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1 Introduction

A precursor to linear logic was introduced in [Lambek, 1958], who proposed a single conclusion
sequent calculus which lacked the structural rules of Contraction, Weakening and Permutation.
Three connectives are treated, two directed implications / (right to left),\ (left to right), and a
product, which can be identified with linear logic’s multiplicative conjunction. This calculus was
introduced as a means for reasoning about sequences of linguistic objects, a domain in which the
customary structural rules are clearly not generally valid. On grounds of linguistic expressivity,
there are motivations for considering the calculus which results from the addition of second order
quantifiers — the Polymorphic Lambek Calculus (PLC). For example, where [Pentus, 1992] shows
that grammars based on the Lambek calculus can recognise exactly the context-free languages,
[Emms, 1993c] shows that grammars based on PLC can recognise a strictly larger class of languages.
By now a certain amount is known about PLC. Besides the above mentioned recognising power
result, there is in [Emms, 1993b], [Emms, 1994a] discussion of several kinds of linguistic applications,
in [Emms and Lei, 1993] a Cut elimination result, in [Emms, 1994b)] several completeness results,
and in [Emms, 1993a] a decidability result for a subset of all possible sequents. An open question,
however, has been decidability in the general case. We will show below that PLC can embed
the extension of PLC with the structural rules of Permutation, Contraction and Weakening, and
thereby obtain a proof of the undecidability of PLC. We will also show that the connectives (/,\,V)
suffice to express a variety of other connectives, amongst which are the product, o, the existential
quantifier, and the multiplicative unit, 1.

2 Preliminaries

Assume a denumerably infinite set of variables. We specify various propositional languages by L,
followed by a series of connectives drawn from the set {1,0,T,/,\,e,V,3}. The calculi of concern
will be defined with reference to Figures 1 and 2. Following the linear logic tradition according to
the role of the context, the connectives 1, /, \, and e are described as multiplicative, whilst 0 and
T are referred to as additive.

The rules derive sequents from sequents, where a sequent is an antecedent sequence of formulae,
followed by ¢ = ’, and then a single formula. w,z,y range over formulae, U, V,T range over se-
quences of formulae. z[y/Z] stands for the substitution of y for Z in z, defined to include a change
of bound variable to avoid accidental capture. The rules (VR) and (3L) are subject to the side
condition that Z is not free below the line, and X is not free in QZ.z, this latter part allowing

QX.z[X/Z] to be an alphabetic variant of QZ.z.

We will use L superscripted with a sequence of connectives (c;)i1<i<n to stand for the calculus
obtained by taking the identity axiom scheme, together with the rules associated with each of the
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Figure 1: Identity axiom, and rules for /,\,e,vV,3,1,0, T

T, To = w Tiax,z,To = w

©(T) = w

Contr ——————Perm

T, z,Ty = w

T, x, Ty = w

T = w

Figure 2: Structural Rules
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3 POLYMORPHIC RECONSTRUCTION OF STRUCTURAL RULES 63

connectives ¢;, with in the case of YL and 9R, the formula y substituted for the bound variable being
drawn from the appropriate language: £((¢i)1<i<n). A parameter that may be varied is whether
sequents with an empty antecedent sequence are admitted. When this is the case we subscript
the name of the calculus with € (clearly the axiom scheme =1 is omitted when there is no €
subscript). The calculi including the second-order quantifiers we will refer to as polymorphic. In
this notational scheme, L/*\® is the calculus proposed in [Lambek, 1958].

For any of the calculi that may be defined in this way, the derivability of the following Cut rule
can be shown (by an inductive argument on the sizes of the premise proofs of a Cut?)

U,z, V =>w T =z
U, T,V = w

Cut

Let LJ2 be Lgl’/’.’v + Weak + Contr + Perm. This is a formulation of 2nd order intuitionistic
propositional logic. Tt is also the case that the Cut rule is derivable in LJ2, as is shown in [Tait,
1966] (using a semantic argument). The undecidability of LJ2, which will be used below, is shown

in [Lob, 1976],[Gabbay, 1981].

It is clear that L:Gl /1Y + Perm can be seen as a notational variant of second-order intuitionistic
multiplicative linear logic, referred to as IMLL2 in [Lincoln et al, 1995].

