We start with a quick review of the landscape of binary multiplicative operators.
This is extremely well-trodden ground, and the present section contains nothing
new. But it sets the agenda for our exploration of more adventurous territory in
§2.1 and §2.2

Consider the language F of category formulae (or: types) of a simple Lambek
system. F is obtained by closing a set of prime formulae (or: basic types, e.g. s,
np, n, ...) under binary connectives (or: type forming operators) /,e,\.

Auz=po|p1|p2]--.
Fu=A|F|F|FeF|F\F

Type formulae have a quite general interpretation in the power set algebra of Kripke
style relational structures — ternary relational structures in the case of the binary
connectives ([8]). A ternary frame is a structure (W, R®). W in the application we
envisage here is to be thought of as a set of linguistic resources (or: signs, pieces
of multidimensional linguistic information). The accessibility relation R can be
understood as representing linguistic composition: Rzzy holds in case one can fuse
together the information of signs z and y into a sign z. We obtain a model by
adding a valuation v sending prime formulae to subsets of W and satisfying the
clauses below for compound formulae.

v(AeB) = {z|JzIy[Rzzy & z € v(A) & y € v(B)]}
v(C/B) = {z |VyVz[(Rzzy & y € v(B)) = z € v(C)]}
v(A\C) = {y |VaVz[(Rzzy & z € v(A)) = z € v(C)]}

Turning now to the logic of these type systems, we are interested in characterizing
a relation of derivability between formulae such that A — B is provable iff v(A) C



v(B). It is not difficult to check that given the above interpretation of compound
formulae, the following laws determine the properties of e vis a vis /,\ with respect
to derivability.

(RES) A—-C/B < AeB—(C <+ B-— A\C

The pairs of connectives (e, /) and (e,)\) are easily recognized as the binary incar-
nations of the notion of residuation just defined for the case of unary operations
f,g. Interpret the partially ordered set A (= B) as the set of type formulae F,
ordered by derivability — (i.e. set-theoretic inclusion, semantically). For the right
residual pair (e,/) we can read f as — e B and g as —/B, i.e. the product and
division operations indexed by the fixed type B. The defining biconditional fz <y
iff z < gy then becomes (}) below. Similarly for the left residual pair (e,\), where
we read f as A e — and g as A\—, and obtain ().

() AeB—>C <+<— A->C/B
(1) AeB—>(C <<= B-— A\C

Putting things together, we see that the anatomy of the most elementary Lambek
type logic is given by the basic properties of the derivability relation (Reflexivity,
Transitivity) plus the Residuation Laws establishing the relation between e and the
two implications /, \. Below the axiomatic presentation of the system known as NL.
Following [22], we add combinator proof terms: they will provide a compact way of
referring to complete deductions later on. Via a canonical model construction Dosen
[8] obtains the elementary soundness and completeness result: in NL provability
coincides with semantic inclusion for all ternary frames and all interpretations v.

NL: the pure logic of residuation

Combinator proof terms. We write f : A — B for a proof of the inclusion v(A) C
v(B).

f:tA—-B g:B—>C

idy:A— A P e
f:AeB—C f:AeB = C
B(f):A—>C/B ~v(f) : B~ A\C
g:A=>C/B g: B — A\C

B~ '(g): AeB=C 7 g):AeB—=C

Structural postulates, constraints on frames

Starting from the pure logic of residuation NL one can unfold a landscape of catego-
rial type logics by gradually relaxing structure sensitivity in a number linguistically
relevant dimensions. Below we consider the dimensions of linear precedence (order
sensitivity) and immediate dominance (constituent sensitivity). Adding the struc-
tural postulates for Associativity or Commutativity (or both) to the pure logic of
residuation, one obtains the systems L, NLP, LP.

ASS Ae(Be(C)+— (AeB)e(C
COMM AeB > BeA

Using Correspondence Theory [4] one computes frame conditions restricting the
interpretation of R3 for the different structural postulates. Dogen’s completeness



result for NL is then extended to the stronger logics by restricting the attention to
ass (L), comMm (NLP) or Ass+coMM frames (LP).

ASS Ae(Be e B)e(C It.Rtzxy & Rutz <= Jv.Rvyz & Ruzv
COMM AeB > BeA Rzzy <= Rzyx

Gentzen calculus

The axiomatic presentation is the proper vehicle for model-theoretic investigation
of the logics we have considered: it closely follows the semantics, thus providing
a suitable basis for ‘easy’ completeness results. Proof-theoretically the axiomatic
presentation has a serious drawback: because it is essentially based on Transitivity,
it does not offer an appropriate basis for proof search. For proof-theoretic investiga-
tion of the categorial type logics one introduces a Gentzen presentation, and proves
a Cut Elimination result, with its corollaries of decidability and the subformula
property. Of course, one has to establish the equivalence between the axiomatic
and the Gentzen presentations of the logic for all this to make sense. For L Lam-
bek [21] has established the essential results. They have been extended to the full
landscape of type logics in [19, 9].

In the axiomatic presentation, we consider arrows A — B with A,B € F. In
Gentzen presentation, the derivability relation is stated to hold between a term T
(the antecedent) and a type formula (the succedent). A Gentzen term is a struc-
tured configuration of formulae — a structured database, in the terminology of
Gabbay [13]. The term language is defined inductively as 7 == F | (T,7T). The
structural connective (-,-) in the term language tells you how to put together struc-
tured databases A; and A, into a structured database (A, As). The structural
connective mimics the logical connective o in the type language. A sequent is a pair
(T,A) withT' € T and A € F, written as I' = A.

To compare the two presentations, we define the formula equivalent A” of a
structured database A. Let (A;,A,)” = A% @ A and A” = A for A € F. The
Gentzen presentation can be show to be equivalent to the combinator axiomatisation
in the sense of the following proposition from [21].

Every combinator f : A — B gives a proof of A = B, and every
proof of a sequent I' = B gives a combinator f : I'” — B.

As was the case for the combinator presentation, the sequent architecture con-
sists of three components: (i) [Ax] and [Cut] capture the basic properties of the
derivability relation ‘=’: reflexivity and contextualized transitivity for the ‘surgi-
cal’ Cut, (ii) each connective comes with two logical rules: a rule of use introducing
the connective to the left of ‘=’ and a rule of proof introducing it on the right of
‘=’ finally (iii) there is a block of structural rules, possibly empty, with different
packages of structural rules resulting in systems with different resource management
properties.



Gentzen presentation: structured databases

Sequents 7 = F where T ::= F | (T, 7). Notation: I'[A] for an antecedent term I'
containing a distinguished occurrence of the subterm A.

A=A T[4 =>C
[Ax]
A=A T[A]=C

[Cut]

T,B)=A A=B TA=C
UR=+="27B Ma/Ba =0 VU

L (B,T)=> A A= B A= C .
AL eyl A B\A =5 C

T[4,B]=>C T=A A=B,

N TieB S0 T,A)= AeB |

.R]

Resource sensitive structural rules

Permutation and Associativity.

I[((A1,A2),A3)] = A

F[(Ag,Al)] = A r [ ]
[[(A1, (A2, A3))] = A

T[(Ar, Ay)] = A4 1)

For the logics L and LP where e is associative, resp. associative and commutative,
explicit application of the structural rules is generally compiled away by means of
syntactic sugaring of the sequent language. Antecendent terms then take the form
of sequences of formulae 7 := F,...,F where the comma is now of variable arity,
rather than a binary structural connective. Reading these antecedents as sequences,
one avoids explicit reference to the structural rule of Associativity; reading them as
multisets, one also makes Permutation implicit.

Characteristic theorems, derived rules of inference

We close this overview with an inventory of theorems and derived inference rules
for the various logics.

1. Application: A/BeB — A, Be B\A - A
2. Co-application: A — (Ae B)/B, A— B\(Be A)
Monotonicity e: if A - B and C — D, then AeC — Be D

-ow

Tsotonicity -/C, C\-: if A — B, then A/C — B/C and C\A — C\B
Antitonicity C/-, \C" if A — B, then C/B — C/A and B\C — A\C
Lifting: A — B/(A\B), A — (BJA)\B

Geach (main functor): 4/B — (A/C)/(B/C), B\A = (C\B)\(C\A)
Geach (secondary functor): B/C' — (A/B)\(A/C), C\B — (C\A)/(B\A)
Composition: A/B e B/C — A/C, C\B e B\A - C\A

© »® N o o

10. Restructuring: (4\B)/C +— A\(B/C)
11. (De)Currying: A/(BeC)+— (A/C)/B, (AeB)\C +— B\(4\C)
12. Permutation: if A — B\C then B — A\C



13. Exchange: A/B +— B\A
14. Preposing/Postposing: A —+ B/(B/A), A — (A\B)\B
15. Mixed Composition: A/B e C\B — C\A, B/C e B\A — A/C

Ttems (1) to (5) are valid in the weakest logic NL. They provide an alternative to
RES to express the fact that (e,/) and (e,\) are residuated pairs, cf. (f,}) of Def
1.1. Lifting is the closest one can get to (2) in ‘product-free’ type languages, i.e.
type languages where the role of the product operator (generally left implicit) is
restricted to glue together types on the left-hand side of the arrow. Items (7) to
(11) mark the transition to L: their derivation involves the structural postulate of
associativity for e. Rule (12) is characteristic for systems with a commutative e,
NLP and LP. From (12) one immediately derives the collapse of the implications
/ and \, (13). As a result of this collapse, one gets variants of the earlier theorems
obtained by substituting subtypes of the form A/B by B\ A or vice versa. Examples
are (14), an NLP variant of Lifting, or (15), an LP variant of Composition.

The simple Lambek systems each have their merits and their limitations when
it comes to grammatical analysis. In Combinatory Categorial Grammar ([32]) in-
stances of the full scala of type transitions above live together. In the presence of
Residuation, such promiscuity has unpleasant consequences. The point here is that
when one moves from a logic with a higher degree of structure sensitivity to a system
with more relaxed resource management, one immediately looses sensitivity for the
relevant structural parameter of the weaker logic. For example: the system NL has
a hierarchically structured database which fully respects constituent structure. For
cases of so-called non-constituent coordination, one would like to relax constituent
structure. One could try to achieve this by adding Composition (or the Geach laws)
to NL. But the addition of such postulates makes NL collapse into L: from Geach
one easily obtains the unconditional Associativity postulate for e via Residuation.
We leave this as an exercise for the reader.

In the following sections we try to develop a more articulate view on mixed
styles of inference where such collapse is avoided.

2 Residuation in mixed logics

2.1 Mixed inference: combining 1-ary and 2-ary families

In the recent literature one finds a panoply of unary operators in addition to the
multiplicatives we have discussed in the previous section:

e The ‘domain modality’ O of Hepple [16]. Used to enforce locality constraints
in terms of syntactic domains. Generalized to multimodal O; to distinguish
domain barriers of different strength. A syntactiv version of the semantically
interpreted intensionality operator of Morrill [26].

e The ‘bracket operators’ [],[]71 of Morrill [27, 28]. Serving the same purpose,
but implementing the idea in a quite different way.

e The < operator of Morrill [27], declaring argument positions as licensing ex-
traction.

e The Edinburgh ‘structural modalities’. Modelled after Linear Logic’s ‘I’ (bang)
operator. Providing controlled access to more linguistically relevant structural
options such as Permutation, Associativity.



Although the various operators are introduced with intended semantics and (Gentzen,
natural deduction) proof theory, discussion of the relation between the model theory
and the proof theory is lacking. This can easily lead to confusion. For example, the
domain modalities and the Edinburgh structural modalities have been introduced
with an S4 proof theory, borrowed from LL, and a subalgebra semantics in a general
groupoid setting. But for the subalgebra semantics, the S4 proof theory is inade-
quate ([34]): it imposes semantic constraints which the subalgebra interpretation
cannot support. There is a choice here: if it is the proof theory one likes, one should
provide an adequate semantics with a soundness and completeness result ([20]). Or
if the structure of the semantics is the linguistically important factor, one should
provide appropriate proof theory ([33]).

Our aim in this section is to provide a general framework within which the
different proposals for unary operators can be compared. The key concept, again,
is residuation. We extend the language of binary multiplicatives with a unary pair
of residual operators ¢, O and establish some elementary logical results for the
extended language. Parallel to our treatment of the binary multiplicatives /,e,\
in the previous section, we start from the pure logic of residuation for ¢, O, and
gradually add structural postulates in view of the linguistic applications.

Items (1) and (3), (4) closely follow Lambek’s [21] treatment of the binary
multiplicative operators. We refer to Kurtonina [20] for a thorough investigation of
the further logical ramifications of the matters dealt with here.

1. Axiomatic (‘combinator’) presentations of the pure logic of residuation for <,
o+,

2. Soundness and completeness via the DoSen canonical model construction.

3. Gentzen presentation, equivalence between the axiomatic and the Gentzen
presentation.

4. Cut elimination for the Gentzen presentation. Decidability, subformula prop-
erty.

5. Structural postulates T', 4, K. Items (1)—(3) for the systems with a choice from
P{T,4,K}).

Residuation: n-ary generalisation

The concept of residuation can be readily generalized to the case of n-ary connec-
tives, as is shown in [10] in the general logical setting. Discussion of such generaliza-
tions for categorial type logics can be found in [7] and [24]. In the context of Kripke
style frame semantics, we have n-ary products interpreted via n+ 1-ary accessibility
relations. These products have a residual implication for each of their n factors.
Let us write fo(A1,...,A,) for the product and f%, (4;,...,A,) for the i-th place
residual. And let us define R %y;, y1,...,2,...,Yn iff Rx,y1,...,¥i,...,yn to facil-
itate the statement of the interpretation clauses. Valuation for the n-ary families
exhibits the familiar pattern: existential closure of a conjunctive statement for the
product, universal closure of disjunctions for the residual implications.

v(fo(A1,.o o, An)) ={z | Ty .. . yn(Rz,y1...yn & y1 €v(A1) & ... & yn €v(4,)}
o(fL (A1, An)) ={z [ Yy .. yn(R7°0, 91 . - . yn & Yj(i24) € (A4;)) = yi € v(Ai)}
Unary residuated pairs

Let us focus now on the case of unary connectives. The connectives <, O% form
(dual) residuated pairs (analogous to future possibility, past necessity), interpreted



with respect to a binary accessibility relation R2. One can think of & (OV) as a
truncated multiplicative product (implication). The defining residuation inference
(%) here takes the form (*x).

() fr<y <<= =z<gy
()) CA—+ B < A—0O'B

Again the extended valuation for <, 0% formulae has the required properties for
residuation to arise: existential closure of a conjunctive statement for <, universal
closure of a disjunction for the residual O%. Note carefully that the O% interpretation
moves you back along the R? accessibility relation.

v(CA) = {z | y(Rzy N yev(A)}
v(O*4) = {z | Vy(Ryz =y € v(4)}

Kripke graphs: unary vs binary connectives

A picture may clarify the relation between the unary and the binary residuated pairs
of connectives. In the case of e we make an existential move along the branching
accessibility relation R3. In the case of & we make an existential move in the
same direction, this time for a non-branching accessibility relation. In both cases,
universal moves in the opposite direction bring you back to the point of origin.

C/B A\C
A B A z O'B
€z Y .
R3z,zy R%y,x
®
z CA y B
AeB
c
A—-C/B&AeB—C OA—- B& A— O'B

AeB 5 C & B— A\C

Axiomatisation: Lambek style

Let us put together the binary and the unary families of connectives and consider
the mixed language

Fu=A|F|F | FeF|F\F|OF |O'F

Axiomatic presentation of the pure logic of residuation for the extended language
is given below. We decorate the arrows A — B with combinator proof terms. This
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makes it easy later on to refer to deductions by means of their combinator.

ftA>B g:B->C

ida:A— A Tof ASC

f:CA—> B g:A— OB
u(f): A—> OB pi(g): A B
f:AeB—C g:A—C/B

B(f): A= C/B B g :AeB—~C

f:AeB—C g:B— A\C
v(f) : B—> A\C v g):AeB—C

Axiomatisation: DoSen style

Below a deductive presentation based on the alternative way of characterizing a
pair of residual operations f, g in terms of Isotonicity (x) and the inequalities (%)
for the compositions fg, gf.

(x) z<y= fz<fygz<gy

(x%) fgz <z, z<gfz

In this presentation, the unit, co-unit combinators are primitive type transitions,
recursively generalized via the Isotonicity rules of inference (Antitonicity for the
negative subtype of implications /, ).

ftA—>B g:B->C

idsg:A— A Jof ASC

unitg, : OVA - A4 co-unitg, : A —» OVOA
unit;: A/BeB—+ A  co-unit;: A - (AeB)/B
unit, : Be B\A—+ A co-unit\ : A — B\(BeA)

f:A>B f:A—B
(f)°: A= OB (/)7 :0tA > O'B

f:A—>B ¢g:C—>D
f-g:AeC —BeD

f:tA—>B g:C—>D f:A—=>B g:C—>D
flg:A/D — B/C g\f : D\A — C\B

Equivalence of the deductive presentations

For the /,e,\ fragment, we know the two deductive presentations are equivalent,
cf. Lambek [21] for one direction, Dosen [9] for the other. We take the Lambek
presentation as our starting point here, and show for the extended system how
from p, ! we obtain the alternative axiomatisation in terms of Isotonicity and
the inequalities for the compositions ¢0O% and O0¥< (Term decoration for the right
column left to the reader.)

idpy 4 : VA - O%A CA— OA
g (idgs ) : OOVA — A A 0voA

11



id<>B : OB —- OB

OV¥4 - OvA
f:A—> B u(idop): B— 0O+OB O'A5 A A B
pidop)o f: A~ O'OB O0'A — B
u Y (u(ido)o f) : ©A — OB oA — O'B

Soundness, Completeness

For ternary frame semantics for the F(/,e,\) fragment, Dogen [8] proves soundness
and completeness on the basis of a canonical model construction. Dosen’s results
extend unproblematically to the &, 0+ extended language. We now consider mixed
frames (W, R?, R?) with W the set of linguistic resources as before, and R?, R3
arbitrary binary and ternary relations on W.

F A — B iff, for every valuation v on every frame, v(A) C v(B).