JAWE

A simple property of any of the L/>\ or L, calculi is?:

/s\sees

Lemma 1 (Unknown Elimination) where L is one of the L/"\» or L. calculi then

there is an X with FV(X) C)

FV(U,V,w) such that
Zr —U, T}

LU, X,V = w Lﬂ'U’ LV o=

LT = X (

LU, T,V =w

LT, =X )

Proof: for one direction use Cut and Cut Elimination, for other choose = X = U\w/V (shorthand
for u,\ ... w\w/v,/ ... [v1)

When we use this to infer the derivability of two premises U, X,V = wand T = X from U, T,V = w
we write:

UTV =uw
’U,X,V:>w T=>X

3 Polymorphic Reconstruction of Structural Rules

It is well known that the absence of structural rules can be compensated for by adding new axiom
schemes and Cut.

. 1,/,8)\,...
Example where L is L1/:®\» or L¢ /O ,

'Lambek’s proof of Cut elimination for L/*®*\ by induction on the complexity of the Cut formula, does not work
for the polymorphic calculi. The absence of the contraction rule, however, allows a similarly simple proof to be given
by induction on proof size. See [Emms and Leif, 1993].

2This is not the same as Interpolation, since we do not require the material of X to occur in both T and (U, V, w).
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z = (yez)/y, or }

L+Perm is equivalent to L+Cut + {:1: = y/(y/z), or

: o\,
Example where L is L1/:%\ or PR ,

z = z/y,x = y\z, or
L+Weak is equivalent to L+Cut + ¢ 2 = 1, or

: o\,
Example where L is L1/:%\ or LL/%\ ,

z = y/(z\z\y),z = (y/z/z)\z, or }

L+Contr is equivalent to L—}—C’ut—}—{ay = zez, or

We note here the the proof in the case of permutation, choosing the first formulation of the ‘per-
mutation’ axiom. From right to left it suffices to note that the ‘permutation’ axiom is derivable in
L + Perm. From left to right, it clearly suffices to show that U, a,V = w implies a,U,V = w, and
this we have, given Lemma 1, by the derivation:

3.1 Axiom Schemes to Polymorphic Categories

In [Emms, 1993c], in proving that there are 2nd order Lambek grammars for the permutation
closure of any CF language, it was shown how one can in a certain sense, trade an axiom scheme
expressing permutation for a polymorphic category. We recap briefly the essentials of the argument
made there.

All the ‘permutation’ axiom does is allow one to convert a to (yea)/y, for any y, and in each
derivation of 7(ay,...,a,) = w from aq,...,a, = w, we need to apply the ‘permutation’ axiom
scheme just once to each antecedent. It is clear then that if a lexical item categorised as a, could
also be categorised as (yea)/y, for all y then that lexical item could be moved to the front of any
construction in which it appears grammatically. This is out of the reach of the Lambek calculus,
as we can only assign finitely many categories lexically, and there is no valid conversion from a to
(yea)/y. However, this is within reach of a polymorphic grammar, simply by assigning all a-items
also the category VX.(Xea)/X.

It should not be a surprise that when this is done to every lexical item, the enlarged grammar
generates all permutations of strings recognised by the previous grammar. Let z = p(z,y) be
any permutation axiom, i.e p(z,y) might be (yex)/y, or y/(y/z), or w/(y\w)/(y/z). Then one
can show that if G is an L lexicon, and G’ expands by adding VY.p(a,Y), for each G-entry am
then perm(lang(G)) C lang(G'). The special case of this was proved in [Emms, 1993c], with
p(a,y) = w/(y\w)/(y/a), as part of the proof that there are L{/>\"Y) grammars for the permutation
closure of any CF language.
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What is noticeable here is that although L/:\¥) grammars for the permutation closure of a CF
language are obtained, it is not the case that Permutation is a derivable rule in L/:\"Y). In other
words, one can get permutation closures when one had no right to expect that one would. This
is symptomatic of an embedding of a stronger logic into a weaker one. Given the fact that each
structural rule matches up with an axiom scheme, there is reason to think that there may in fact
be ways to embed the structurally more relaxed logics into the polymorphic calculus. This is born
out in the following section.