(=) Induction on the length of proofs of A — B. (<) Extend Dosen’s canonical
model construction for the R? relation as follows. For the canonical frame, let W be
the formulae of F(/,e,\,<,O%). In the canonical frame, we define the accessibility
relations R? and R? as follows:

R}C,A,B) < FC—>AeB R)AB) < +A-OB

Define the canonical valuation as v(4) = {B| F B — A}. Now suppose v(4) C
v(B) but ¥ A— B. If If A —> B with the canonical valuation on the canonical
frame, A € v(A) but A & v(B) so v(A) € v(B). Contradiction.

Canonical model: compound formulae

We have to check the canonical model construction for the new compound formulae
OA, OVA. Below the direction that requires a little thinking.

(©) Assume A € v(OB). We have to show - A —» OB. A € v(¢B) implies
JA’ such that R2ZAA’ and A’ € v(B). By inductive hypothesis, - A’ — B. By
Isotonicity for < this implies F G A’ — OB. We have - A — O A’ by (Def R?) in
the canonical frame. By Transitivity, - A — OB.

(O%) Assume A € v(O¥B). We have to show - A — OYB. A € v(OB) implies
that VA’ such that R2A’'A we have A’ € v(B). Let A’ be ©A. R?A’'A holds in the
canonical frame since - ¢A — O A. By inductive hypothesis we have - A’ — B,
i.e. F ©A — B. By Residuation this gives - A — O'B.

Logical versus structural connectives

Following the agenda set out in §1 for the binary connectives, we now introduce a
Gentzen presentation, and show that it is equivalent to the deductive presentation.
For the Gentzen presentation we prove Cut Elimination, with its pleasant corollaries
of Decidability and the Subformula property.

In order to present Gentzen calculus for the extended type language, we need an
n-ary structural operator for every family of n-ary logical operators: binary (-, ) for
the family /,e,\, and unary (-) for the family <&, 0+. Corresponding to the formula
language F we have a language of terms T (structured configurations of formulae).

Fu=A|F|F| FeF|F\F|OF |O'F
T==F (T, T) | (T)

12



Gentzen presentation

As before, sequents are pairs (I 4), I' € T, A € F, written I' = A. We have
Belnap-style antecedent punctuation, with for ¢, 0% the unary structural connective
(-) matching the unary logical connectives. Below the rules of use [¢ L], [O%L] and
the rules of proof [¢ R], [O¥ R] for the new connectives. It may be helpful to compare
the < rules with the rules for o, and the OV rules with the rules for an implication,

say /.
Compare the < rules with the rules for binary product e:
T4 ., HAI=5
() = CA I[©A]l= B

I'>A A=>B I'[(4,B)] = C
T,A)=AeB °' T[AeB|=>C °

Compare again the O% rules with the rules for binary implication /:
=4 I'[A] = B
O'R
=044 I[(0¥A4)] = B

(I,B)= A R A=B T[4=C I

I'=s A/B / T[(A/B,A)] = C /
The astute reader will observe that, with some adaptation of the notation, the
[OL], [OR] and [O¥R] rules above are the ones Morrill ([27]) proposes in (one of
the versions) of his ‘bracket’ operators. (The [O*L] rule of [27] is flawed: it derives
the non-theorem O0+& A => A.) But the same observant reader will notice that the
intended semantics for the bracket operators in [27] and [28] is less general, in
assuming (quasi)functionality for the bracket/anti-bracket operators. Because our
objective here is to start from the pure logic of residuation for ¢, 0¥, we stick to
the unconstrained relational semantics for R? for which completeness holds.

4L

Extending the valuation to structured terms

To obtain direct semantic interpretation for sequents I' = A we can extend the
valuation to antecedent terms. Compare again the valuation for logical operators
o, & with that of their structural counterparts (-, -), ()

v(A e B) = {z |Jzy[Rz,zy & z € v(A) & y € v(B)]}
v((A1,A2)) = {z|3zTy[Rz,zy & z € v(A;) & y € v(A2)]}
v(CA) = {z|3Jy(Rzy A yev(A)}

v((A)) {z|Iy(Rzy A ye€v(A)}

Truth and validity for sequents are then defined the usual way. We have
completeness in case - I' = A iff for every valuation v on every frame we have
v(T) Cv(A).

Equivalence of Gentzen and combinator presentations

To compare the two presentations, define for the language F(/,e,\, <, O¥) the for-
mula representation A’ of a structural configuration A as follows:

(A1, A=Al e A}, (A =0A", A" =4

The sequent presentation for the language F(/,e,\, <, 0%) can be shown to be
equivalent to the combinator axiomatisation in the sense of the following proposi-
tion.

13



Every combinator f : A — B gives a proof of A = B, and every
proof of a sequent I' = B gives a combinator f : I'” — B.

From combinators to sequents

To obtain the Gentzen rules [OL], [OR], [O¥L], [0*R] from combinator deductions,
we use Isotonicity of ¢, 0% in addition to the residuation inferences u, u~'. Given

the formula equivalent I'” for sequent terms T, y gives [DiR]b, [<>L]I’ makes premise

and conclusion identical, and Isotonicity for & gives [<>R]b. The only non-trivial
case is [O¥L]. Consider first the case where the context T is empty. The combinator

derivation of [DLL]b is given below.

fiA>B
(f)7 :0¥A -5 OB A=B
w(f)7): 00%A - B CONEY Rt

Next the case where the context T in the [O*L] premise I'[A] = B is non-empty.
Let g be T[A]" — B. Let 7(g) be a sequence of p, 3, y residuation inferences isolating
A on the left of the arrow. Then we obtain the formula equivalent of the conclusion
of [O¥L] via the deduction 7~ (u(O*(n(g)))).

From sequents to combinators

To obtain the combinators id, f o g (Transitivity), u(f), p~1(g9) (Residuation) from
sequent derivations, we use the Cut rule. Once we have established the equivalence
of the combinator and the sequent presentation, we prove Cut Elimination for the
latter. [Ax] gives id, f o g is a special case of Cut. The crucial new cases pu(f),
pt(g) follow.

ﬂOR
A) = OCA :OA=B
A= O+0A (D¢<>A):>B( ) g:A=0O'B (O'B)= B ,
(4) = B c (A) = B (cut)
O‘R OL

u(f) : A= 0B p(g): A= B

Cut elimination: principal cuts

We now extend the Cut Elimination result to the new connectives <, 0. We pro-
ceed by induction on the complexity of the cut formula, and distinguish principal
cuts, where the cut formula is active in both cut premises, from permutation con-
versions, where this is not the case.

Below the new cases of principal cuts, with cut formula ¢A and OV A. Replace-
ment of a cut on ¢A (O%A) by a cut on A of smaller degree.

A=A I[(A)] = B
@) =01 °F Tod = B °F A=A T[A)]=B
T(a) = b N  FYEY

(A)=> A . I'[4] = B .
Asoia U rota s P (A)= A T[A]= B
T[(A)] = B (cut) -, T[(A)] = B

(cut)

14



Cut elimination: permutation conversions

The new cases where the active formula in the left or right premise is different from
the Cut formula allow for the usual elimination strategy: permutation of the Cut
rule and the logical rule. The Cut is moved upwards , and becomes of lower degree.
Below the left premise antecedent cases for ¢ A and OV A.

T[(4)] = B A= B AB=C
T[0A] = B sp=C A[A] = C
A[L[CA] = C ~ A[L[CA]] = C
AU B A[A]= B T[B]=>C
INCOEY R e t N
TIA[(DYA)] = C A NG EYE

Permutation conversion: right premise antecedent

Active type OA or O%A in the antecedent of the right Cut premise. Notation:
T'[A1, Az] for a structure I' with substructures Ay, A, not necessarily sisters.

IA,(B)] = C A=A T[A,(B)])=C (cut)
A=A T[A,0B]=C T[A, (B)] = C c
(cut) o ©OL
[[A,¢B] = C ~ A, ©B] = C
IA,B]=C . A=A T[ABl=C ;
A=A T[4, (0'B)=C (et T[A,B] = C f‘:“)
cu O
T[A,(O0'B)] = C ~ T @BscF
Permutation conversion: right premise succedent
Active type ©A or O%A in the succedent of the right Cut premise.
(A[A]) = B o ' A (A[A])= B (cut)
I'= A A[A]=O'B ) (A) = B “
cu _—
Al = O'B ~r Al = O'B
I'A]= B A=A T[A]=B
T OR (cut)
A=A (T[A]) = OB ; A= B
Ta)=oB @ o, [Ta) = oB

Illustration: Residuation laws

As an example, we check the compositions ¢O% and O+<& (cf Application, Co-
Application). Below their cut-free Gentzen derivations.

A= A A= A

L L
@) =4t A) = oA 0?
—_— 7D
OOHA = A A oroa TR
fgr <=z r<gfz

15



Structural postulates

What we have discussed so far is the pure logic of residuation for the unary family
¢, 0%, By imposing conditions ASS, COMM or their combination on ternary frames,
we generate the landscape NL, L, NLP, LP with completeness results for the
relevant classes of frames (DoSen). Along the same lines, we can develop the sub-
structural landscape for the unary family <, 0% and its binary accessibility relation
R2, and for the mixed R?, R® system.

The following structural postulates constrain R? to be transitive (4), or reflexive
(T). Communication between R? and R? can be established via the strong distribu-
tivity postulate K, which distributes unary < over both components of a binary
e, or, in a more constrained way, via the weak distributivity postulates K1, K2,
where < selects the left or right subtype of a product.

4: COA - CA

T: A—OA

Kil: <O(AeB)—<CAeB
K2: $O(AeB)—» AeOB
K: ¢O(AeB)—»> < CAeCB

Below the correponding frame conditions (Vz,y,z,w € W).

4: (Rzy & Ryz) = Rzz
T: Rzx

K(1,2): (Rwz & Rzyz) = Jy'(Ry'y & Rwy'z) vV 32'(Rz'z & Rwyz')
K: (Rwz & Rzyz) = y'32'(Ry'y & Rz'z & Rwy'z')

The K condition is the correlation postulate for Relevance logic from Routley and
Meyer [31]. See Kurtonina [20] for discussion in the context of logics of linguistic
resources. The weak distributivity principles K1, K2 play an important role in the
applications discussed later in this paper.

Structural rules

The structural rules below translate the postulates T',4, K1, K2, K from the formula
level to the term level. As before, we prove equivalence between the rule and the
postulate versions, and show that the Gentzen formulation allows cut-free proof
search.

T(A)]=A T[A)]=4A
(A=A TRa =>4

T[((A1),A9)] = A ) I[((A1), (A2))] = A T[(A1,(A2))] = A
T[((A1,A2)] = A T[((A1,A2))] = A I[((A1,A2))] = A

K2

Structural rules from structural postulates

We have to extend the equivalence between axiomatic and Gentzen style presen-
tation to the structural postulates and rules. To obtain the sequent rules T,4, K
from combinator deductions, it is enough to consider the case where the context I' is
empty, as we have seen above. The following deductions give the formula equivalent
of the structural rules T, 4, K. We leave K1, K2 to the reader.

16



4:00A" 5 OA" FIOA" 5 A (AP = A

— 4
fod:00A" 5 A ~ (A) = A
T:A" 5 OA" f:0A" A (AP = A
foT:A" > A ~ AP = A
K:O(AY e Ah) =5 CAL e OA) f:OAL e OAL - A (A1), (A2)) = A4 X
foK:O(AheAY) » A ~ (A1, A,)) = A

Structural postulates from structural rules
Derivation of the structural postulates via Gentzen proofs is straightforward.

A=A B=1B

Ao A @)= oa ° B> o °F
A) =04 °F (@), B)=>c4e0B _°F
A=A (4) > 04 * (4,B)) = OA+ OB
A= o0d 2 G504 °F  ((AeB)) = 0Ae0B °
A= o4 COAS OA O(AeB)=> odsoB L

Cut elimination: structural rules

We extend the cut elimination algorithm to logics with a structural rule package
from P({T,4,K}). Recall that in the case of connectives the proof of the Cut
Elimination theorem is by induction on the complexity of Cut inferences, measured
in terms of the number of connectives in the cut formula. The structural rules do
not involve decomposition of formulae, so we need an additional complexity measure
here.

Following [9, 3], let the trace of a cut formula A be the sum of the lengths of
the paths in the derivations of the cut premises connecting the two occurrences of
A with the point of their first introduction in the proof. The cut elimination steps
involving structural rules now assimilate to the permutation cases: if a structural
rule feeds the cut inference, we can interchange the order of application of the cut
and the structural rule, leading to a situation with decreased trace, as the inductive
hypothesis requires. Two examples are given below.

A[(AN]= A A[(A"]= A T[A]= B

A[A]=A © T[4 =B NN E
T[A[A] = B (cut) T[A[A] = B
T[(I'[A])] = B AzA TCU]=B
A=A T(EA=B My =8
L(T'[A])] = B ~ L(T'[A])] = B

Structural postulates: universal variant

In our discussion of structural postulates for e, we have seen that we can express
Associativity, Commutativity either via a e postulate, or via implicational postu-
lates, if we prefer to keep the language product-free. In a similar vein we could have

17



presented T',4, K in their O forms:
404 - OvA — OVOv A
7OV : A - A
KOv/: OY(A/B) - OvA/O'B
KOW\ : O¥(B\A) — O+B\O*4
Below an illustration for the derivation of the universal variant KO% /-
B=B A=A /
(A/B,B)=> A
((B*(A/B)),(B'*B)) = A
((B*(4/B),0'B)) = A
(DJ'(A/B), DiB) =04
Ov(A/B) = OtA/O'B

OVL,0OVL

S4: Compilation of structural rules

We saw above that in the presence of Associativity for e, we have a sugared Gentzen
presentation where the structural rule is compiled away, and the binary sequent
punctuation (-,-) omitted. Analogously, for O+ with the combination KT4 (S4),
we have a sugared version of the Gentzen calculus, where the K74 structural rules
are compiled away, so that the unary (-) punctuation can be omitted. Compare the
following. (Notation {T for a term I' of which the (pre)terminal subterms are of the
form tA. The 4(cut) step is a series of replacements of terminal O+A by OYOV A via
cuts depending on 4.)

T[A] = B
———— [,
T[(0+A)] = B I[A] = B
—_ —————— DOVL(S4)
r[0+4] = B ~ [I[Ov4] = B
= A ObL
(O+OHT = 4
" 4(cut)
(O = A
(O'T) = A4 O = A
~ T — == Ol 4
O = OVA DM R ~ O =04 R(54)

Embedding NL in modal L: locality constraints

Morrill ([28]) conjectures the following. Define an embedding translation (-)* :
F(NL) = F(L + {©,0+}):

(»f=p
(AeB) = O((A)! o (B)Y)
(4/B)* = O+ (A)*/(B)*
(B\A)* = (B)"\O+(A)*

NL F A — B iff L+{0, 0%} F (4)f — (B)*

A (non-trivial) proof of the conjecture, based on a semantic completeness argu-
ment, is given in Kurtonina [20]. The linguistic relevance is the following: Hepple
in [16] proposes a treatment of locality constraints in terms of an S4 universal
modality. A legitimate question, from our ‘minimalistic’ perspective is: What re-
source management properties are needed to enforce a general theory of locality
constraints? Proof of the Morrill conjecture above shows that in fact the pure logic
of residuation for the pair ¢, 0% is enough.
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Application: modalities as procedural control features

There is a wide range of linguistic applications for the modal operators <, O%. For
a start, we can now ‘situate’ with a high degree of precision the various unary
operators that have been proposed in the literature. At one end of the spectrum,
one finds a trimmed-down version of Morrill’s bracket operators realizing the pure
logic of residuation for &, 0%. At the other end, we find Hepple’s KT4 syntactic
domain modality. And — more excitingly — one can look for occupants of corners of
the landscape that have not been explored. Here we give one surprising application,
from the field of algorithmic proof theory. Below we show how one can enforce a
uniform head-driven search regime for L on the basis of a modal decoration of L
sequents.

Uniform head-driven search: L*

In the literature on automated deduction, it is well known that cut-free Gentzen
proof search is still suboptimal from the efficiency perspective: there may be dif-
ferent (cut-free!) derivations leading to one and the same proof term. Restricting
ourselves to the implicational fragment, the spurious non-determinism in the search
space has two causes ([35]): (i) permutability of [L] and [R] inferences, and (ii) per-
mutability of [L] inferences among themselves, i.e. non-determinism in the choice of
the active formula in the antecedent. A so-called goal directed (or: uniform) search
regime performs the non-branching [R] inferences before the [L] inferences (re (i)),
whereas head driven search commits the choice of the antecedent active formula in
terms of the goal formula (re (ii)).

In the context of categorial theorem proving, a goal-directed head-driven regime
for L has been proposed in Hepple [16] with a proof of the safeness (no proof
terms are lost) and non-redundancy (each proof term has a unique derivation). We
present the Hepple regime in the format of Hendriks [15] where the reader can find
a detailed discussion of the spurious ambiguity problem in the context of Gentzen
proof search.

Lu:B*I"=t:p .

z:p*=>zx:p T,u:B,T"=t:p* bR

[Ax/L]

[/R] Ajz:B=t:A* A=u:B* F,I:A*,Flit:cr/L]
A= Azt: A/B* [,s:A/B*,A\T' = t[z/su] : C '

[\R]z:B,A:>t:A* A=u:B* F,z:A*,F'it:C[\L]
A = Az.t: B\A* [,A,s: B\A5,T" = t[z/su] : C '

Comments

The L* calculus eliminates the spurious non-determinism of the original presenta-
tion L by annotating sequents with a procedural control operator ‘*’. Goal sequents
I' = t: Ain L are replaced by L* goal sequents I' = ¢ : A*. With respect to the first
cause of spurious ambiguity (permutability of [L] and [R] inferences), the control
part of the [R] inferences forces one to remove all connectives from the succedent
until one reaches an atomic succedent.