3.2 Structural Rules to Polymorphic Categories

In [Lincoln et al, 1995] there is a proof of such an embedding of a structurally more relaxed into
a structurally stricter logic. The target logic of the embedding is IMLL2 (= Lg /9% + Perm),
and the source is LJ2 (= L:’/’.’V + Contr + Weak + Perm). They note that certain quantified
formulae seem to describe the action of the Contraction and Weakening rules. Let us refer to
VX.(XeX)/X as C, and VX.1/X as W (note the connection with the above mentioned ‘contrac-
tion’ and ‘weakening’ axioms). As is quickly seen, the presence of an antecedent C' licenses a
single application of Contraction in the sense that: if IMLL2 |- U,z,z,V = w is derivable, then
IMLL2 |- C,U,z,V = w is derivable, and likewise an antecedent W licenses a single application
of Weakening: if IMLL2 |- U,V = w is derivable, then IMLL2 |- U,z,V = w is derivable. Ex-
pressed as it is by a formula of a linear calculus, IM LL2, such a license to apply a structural rule
is gone as soon as it has been used — in contrast to formulae marked with linear logic’s expo-
nentials, for which the repeated application of structural rules is licensed. However, the surprising
fact pointed out in [Lincoln et al, 1995] is that when C,C,C, W is prefixed to a sequence T', one
has license to apply Contraction and Weakening to 1" indefinitely often. We show this for the
Contraction case below:

(1) ‘Contraction’ C,C,C,W,U,a,a,V = x

oL,
C,C,C,W,U,aea,V =z a = a
VL,/L
c,c,c,w,U,C,a,V ==z
Perm
C,C,C,C,W,U,a,V = C=C C=C¢C
ol o], oF; oR
(CeC)e(CeC),W,U,a,V =z C,C = CeC

VL,/L
C,C,C,W,U,a,V =

This is the key to the embedding proved in [Lincoln et al, 1995] of LJ2 into IMLL2. We will
carry this strategy of rexpresssing structural rules polymorphically one step further, moving the
target logic for the embedding from IM LL2, which has Permutation, to L:El o/ ’.’\’V, which has no
Permutation.

Let us define P as VXVY.(XeY)/X/Y. Then we observe P licenses left-ward shift, in the sense
that where L is any of the LB/ caleuli i L I U,a,V = w, then L |- P,a,U,V = w also.
Given Lemma 1, this is established by the following derivation scheme:
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Uya,V = w
rf,a,V = w )
—— L —
Xea,V = w U= X I
(Xea)/X, U,V =w a=a
(Xea)/X/a,a, U,V = W
VXVY.(XeY)/X)Y,a, U,V = w
s

/L

Clearly, where T is a sequence of formulae of length n, any permutation, 7(7), can be generated
from T by applying n leftward shifts:

Lemma 2 where P = VX.VY.(XoY)/X/Y, L any of the Li’/’.’\’v’"' calculi, the following is a

derivable rule of L

Tlyeery Ty = W
P,....P,w(z1,...,2,) = w
D
n times

A useful lemma concerning the structural rule encoding formulae, C, W and P is the following:

Lemma 3 where L is any of the Li’/’.’\’v"" calculi, weakening in L is admissible for x € {C, W, P}.

Proof: by the following derivation schemes:

U,V = w U,V sw U,V =w
o[,10L,1L. ————1L o[, 1L,1L
U,1e1, V = w =1 U,1,V =w =1 U,1e1, V = w =1 =1
/L /L /L,/L
U,(1e1)/1,V = w VI Ul/1V = w VI U,(1e1)/1/1,V = w
U,VX.XeX/X,V = w U, VX1/X,V = w U,VXVY.(XeY)/ XY,V = w
[ — —_—— . ~ )
C w P
End of proof
Our strategy to obtain an embedding of LJ2 into Lel’/’.’\’v will be parallel to that used in [Lincoln

et al, 1995]. We will show that for a sequent with a C,C,C, W, P prefix (abbreviated as PRE),
contraction, weakenings and permutations on material after the prefix is admissible in any of the

any of the Li’/’.’\’v"" calculi.
Lemma 4 where L is any of the any of the Li’/’.’\’v"" calculi, the following ‘post-prefiz’ permuta-

tion, weakening, and contraction rules are admissible in L:

PRE,U = x PRE, U,V = x PRE,U,a,a,V = x
PRE,w(U) =z  PREU,a,V =z PRE,U,a,V =
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A remark before we give the proof of this. In (1), which establishes the corresponding cases of
‘post-CCCW’ contraction in IM LL2, more than ‘post-CCCW’ permutation was used, moving a
C formula to where it is needed. At many other places in Lincoln et al’s embedding proof this is
also the case. Now, because for LE1 9\ e can at best obtain ‘post-PRE’ permutation, it may
seem that it will not be possible to also establish ‘post-PRE’ contraction (and to carry through
other cases in the induction). Part of the solution to this lies in the fact that the PRE block can
be doubled, so that the formulae in the second occurrence of the prefix are then post-PRE. The
other part of the solution is the fact noted in Lemma 3, that weakening is already derivable for
z € {C,W, P}, which allows the discard of any surplus C’s,W’s or P’s which result from such
doublings.