At that point, the ‘*’ control is transmitted from succedent to antecedent: the
[*R] selects an active antecedent formula the head of which ultimately, by force of
the control version of the Axiom sequent [*L], will have to match the (now atomic)

T3

goal type. The [L] implication inferences initiate a control derivation on the

minor premise, and transmit the ‘*’ active declaration from conclusion to major
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(right) premise. The effect of the flow of control information is to commit the
search to the target type selected in the [*R] step. This removes the second source
of spurious ambiguity: permutability of [L] inferences.

Our labeling for the “*” version of the Axiom sequent, [¥L], is suggestive for the
type of modal control we are about to propose.

Proofs and readings

The following theorem from [15] sums up the situation with respect to proofs and
readings in L and L*.

1. *FT = A*if LT = A
2. L*FT = t: A*impliesLFT =¢t: A
3. LT = t: Aimplies 3t',t' =t and L* F T' = ¢’ : A*

4. if m is an L* proof of I' = ¢ : A and 7y is an L* proof of I = ¢’ : A with
t =1t then m = mo

Of the above, (1) asserts that, syntactically, derivability in L and L* coincide.
Semantically, the set of L* proof terms forms a subset of the L terms (2). But,
modulo logical equivalence, no readings are lost moving from L to L* (3). Moreover,
the L* system has the desired one-to-one correspondence between readings and
proofs (4).

Uniform proof search: modal control

In this section we show how to enforce the Hepple-Hendriks uniform head-driven
search regime via a modal translation. The basic idea is to use the logical properties
of the connectives <, 0% to capture the effects of the “*’ procedural control marking
in L*. We use the base residuation logic for ¢, 0%, plus weak distributivity prin-
ciples K1, K2 for the interaction between the unary and the binary families. For
convenience we repeat the frame conditions and the Gentzen transformation of the
K1, K2 structural postulates from our discussion above.

STRUCTURAL POSTULATE FRAME CONDITION

K1: O(AeB) > CAeB (Rwz & Rzyz) = Jy'(Ry'y & Rwy'z)
K2: O(AeB) > Ae OB (Rwz & Rzyz) = 32'(Rz'z & Rwyz')

In structural rule format these take the following form.

T[((A1)%, Aq)] = A T[(A1,(A2)%)] = A
T[((A1,49))°] = A [[((A1,A2))°] = A

K2

To establish the equivalence with L* search, we can use the sugared presentation
of L where Associativity is compiled away so that binary punctuation (-,-) can be
omitted (but not the unary (-)°!). This gives the following compiled format for
K1,K2:

T, (A T"= B ,

AT =B X
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Translation: formulae, sequents

We define the translation mapping first on the formula level, and then extend it
to the level of L* sequents, where we have to distinguish marked and unmarked
formulae. On the formula level, define mappings (-)%, (:)° : F(/,\) = F(/,\, <, 0%),

for antecedent and succedent formula occurrences respectively.

P'=p (p)°=0%

(A4/B)t = (A)'/(B)°  (4/B)° = (A)°/0¥(B)!

(B\A)' = (B)°\(4)!  (B\4)’ =04(B)'\(4)°
The formulae of a sequent I' = A in L* are partitioned by the **’ annotation in a set
of marked formulae — a singleton, since there is only one ‘*’ per sequent — and a
set of unmarked formulae. We extend the translation mapping taking this difference
into account. The antecedent and succedent translation functions (-)1, (-)o below
are defined in terms of (-)!,(-)°, but they act in a different way on marked and on
unmarked formulae.

- _ — [ (A if A is “*’ marked
(A, An)1 = Ar,.. A, where A= { O¥(A)!  otherwise

(A)o = { (A)° if A is “*” marked

A otherwise
We now have the following proposition.

L*FT = A* if LOK'F () = (A)o

Equivalence of L* and LOK'

The (=) direction of the equivalence can be proved by straightforward induction
on the length of derivations in L*. For the more delicate (<) direction, we have
to show that LOK' does not derive more than L*. We give a case analysis of the
choice points in the top-down (backward-chaining) unfolding of the search space,
and show that LOK' can make no moves that would lead the search out of the
space defined by the translation mapping.

Below we juxtapose the L* rules and axiom and their counterpart in LOK'.
We treat only one implication. For the LOK' version, we interleave the proof
unfolding with the evaluation of the translation mapping. As an auxiliary notion,
we have functions ACTIVE and LOCKED which for a sequent return the set of formulae
matching the input condition for a logical rule (ACTIVE), and those which no logical
rule is applicable to (LOCKED).

Proof search starts with an L* goal sequent I' = (A)*. The goal type A is either
atomic or complex, the antecedent is of length 1 or greater than 1. Consider first the
case of a complex goal type and 1 < |I'|. On the left the L* [/R] rule, on the right
the corresponding derivation in LOK'. Both (1) and (1) stand in a feeding relation
with themselves. For the roots of the derivations, we have AcTIVE(})= {A/B},
ACTIVE()= {(A4/B)}; for the leaves, ACTIVE(})= {4}, AcTIVE(})= {(A)°}. Note
that all antecedent formulae in (}) have main connective OV as a result of the
translation mapping. The O% connective acts as a lock: embedded connectives in
these formulae will only be accessible after the removal of OV,

O04(T)!, 04(B)" = (A)°
/R
I\B = (A)* oHD) = (4°/OHB)
() T=(4/By oH(T)" = (4/B)° ®)

21



Consider now the case where the recursion on succedent implications bottoms out,
i.e. where we reach the ‘*’ marked atomic head of the goal formula. In L* the
only applicable rule in this situation is [«*R] which transmits the ‘*’ marking from
succedent to antecedent. [xR] is non-deterministic: any antecedent formula B can
receive the “*’ marking. In LOK' the active atom is realized as (p)° = O%p. The
only applicable rule here is [0 R] which, by residuation, realizes 0% as (-)° on the
antecedent. [+ R] can only be followed by [K’], which non-deterministically pushes
(-)° to an arbitrary antecedent formula O%(B)!. At that point [O*L] becomes
applicable, which through the elimination of O+ shifts (B)! from LOCKED to ACTIVE.
Again, roots and leaves of the (f) (}) derivations agree on ACTIVE and LOCKED.

o' M), (B), O I = p

o), ©4(B) .o ) = p DT
(oY)}, 0 ()am<)):pmm
I,(B)*,I'=p " OHI), OH(B)L, OHI)! = O¥p 0
) LBI = (p* " OYDLOHB)LOYT)! = (p)° (1)

Next we analyse the possible antecedent configurations for the different choices of
active formula. The active formula is either atomic or complex, and the context is
either empty or non-empty. Let us consider these in turn, starting with the non-
empty context case. If the active formula is atomic, the derivation fails, in L* and
in LOK'. If the active formula is complex (i.e. of the form B/C or C\B), the
only applicable rule, in L* and in LOK', is [/L] ([\L]). The derivation branches,
initiating uniform head-driven search for the negative subtype of the goal formula
in the left premise, and declaring the positive subtype active in the right premise.
Roots and leaves of the derivations in L* and in LOK' agree on the ACTIVE, LOCKED
partitioning.

OHA)' = (B)° OHID)L, (AL OHT) = p /L

A= @B T,(4T"=p EMUE (14)1/(15’)0 OHA)L, OHIT) = p ()
I,(A/B)*, A" =p OH D), (A4/B), BH(A)L, BHI) = p

Finally, consider the base cases of the recursion. Below the correspondence when
the L* Axiom sequent, i.e. [xL] is reached.

p=>p

— 4L L ()
()" =p () =p

For the sake of completeness, one should add the case of the trivial initial sequent

p = (p)*, though the issue of spurious ambiguity hardly arises here. Below the L*
form and its LOK' counterpart.

pP=Dp
(Otp)° =p DiL
W =p - Otp = O'p D(.ﬁ (-)°
o o) s e

Illustration: Geach

Without the constraint on uniform head-driven search, there are two L sequent
derivations for the Geach transition. They produce the same proof term.
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c=>c b:>b/L b=15 a:>a/
b/c,e=b a=a c=>c albb=a

a/b,b/c,c = a /L a/b,b/c,c = a /L
a/b,b/c=afc / IR a/b,b/c=a/c //R
a/b= (a/c)/(b/c) a/b= (afc)/(b/c)

Geach: uniform head-driven search

Of these two, only the first survives in the L* regime.

(o)* = ¢ *L
= B B *ﬁ .
O =t L @eet
b/c,c = (b)* (a)*=>a /L c= (o) a/b,(b)* = a /L
(a/b)*,b/c,c= a R a/b,(b/c)*,c = a ‘R
a/b,b/c,c = (a)* / a/b,bfc,c= (a)* /
a/b,b/c= (afc)* /R a/b,b/c= (afc)* /R

a/b= ((a/c)/(b/c))* a/b= ((a/c)/(b/c))*

Uniform head-driven search: modal control

We interleave the proof unfolding and the unpacking of the (-)!, (-)° translations.

to be cont’d
@/ 0P O b B =
(a/b)",O%(b/c)', O ()! = a =)

(O*(a/b)"), B4 (b/c)', 04 () = a
(Ot (a/b)!, 0¥ (b/c)", 0% (c)')° = a
O4(a/b)t, 04 (b/c)t, O4(c)! = Ota
O*(a/b)", O%(b/c)", O¥(c)! = (a)°
Ot (a/b)', O¥(b/c)' = (a)°/0*(c)!
O*(a/b)", 0% (b/c)" = (a/c)° /R
O*(a/b)! = (a/c)°/BHB/)" '
O¥(a/b)" = ((a/c)/(b/c))°

Consider first the interaction of [/R] rules and selection of the active antecedent
type. Antecedent types all have O as main connective. The OV acts as a lock:
a O%A formula can only become active when it is unlocked by the key ¢ (or (-)°
in structural terms). The key becomes available only when the head of the goal
formula is reached: through residuation, [O¥R] transmits < to the antecedent,
where it selects a formula via [K'].

KI

+R
(-)°
/R
(-)°

Transmission of the active formula

There is only one key < by residuation on the OV of the goal formula. As soon as
it is used to unlock an antecedent formula, that formula has to remain active and
connect to the Axiom sequent.
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c=>c 1
() =c )
(0He)')° = e
O¥(c)! = Ote 0 b=b
Do) = (00 ) () = b
OFICREICIETIN
(/o0 = b
b/, BH = b
CICEIEHCIEE T
O+(b/c)t, 0% (c)! = Ttb (0 s a
04 (b/c)', 04 (c)! = (b)° (@) > a
(@)'/(6)°,0%(b/c)", 0 () = a

OvL

Ok
L

Ok
/L

Below, we show how the wrong identification of the antecedent head leads to
failure. The key to unlock O%(a/b)! has been spent on the wrong formula. As a
result, the implication in (a/b)! cannot become active. Compare with the failure of
the corresponding L* derivation above.

c=c (y
()t =c © oir
coyr=c2t
OH(e)! = Ote ()° FAILS ;
O+e)' = (¢)° Dt(a/b)", (b)! = a
O*(a/b)", ()" /(c)°, 0% ()" = a ()
oHa/t) 0/ B = )
Ot(a/b)", (B4 (b/c))°, 0% () = a
(O*(a/b)', O (b/e)", 0% (e)')* = a
O4(a/b)t,04(b/c),O4(c)! = Ota

2.2 Mixed inference: multimodal systems

Our second generalizing move is from mixed (2,3) frames (unimodal for each arity)
to multimodal frames. The objective here is to combine the virtues of the distinct
logics we have discussed before in one multimodal system, and at the same time to
overcome the limitations of the individual systems in isolation. Each of the compo-
nent logics has its own specific resource management properties: when combining
the different logics, we have to take care that these individual characteristics are
left intact. We do this by relativizing linguistic composition to specific resource
management modes. But also, we want the inferential capacity of the combined
logic to be more than the sum of the parts. The extra expressivity comes from
interaction postulates that hold when different modes are in construction with one
another.

We have treated the multimodal style of inference and its linguistic applications
in greater detail elsewhere (cf [24, 25, 23]). In the present section we draw special
attention to the interaction postulates, highlighting the correspondence between the
type (1,2) K distributivity principles discussed in §2.1 and the type (2,2) principles
regulating communication among binary modes.

On the syntactic level, the category formulae for the multimodal system are
defined inductively on the basis of a set of category atoms .4 and a set of indices
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I as shown below. We refer to the ¢ € I as resource management modes, or modes
for short.

Fu=A|FLiF|FeoiF | F\iF | O:iF | O F

The semantics for the mixed language is a straightforward generalisation of frame
semantics for the simple systems. Rather than interpret multiplicative connectives
in terms of one (binary, ternary) privileged notion of linguistic composition, we
throw different forms of linguistic composition together and interpret in multimodal
frames (W, {R?}icr,{R?}icr). A valuation on a frame respects the structure of the
complex types in the familiar way, interpreting each of the modes i € I with its
own (binary or ternary) accesibility relation.

v(<O;A) = {z|Jy(Rizy N yev(A)}

v(@;4) = {z|Vy(Riyz =y €v(4)}

v(Ao; B) = {z|JzTy[Rizzy & z € v(A) & y € v(B)]}
v(C/;:B) = {z |VyVz[(Rizzy & y € v(B)) = z € v(C)]}
v(A\:C) = {y |VaVz[(Rizzy & z € v(A)) = z € v(C)]}

We can present the multimodal logic axiomatically or in Gentzen style. In the
axiomatic presentation, we have the familiar residuation pattern now relativized to
resource management modes:

©iA— B iff A—0OB

In sequent presentation, each residuated family of multiplicatives {<;, D%}, {/i,0i,\i}
has a matching structural connective, again relativized to resource management
modes. Antecedent terms are inductively defined as

Tu= F (T, 7) | (T)

Logical rules insist that use and proof of connectives respect the resource manage-
ment modes.

Multimodal sequent calculus

T A AlA=>C

=4 T'[(4)!] = B
ROImy =5 Tod =5 -
M)i=A I'[A]= B
[Ro;] =004 T[(O0}A)'] = B [LO;]

(I,B)=A T'=>B AA]=C,
R/ A/;B A[(A/;B,T)]=C [L/:]

(BT =>A T=B AAl=C
R\-r S Bva AT, B\A = ¢ L\

T[(A,B)]=C '= A A= B

Lol ie Bl C @AV S 40 B

[RO,L']

In addition to the residuation inferences which are shared by all resource manage-
ment modes, there are mode-specific structural options. In axiomatic style, they
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take the form of structural axioms; in sequent presentation, we have the corre-
sponding structural rules. As an illustration, see the structural axioms/rules for a
commutative mode c. In the semantics the R, interpreting this connective will be
constrained to satisfy (Vz,y,z € W)R.zzy = R.zyz.

F[(Az,Al)c] = A r
F[(Al,Az)C] = A L

Ao, B+—> Bo . A

Comm]

Multimodal communication principles

What we have done so far is simply put together the individual systems discussed
before in isolation. This is enough to gain combined access to the inferential capac-
ities of the component logics, and one avoids the unpleasant collapse into the least
discriminating logic that results from combining logics without taking into account
the mode specifications, cf our discussion of CCG in §1. But as things are, the bor-
ders between the constituting logics in our multimodal setting are still hermetically
closed. Let us turn then to the question of multimodal communication.

Communication between different modes is obtained semantically by frame con-
ditions linking R; and R;. Two types of constraints can be distinguished:

e ordering of the accesibility relations R; in terms of the information they
provide about the structure of the linguistic resources. In terms of frame
conditions, say for R? more informative than R?, this means (Vz,y,z €
W)R;zyz = Rjxyz. For example, since the non-commutative product e is
more informative than the commutative product ®, we’d have the constraint:
(Vz,y,z)Rezyz = Rgzyz. Corresponding to this form of frame condition,
there will be Inclusion Postulates in the logic.

e frame conditions ‘mixing’ distinct R; implementing, for example, mixed asso-
ciativity or commutativity laws. This form of constraint is expressed in the
logic in terms of Interaction Postulates.

We discuss them in turn.

Inclusion: products

As a simple example of an inclusion constraint, consider the following cut-free
Gentzen derivation showing that commutative ® is derivable from non-commutative
e product. The derivation uses Left and Right logical rules (which depend on the
proper sequent punctuation), the inclusion structural rule connecting e-type and ®-
type configurations, and the Permutation structural rule for ®-type configurations.

B=B A=A
(B,A)®:>B®AP®
(A,B)® > B® A
(4B >Bod " =%
AeB=>Baa *

®R

Compare the combinatory derivation, which depends on non-logical axiom schemata
mg and the inclusion postulate )\o ) and transitivity.
® »®

Meg:A®B3A®B mg:A®B—B®A
7T®0)\.,®IA.B—>B®A
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Inclusion: order reversal through residuation

Where the inclusion for products gives Ae; B — Ae; B, derivability for the residual
implications is the other way around. Below the combinator derivation and its
cut-free Gentzen variant.

idA/JB%A/]B
Xijj:A/jBe;B— A/;Be;B [:'(id): A/;Be; B — A
ﬂj_l(id) [¢] )\i,j : A/JB o, B~ A

B=B A=A /s
(4/;B,B) > A"’
(A/;B,B)' = A

E.j

T =

/iR

To convince oneself that the intuitions are satisfied here, let mode 7 be non-commutative,
and mode j commutative, as in our previous example. Now consider a conjunction
of commutative A/;B and non-commutative A/;B. Given the direction of the
derivability arrow established above, the conjunction as a whole is A/;B — which
is as it should be: the commutativity of the j mode should not spoil the more
discriminating resource management of the ¢ mode.

The reader may be interested in comparing the treatment of inclusion constraints
given here with that of Hepple [17] where the derivability arrows are systematically
reversed.

Interaction principles: type (1,2)

In the discussion of (2,3) frames in §2.1 we have already seen the K principles of
(strong, weak) distributivity for the communication between unary <, 0% and binary
/,,\. In the multimodal setting, these principles can be relativized to specific mode
interactions, resulting in a vastly increased control over resource management.

Kli,j : OZ(A o, B) — <>,A o, B
KQZ'J' : OZ(A o, B) — AOj ;B
K’i,j : <>,(A o, B) — <>,A o, ;B

Below the correponding frame conditions (Vz,y, z,w € W).