Proof of Lemma 4 By the following derivation schemes:

‘post-prefix Perm’ PRE,U =z
PRE,PL,....P",7(U) = x
PRE,PREL,...,PRE™, n(U) = =
cl,...,C",PRE,n(U) = =
PRE,n(U) = =

use n. P’s to Perm, by Lemma, 2

Apply Lemma 3
use n C’s to Contr on n PRE’s

repeatedly use one C to Contr on C,C

‘post-prefix Weak’ PRE, UV = x
PRE,UW,a,V =z
PRE,W,U,a,V = x
PRE,PREV.U,a,V = z
C,PRE,U,a,V = x
PRE,U,a,V = x

use W to Weak on a

use ‘post-prefix Perm’

apply Lemma 3
use 1 C to Contr on PRE
use 1 C to Contr on C,C

‘post-prefix Contr’ PRE,U,a,a,V =
PRE,U,C,a,V = x
PRE,C,U,a,V = x
PRE,PREL,U,a,V = x
C,PRE,U,a,V =z
PRE,U,a,V =z

use C to Contr on a

use ‘post-prefix Perm’

apply Lemma 3

use one C to Contr PRE
use one C to Contr on C,C

End of Proof
3 — 1)/7.av 3 1,/,.,\,V
We can now prove an embedding of LJ2 (= L + Contr + Weak + Perm) into Le as

follows:

Theorem 1 where U,z is any sequence of formulae from L(1,/,e,Y),

L2 U =z if " - C,c,C,W,P,U = =

Proof of Theorem 1

Left to Right: by induction on the size of the LJ2 proof of U = z. If U = y is an LJ2 axiom,

then clearly U = y is an LE1 o/ 1®\Y axiom, and by Lemma 3, adding the prefix, PRE, will preserve
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derivability. So for induction suppose for some n that we have the property for all LJ2 proofs of
size < n, and consider an LJ2 proof of size n.

Lemma 4 clearly suffices to establish the claim for those cases in the induction where the last step
of the supposed LJ2 proof is Permutation, Weakening or Contraction.

In the case where the supposed LJ2 proof ends in the application of single premise rule, it suffices
to apply the inductive hypothesis to the premise, and then apply the same rule in L,S1 /Y
There are two possibilities for an LJ2 proof to end in a two premise rule:

Case: the last step is #R. The lefthand proof below is the supposed LJ2 proof, and the righthand

proof is the Le1 /O Jerivation establishing the claim. The derivability of the premises of the

right-hand derivation follows by induction given the left-hand proof.

Usa V=b PRE,U = a PREV = b
UV = aeb PRE,U,PRE,V = ash
PRE, PRE,U,V = asb
C,PRE,U,V = aseb

PRE, U,V = aeb

use ‘post-prefix Perm

Use C to Contr on PRE

Case: last step is /L. Similar to the above, with reference the following derivations:

Ua,V =z T:>b/L PRE,U,a,V =z ’P’R,f,',T:>bL
U,a/b, T,V ==z PRE,U,a/b,PRE, T,V = x
PRE,PRE,U,a/b,T,V = z
C,PRE,U,a/b, T,V = x
PRE,U,a/b, T,V = x

use ‘post-prefix Perm’

Use C to Contr on PRE

Right to Left
First we note that for z € {C,W, P}, LJ2 |- = z:

=1 X =X X =X X =X Y =Y
Weak oR oR
X =1 X, X = XeX X, Y = XeoY
——/R Contr ——— Perm
=1/X X = XeX Y, X = XeY
— VR ——— /R /R,/R
= VX.1/X = (XeX)/X VR = (XeY)/X/Y v
= VX.(XeX)/X = VXVY.(XeY)/X/Y
Therefore, if we can show that Lg o/ ,®\ ¥ |- T = z implies LJ2 |- T = z, where T, z is a sequence

of formulae from £(1, /,e,V), then C,C,C, W, P,U = z can serve as a premise in the following Cut
based LJ2 proof of U = z.