K(1,2);;: (Riwz & Rjzyz) = ' (Riy'y & Rjwy'z) V J2'(Riz'z & Rjwyz")
K;;: (Riwz & Rjzyz) = y'32'(Riy'y & Riz'z & Rjwy'?')

A linguistic application of relativized K principles can be found in [23], where a
head-selection < interacts via K1 with left-headed dependency product e;, and via
K2 with right-headed dependency product e.,.

Interaction principles: type (2,2)

Consider finally interaction principles for inter-mode communication among binary
families. Above, we distinguished weak and strong distributivity principles for (1,2)
type interactions. Let us do exactly the same for interaction of the (2,2) type.
Consider first interaction of the weak distributivity type. Below one finds prin-
ciples of mized associativity and commutativity. Instead of the global associativity
and commutativity options characterizing L, NLP, LP, we find mixed versions
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constrained to the situation where modes 7 and j are in construction. (Symmetric
duals can be added, with the j mode adjunction distributing from the left.)

MC : (A.iB).jC(—)(A.jC).iB : MC!
MA : (AOZ'B)OJ'C(—)AOZ'(B.J'C) : MA

The postulates correspond to frame conditions (Vzyzuv € W):
MC: (Rjzyz & Rjzuv) = Ft(R;zut & R;tyv)
MA: (Rizyz & Rjzuv) = Jt(Ryut & R;xtv)
MC': (Rjzyz & R;zuv) = Jt(R;zut & Rjtyv)
MA': (Rjzyz & Riuzv) = t(R;uzt & R;tyv)

And they manifest themselves in structural rules in Gentzen presentation.

F[((AI’ A3)ja AQ)Z] = A F[(Ala (AZ, A3)])2] = A

F[((Al,Ag)i, Ag)J] = A MC F[((Al,Ag)i, A3)]] = A MA
F[((Al,Ag)i,Ag)j] = A , F[((Al,Az)i,A3)j] = A ,
F[((Al, Ag)j, Az)z] = A MC F[(Al, (Az, A3)])z] = A MA

Application: mixed composition

For linguistic application of these general postulates, we refer to [25, 23], where it is
shown that a multimodal variant of CCG ‘mixed composition’ laws — which in the
absence of mode constraints cause collapse of L into LP, as we saw above — are
theorems in combined logics with the MC/MA principles. Schematically, in ‘Geach’
version, we have the following valid type transition (and the symmetric case), where
the w mode stands for head adjunction and the » mode for righ-headed dependency
adjunction.

AlwB = (C\rA)/w(C\+B)
C=C B=1HB \
(C,C\,B)"=B "7 A=A

(A/wB,(C,C\,B)")" = A
(C,(A/wB,C\;B)")" = A
(A/wB,C\.B)* = C\,A
AlwB = (C\;+A)/w(C\+B)

JwL
MC
\rR
JwR

Type (2,2) interaction: strong distributivity

The weak distributivity principles MC, MA keep us within the family of resource
neutral logics: they do not affect the multiplicity of the resources in a configuration.
Strong distributivity principles of the (2,2) type are not resource neutral: they
duplicate resources. But in the multimodal setting, this gives access to mode-
controlled forms of Contraction.

We give one illustration. Consider the distributivity principle S below, which
strongly distributes mode j over mode ¢ thus copying a C datum.

S: (Ae;B)e;C — (Ae;(C)e;(Be; ()

We leave it to the reader to compute frame conditions and structural rules. But we
close this section pointing out that the S combinator of CCG (used in the derivation
of parasitic gaps) is an immediate consequence of the S postulate. Again, in a
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unimodal setting the S combinator in combination with Residuation causes disaster.
(Abbreviation: D = ((A/;B)/;C ¢; C) e; ((B/;C) »; C).)
S:((A/;B)/;Ce;B/;C)e;C D f:D—A
foS:((A/;B)/;Ce;B/;C)e;C — A
Bi(foS): (A/iB)/;C & B/;C = A/;C

3 Conclusion

This paper is a technical investigation of the architecture of mixed categorial type
logics. The raison d’étre for such an exercise, we hope to have made clear, is the
linguistic application of these logics to problems of grammatical analysis — without
the linguistic motivation many of the logical issues addressed above would simply
not arise. At the same time, we would like to stress that progress on the descriptive
level of linguistic analysis is really dependent on a clear understanding of the logical
structure of the type systems employed.

A Appendix: Invariants

Type transformations A — B in the Lambek systems NL, L, NLP, LP preserve
the resource sensitivity properties of the individual logics. As a result one can
characterize necessary conditions for derivability A — B in the different Lambek
logics in terms of a number of useful invariants. In this Appendix, we present the
known invariants for L, and LP and add new ones for the systems NL and NLP,
and for the extension with unary <, 0% connectives.

A.1 Preservation properties: NL, L, NLP, LP

On the most general level, all members of the family of occurrence logics share the
property of resource preservation: in a derivation A — B there is an equilibrium
between available and consumed resources, i.e. between positive and negative oc-
currences of atomic type formulae. The atom count of Van Benthem [2] measures
this property. We present the stronger invariants in a format due to Pentus [29]
which translates type formulae into elements of the free group generated by the
type atoms. First, resource preservation can be sharpened to order preservation
for the systems L and NL where derivability is dependent on the linear order of
the resources (Roorda, [30]). Order preservation, in its turn, can be sharpened to
structure preservation for NL, where apart from linear order also the hierarchical
grouping of resources determines derivability. In the setting of Abelian groups, fi-
nally, we obtain the NLP version of structure preservation, and an alternative way
of expressing resource preservation.

Notice carefully that the invariants to be discussed here provide necessary but
not sufficient conditions for derivability: they do not take into account the differ-
ence between A — B and B — A. They will be typically used then in arguments
about non-derivability, and in a more practical context, in pruning the search space
for categorial theorem proving, where the invariants allow early detection of non-
theorems.

Proposition A.1 Resource preservation. (Atom count, Van Benthem.) Let #,(A)
be a function counting positive and negative occurrences of atomic formulae p in
arbitrary formulae A defined as below.

#o(p) =1, #p(q9) =0 for atoms p,q, p#q
#p(A/B) = #p(B\A) = #p(A) - #p(B); #p(A *B)= #p(A) + #P(B)

29



NL, L, NLP, LP + A — B implies #,(A) = #,(B) for any p € A.

The proof of Prop A.1, and of the invariants to be discussed below, is obtained
by straightforward induction on derivations using the axiomatic presentation of the
logics. The axioms can be shown by inspection to have the relevant property (the
logical axiom A — A plus structural postulates, if any), and the rules of inference
(transitivity, residuation) preserve it.

For the order preservation invariant, we interpret type formulae as elements
of G(A), the free group generated by the type atoms .A. The group is equiped
with an associative operation ‘-’ and with a two-sided identity element e satisfying
e-p=p =p-e. As an element of the free group each prime formula p has an inverse
p ! such that p1 -p = e = p-p~ 1. The translations (-)!,(-)° are each other’s
opposite in the sense that (4)}(A4)° = e = (4)°(A)! for arbitrary types A.

Proposition A.2 Order preservation (‘Balance’, Roorda, Pentus.) Let G(A) be
the free group generated by the atomic type formulae A. Define translations (-)*,(-)° :

F = G(A):
®)'=p, °=p"
(AeB)t =(A)-(B)', (AeB)°=(B)’-(A)°
(A/B) =(4)'-(B)°, (A/B)°=(B)"-(A)°
(B\A)' = (B)°- (4)', (B\A)°=(4)°-(B)"

NL, L - A — B implies (A)* - (B)? =e.

Observe that an alternative version of resource preservation in the sense of
Proposition A.1 can be obtained via the free group interpretation of Proposition
A.2 by turning G(A) into an Abelian group, where the group operation ‘-’ is com-
mutative as well as associative.

For the system NL we need an invariant capturing the fact that derivability is
dependent not only on the linear order of the resources but also on their hierarchical
structuring. Structure preservation is obtained by doubling up the recursion of the
order preservation invariant: instead of mappings (-)!, (-)?, with (A4)}(A)° = e,
we have four translation mappings (-)!,(-)%,1(-),°(-) set up in such a way that
L(A)(A)° = (4)°1(A4) = 9(A4)(A)! = (A)'19(A) = e for arbitrary A. The recursion
keeps track of whether a subformula is within an even or odd number of brackets.
For the basis of the recursion, i.e. the translation of prime formulae, we have a
choice. Either () we augment the free group interpretation with a pair of elements
1, 0, to be thought of as structure markers. They are each other’s inverses, i.e.
1-0=e=0-1. Or (}) we have for each prime formula p an even ("p) and
an odd (p') representative in the group, together with their inverses (p~ and ‘p
respectively).