=C =C =C =W =P CCCWPU-=z

U=z

Cut 5 times

Hence we need Lel’/’.’\’v I T = z implies LJ2 |- T = z, where T,z is a sequence of formulae
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from L£(1,/,e,V). We cannot prove this by straightforward induction on the size of the proof,
because the premises of a Lel’/’.’\’V proof of T' = z may feature formulae not confined to £(1, /,,V):
specifically when the last step is VL, the premise may feature \. Instead we prove a stronger claim
concerning sequents over £(1,/,\,e,V). Let f be the obvious directionality collapsing map from

L(1,/,\,e,V) to L(1,/,e,V). We show that where T, z is a sequence of formulae over £(1,/,\,e,V)

that L&/ *VY I T = z implies LJ2 |- f(T') = f(z), which entails what we need.

Clearly when T' = z is an Lg’/’.’\’v axiom, f(T = z) is an LJ2 axiom. Furthermore when a

Lel’/’.’\’V proof of T = z ends in 1L, /L,/R,eL, eR, VL, VR, f(T = z) follows by the corresponding
rule in LJ2 from the images of the premises (note for the quantifier case f(z[y/X]) = (fz)[fy/X])-

17.71

We give the remaining cases, where the lefthand derivation is the supposed Lél proof, and
the righthand derivation is the LJ2 proof establishing the claim, the derivability of whose premises

follows by induction:

T==x U,y,V:>wL fU fy, fV = fw fT:>fo
UT,z\y,V = w fU fy/fz, fT,fV = fw
Perm
fU T, fy/fz, fV = fw
T
z, T = y\R fz, [T = fyPerm
T = z\y fT,fz = fy
fT = fy/f=x

End of Proof of Theorem 1

As a corollary we obtain:
Theorem 2 L}/"’\’V 1s undecidable

Remarks Given the [Lincoln et al, 1995] embedding of LJ2 into IM LL2, one might ask we do
not obtain the undecidability of Lél /O by embedding IM LL2 into it. Note, however, to obtain
unlimited post-prefix permutation, we used the contraction block of formulae, to generate duplicates
of the permutation formula. There is no obvious way therefore to give an embedding from I M LL2
— which has no contraction, but unlimitted permutation — to Lél /*\V_ which has no contraction,
and no permutation. It seems likely to be the case we can use quantified formulae to simulate a

structural rule only if we simulate contraction at the same time.

It also deserves mention that sequents with an empty sequence of antecedents were used widely
in the proof. It is not the case for example, that when empty antecedents are not admitted,
that Lemma 3 holds, allowing weakening on z € {C, W, P}. For example, although a/b,b = a is
derivable, a/b, b,z = a is not, where z € {C, W, P}. Since the work reported here was completed,
Kanovich has announced an undecidability proof, by different means, of L1/>\®¥ — see concluding
section.

4 Polymorphic Reconstruction of Connectives

Prawitz first noted the higher order definability of certain connectives of 2nd order intuitionistic
logic in terms of implication and quantification, in the context of a logic with all the structural rules.
There are analogue definability results for IMLL2, which lacks the structural rules of Weakening
and Contraction. In IMLL2, there is definability of 1, e, and 3 in terms of V and /, via:
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1* VX.X/X
(aob)* = VX.X/(X/a*/b%)
(3X.2)* = VY.(Y/(VX.(Y/z"))

Also the additive connectives 0 and T are IMLL2 definable in terms of V and / :

0* = VX.X
T = (@AX.X)*

The further additive connectives of linear logic are not definable within IMLL2. Is there a corre-
sponding result when the Permutation rule is jettisoned 7 One might expect this not be the case
because in no sense are 1, aeb, AX.xz, 0 or T left or right looking. Yet a proposed definition in
terms of V and /,\, if it uses /, or \ at all, will have a particular directionality. Nonetheless, there
is an embedding;:

Theorem 3 Where U,z is any sequence of formulae from £(1,0,T,/,e,\,V,3),
L€1,0,T,/,o,\,v,3 FU = z iff LE/’\’V) |—U# = z#, where -# is defined:

z# = =z, where x is a variable

(z/y)* = a#[y*

\o* = y#\ot,
1% = VX.X/X,
0% = VX.X
T# = (AX.X)#

(aob)# = VX.X/(b#\a#\X)