Proposition A.3 Structure preservation. Let G(AU {1,0}) be the free group gen-
erated by the union of atomic type formulae A and structure markers 1,0 satisfying
1-0=e=0-1 (f). Let G(ALT) be the free group generated by the union of
even/odd atomic type formula tokens A satisfying "p-p- =e=p" -Lp (1). De-
fine translations (-)!,(-)°,1(:),°(:) : F = G(AU {1,0})(}) or F = G(ALT)(]) as
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follows:

H ®'=p-1, ®=pt-0, 'p=1-p, °(p)=0-p7,
(i) 1(p) = Tp7 (p)O - pL7 (p)l = pTJ O(P) = Lpa
'(AeB)=(A4)"-(B)", (AeB)°=°B)-%4
(AeB)' ='(A)-(B), °(AeB)=(B)’-(A)°
'(4/B) = (A)'-(B)°, (A/B)°='(B)-°(4)

(A/B)t =1(4)-%B), °(A/B)=(B)"-(4)°
'(B\A4) = (B)’-(4)", (B\A)’=°(4)-(B)

(B\A)' =°(B)-'(4), °(B\4)=(4)°-(B)!

NL - A — B implies 1(A) - (B)’ = e

Example A.4 We check an NL theorem, Lifting p — ¢/(p\¢) and a non-theorem
of NL, the Geach transformation p/q — (p/r)/(g/r). Both are order-preserving
(%). Structure preservation (xx) holds for Lifting, not for Geach.

NLF p—q/(p\e)
(*)1 (' (q/(P\9)° = p(P\0)' (9)° = p(p)°(q)'q ' =pp 'qq—1=e

(p)(a/(P\q))° = 1p' (p\9)°(q) = 1p(p)°(q)'0g > = 1pp 10q10q ' =e

NLV p/q— (p/r)/(q/7)
x)  (p/9)"((p/7)/(q/r)° =
)" (@)°(g/r) (p/7)° =g ()" (")°(r)' (P)° =pg'qr—'rp~' =e
(1) Me/9)((p/r)/(g/r))° =
®"(@)° (¢/m)°(p/r) =p ¢ (@) (r)°(r)' ()° =p g q rrTpt #e

The two versions of the structure preservation invariant each have their merit.
On the basis of () one obtains the NLP variant of structure preservation by in-
terpreting G(A- ") as an Abelian group (Kurtonina p.c.). For the (f) version,
Abelianization does not have the desired effect because the positional information
of the structure markers is destroyed by the commutativity of the group operation.
But on the basis of the (}) version, we can obtain a more economical translation,
where structure markers 0, 1 are cashed out not at the level of prime formulae,

(xx 1)

but at the points where the recursion breaks up compound formulae. The version
of A.5 subsumes a sharpened form of Janssen’s ([18]) slash balance, which checks
the balance of positive/negative occurrences of implications, ignoring directionality.
Prop A.5 generalizes the operator count to the full set of connectives and keeps
track of the difference between right and left implications.

Proposition A.5 Structure preservation with operator balance. Let G(AU {1,0})
be as in Prop A.3 Define translations (-)!,(-)°,1(-),°(:) : F = G(AU {1,0}):

(10)1 =p='p), °)=p"'=®"°
(AeB)=1(4)-}(B)-1, (AeB)*=0-(B)°-(A)°
(A B)' =1-(A)'-(B)', 0(A'B)=°(B)-°(A)-0

(A/B) ;(A)-O-SB)O, (A/B)° =1(B)-1 )A)

(
(A/B) (A)'-°(B), °(A/B)=(B)'-°(4
Y(B\A)=(B)"-1(4)-0, (B\A)"=1-(4)"-(B)
(B\A)! =°(B)-0-(4)!, °(B\A)=°(4)-1-(B)"

NL + A — B implies 1(A) - (B)°? = e.

Example A.6 We compare the first (f) and second (}) versions of structure preser-
vation for an NL theorem, Lifting p — ¢/(p\¢) and a non-theorem of NL, the Geach

transformation p/q — (p/r)/(q/7).
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NLF p—q/(p\e)
(1) *(p)(a/(P\2))° = 1p'(P\q)°(q) = 1p(p)°(q)'0¢™" = 1pp~'0g10g~" =e
1) ') (e/®\2)° =p'(P\9)1(9)° = p(p)°*(q)01q ' =pp 'q01g ' =e

NL |7‘ p/qa— (p/r)/ (q/T)

(1) (p/q)((p/r /(q/r)° =

(»"(@)°*(g/r)°(p/r) = P1lq~ 10( )Hr)°(r) (p)° = plg~'0qlr~t0Orlp~l0 # e
&) /o /r /(q/r)° =

L(p)0(q)°*(q/r)1(p/r)° = p0g~**(q)0(r)°1(r)1(p)® = pOg 'qOr '1r1p t #e

The table below summarizes the situation of invariants for the Lambek logics in
terms of the free group interpretation.

Z
)

LOGIC PRESERVATION PROPOSITION GROUP OPERATION
LP, L, NLP, NL Resources Prop A.2 abelian
L, NL Order Prop A.2 non-abelian
NL, NLP Structure Prop A.3 (}) abelian
NL Structure, Order | Prop A.3 (}), A.5 non-abelian

Table 1: Invariants

Illustrations

The reader may find it helpful to perform the calculations of the free group inter-
pretation in terms of formula decomposition trees. Below we give some examples,
starting with failure of structure preservation for Associativity (product variant and
Geach variant).

b e b at
W ) 9 1 el 0GP (@
(@ ~ beg 10 (@ (ash)
Lae(bec)) ((aeb)ec)
NLi/ae(bec) — (aeb)ec
a-b-c-1-1-0-¢t-0-b71-at #£e
b ot e att
W 5 ) 0 (@@ 9 1 (aF
") 0 (®)° '(b/c) 1 (a/c)®
'(a/b) ((a/c)/(b/c))°
NL / a/b - (a/c)/(5/)

a-0-b1-b-0-ct-1-c-1-at#e
Structure preserving commutativity in NLP.

Ty Te bt ct

al ) o) Lg (B)° (9
(@' (beo)t

Lae(bec)) ((
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NLPFae(bec) — (ceb)ea

aT'Tb'TC'J' bJ_ L T J'a'bJ"Tb'CJ"TC:

a - T =a - [

Violation of structure preservation in NLP.

T, Te bt at

a7 ) o () (a)° L
(a)!  (beo)! %laed) °(c)
Yae(bec)) (ce(aeb))®

NLP l/ae(bec) > ce(aeb)

a"-Tb-Te-bt-at-tc#e

A.2 Invariants: unary connectives

How do the invariants discussed above extend to the language F(/,e,\,<,0%) 7.
For the combination of the pure logic of residuation for &, 0% (no frame conditions
on R?) with NL (no frame conditions on R?), and with L (Associativity for R3) we
have the following result, which is significant in the light of the modal embedding
of NL in L< discussed in the main text. Other combinations are left as a topic for
further research.

Let G(AU{1,0}) (1) and G(AT>t U {1,0}) (f) have the group theoretic inter-
pretation discussed in the previous section. Define translations (-)!, ()%, 1(-),°(-) :

F = G(AU{1,0}) (1) or F = G(AT1U{1,0}) (1) for the extended modal language

as follows:

1(0A) = (4)' -1, (0A)°=0-(4)
(A =1-1(4), °(0A) = (4)°-0
(DY) = 0. (4)!, (DA =°(4)-1

"(AeB)=(A)'-(B), (AeB)"=°(B) (A
(AeB)! =1(4)-1(B), °(AeB)=(B)"-(A)°
"(A/B)=(A)"-(B)°, (A/B)°="(B)-°(4)
(A/B)t =1(4)-°(B), °(A/B)=(B)"-(A)°
Y(B\A) = (B)’- (4)', (B\A)*=°(4)-1(B)
(B\A)! =°(B)-1(4), °(B\A)=(4)°-(B)!

L F A — B implies 1(A) - (B)? =e.

(We present the NL and L case here in uniform fashion. If one is just interested
in the L case, one can take the simpler Roorda marking, augmented with the 1,0
clauses for the ¢, 0+ formulae.)

In the following illustrations we show how the structure-preservation translation
of Prop A.5 for NL theorems A — B and the embedding translation presented
above for (4)* — (B)* in LO have the same group-theoretic interpretation.
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Failure of associativity: NL

b e b am
o ') (o 1 ¢t 0 () (o)
Ya) '(bec) 1.0 (¢  (aed)

Hae(bec)) ((aeb)ec)

ae(bec) — (aeb)ec

a-b-c-1-1-0-¢71-0-b7 -at #e

Failure of associativity: modal L
-1

b bt et
1) e 0)° (a)°

a (beo)t 1 ¢l 0 %aed)
(©)° (O(aed))®

Ha)  (o(bec)
(aeO(bec))t 1
'(O(aeO(bec)))

0 9%CO(aebd)ec)
(O(O(aeb)ec))

OlaeObec)) = O(C(aeb)ec)
a-b-c-1-1-0-¢ct-0-b71-at#e

Failure of associativity: NL, Geach

@ 0 0° '/ 1 (afo)
((a/c)/(b]c))°

a/b— (a/c)/(b/c)
a-0-b1-b-0-ct-1-c-1-at#e

Failure of associativity (Geach): modal L
-1

b e L (@

N ) 0 o1 i) @)
Y(a) 0 p-t (O (o° 1 (O*a/c)
(Ota)t () '(@*b/c)  °(O¥(Bta/c))
'(Ota/b) (O*(T*a/c)/(O*b/c))°

Ota/b - OH(D4a/c)/(D¥b/c)

a-0-b71-b-0-ct-1-c-1-at #e
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