(3X.z)* = VY.Y/(VX.(z#\Y)) (where Y binds no variable in z)

A remark before we give the proof. The intuition that the proposed translations should have no
particular directionality is born out by the fact that where the above proposed translation has
a principal ‘/’ connective (after quantifiers are stripped away), this translation is equivalent to
another which has a principal ‘\’ connective

L VX.X/X & VYX.X\X
LA VXX /(B\a\X) & VX.(X/b/a)\X
LW L vy (VX L(2\Y)) & VY.((VX.(Y/2)\Y)

Proof
Left to Right By induction on the size of the LE’O’T’/"’\’V’H proof. For z = z axioms of L%’O’T’/’.’\’v’a,

we clearly have z# = z# is a Lg/’\’v) axiom. The other three axiom schemes of Lg’O’T’/’.’\’v’a a

= 1,U,0,V = w, and U = T, and we give derivations of the images of these below:

re

X =X U# = U# w# = w# V# = V# U#=>X Y=Y
——; 3 L,/L VL,\L
= X/X VR U# UR\w* |[V# V# = w

U#¥ VX(X\Y) =Y
= VX.X/X U VXX, V# = w# U# = Y/VX(X\Y) R
U# = VY.Y/VX(X\Y)
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Note in the final case, some X must be found such that Lg/ \WY) s U# = X. Such an X is
Y/(U#\Y). So for induction suppose for some n we have the claim for all LE’O’T’/’.’\’V’H proofs of
size < mn, and consider an arbitrary proof of size n. We give pairs of derivations below, where the

lefthand derivations trace through all remaining possibilities for the supposed Lél 0,T./,8\,.3 proof,

and the righthand derivation is the Lg/ \WY)

Lemma 1.

proof establishing the claim, making frequent use of

e active category is 1

1L UV = w ~ U#,V#iw#
S . A~ N
UlV = w U# X =>w? V=X

U# VXXX, V# = v

e active category is aeb

o R U =a V =0 ~  U# =z V=P X =X

\LAL
UV = aeb U# v#, (0"\a*\X) = X VR /R
U#, V# = VX.X/bF\a#\X)
ol UabV = w ~ U#, o# b# V# = w#
UashV = w ’ a#,b#:>7‘
— —/R
U# X, V# = w?* = (b#\a#\X)éL I
U# VX.X/(b#\a#\X), V# = w#
e active category is dX.x
JR U:>$[y/X]EIR ~ U =2 y#/X] Y =Y
U = 33Xz U#,z#[y* /| X]\Y = Y
U#* VX.(z#\Y) = Y
VR,/R
U# = VY.(Y/VX.(z#\Y))
JL  For the righthand derivation, note that the Y whose existence
we infer by Lemma 1 has free variables from (U, V, w)#, which
can therefore be assumed distinct from X.
U7 Z, V sw R > U#,x#,V# = ’LU#
U,3X.z,V = w - m#:>7‘
VR,\R

UF Y, V# = w? = VX.((2#\Y)
U VY.Y/NX (z#\Y),V# = w#

VL,/L

e active category is a/b: trivial

e active category is VX.y: trivial
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Right to Left

Suppose L\ - U# = z# where U,z is any sequence of formulae from £(1,0,T,/,e,\,V,3).

The LE/’\’V) proof is also a LGI’O’T’/’.’\’V’H proof, and hence LGI’O’T’/’.’\’V’H - U# = z#. Therefore

. 1,07,/ @ 3 1.0.T./.® 3
if we have LE, > ’/’ ;\7V7 |_ U = U#, and LE’ ) ’/1 7\ava |

1,0,T7,/,® 3
LE bl bl 7/1 7\)v)

— 2% = z we have the following proof

+ Cut proof U = z, which implies the existence of a Cut-free Lel’O’T’/’.’\’v’EI proof:

U =U#* U#* = z#
Cut
U = z# T =z

Cut

U =z

Hence it suffices to show LE’O’T’/’.’\’V’H -z < 2% forall z € £(1,0,T,/,e,\,V,3), which we show

by induction on the complexity of . When z is atomic and ¢ {1,0, T}, then z = z#, and the
claim is trivial. The remaining zero complexity cases are established by:

X =X 1 =1 =1
——1L /L
1, X =X 1/1 =1
—— F VR,/R —_—
1 = VX.X/X VX.X/X =1
0 =VX.X 0=0
—— VL
VX.X =0
U =X Y=Y VYY/NX(X\Y) =T
VL,\L

U# VX(X\Y) =Y
U# = Y/VX(X\Y)
U# = VY.Y/VX(X\Y)

So for induction, suppose for some n, we have the property for formulae of complexity < n, and
consider an arbitrary formula, z, of complexity n. All possibilities are traced through below.

e © — qaeb

at* =>a b =0

a =aft b = b X:>X\L\L g R
’ y b == b
a, b, b \a¥\X = X “ N ae
VR,/R g Ta— —
a, b = VX.X/(b%\a#\X) a*, b* = X\R \R
aeb = VX.X/(b*\a#\X) X>ah = btM\aHX L

VX.X/(b#\a*\X) = aeb

e z is 3X.z. In the righthand derivation, note that the Y we infer by Lemma 1 contains only
the free variables of 3X.z, and therefore, VX does not bind variables of Y in VX.(z#\Y).
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o =z
z =zt Y=Y — 1

VL,\L # = 3X.
2, VX.(e#\Y) =Y \ ’ ’

——VR,/R3R  ~ e
3IX.z = VY/(VX(z#\Y)) VRAR

Y = 3IX.x = VX (2#\Y)
Y/NX (z#\Y) = IX.z
YY.Y/(VX.(z#\Y)) = 3X.z

AN

VL

e z is a/b: trivial

o z is VX.y: trivial

End of Proof

It is clear from the proof that is also possible to do embeddings in which only one connective is
defined away at a time. That is, where ¢ is a connective in {1,0, T,e,3}, and ¢ a sequence of
connectives from {1,0, T,e,3} not featuring ¢, there is an embedding from L/\Yef into L/\YoE,
using the map -# defined in Theorem 3.

(/5\»¥)

Besides showing that Le in a certain sense contains 1, 0, T, e and 3, we can put together the
embedding of LJ2 into Lgl’/’.’\’v, with an embedding L.}’/’.’\’V into Lg/’\’v)and obtain a stronger
undecidability result? :

Theorem 4 LE/’\’V) 1s undecidable

Remarks: these embeddings of logics with more connectives into logics with fewer assume that
sequents with an empty LHS are permitted in both source and target logics. What is the situation
when then this assumption no longer holds ?

We have not explored all the possibilities here, but some observations can quickly be made. One
possibility is that the source logic does allow empty antecedents, but the target logic does not.
Clearly then the proposed embedding translation cannot work for the case of a logic with 1 or
T, because the images of the valid source logic sequents = 1, and = T, will not be possible
sequents of the target logic. It is an open question whether there are other connective-eliminating
embeddings in this case.

Another possibility is that both source and target logics disallow sequents with an empty LHS. It
is still the case that the proposed embedding does not work. For example, in the absence of empty
antecedents, it no longer holds in any of the L/>\"¥» calculi that VX.X/X & VX.X\X, and a reflex
of this that the image of the sequent Y, 1 = Y, which is valid in any of the L/ Wb caleuli, is not
valid in the L/>\'¥> that lack 1.

We claim (see Appendix) that the absence of empty antecedents also affects the possibility to define
away the e connective in terms of /,\ and V, for there are o-free sequents which are derivable in
L/**\V_ which are not derivable in LU:\¥) such as a/d/c, VX.X/(X\b)/X, ¢, d, d\c\b = a, where

a,b,c and d are distinct variables.

3 Alternatively, we could start with LJ2 already restricted to implications and universal quantification and prove
the embedding into Lﬁ/’\"’) directly.
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5 Concluding Remarks, Open Questions

The undecidability result for L€1 /Y and Lg/ V) fits into an overall picture of undecidability results
for second order logics as follows.

The undecidability of full second order linear logic (with multiplicatives, additives and exponentials)
was known since [Girard, 1987], by an embedding of LJ2, using the exponentials. [Lincoln et al,
1995] prove undecidability for IMLL2, also by embedding 1.J2, and we prove undecidability for
the permutation-free version, again by embedding LJ2. [Lafont, 1995a] proves undecidability of
classical (i.e. multiple conclusioned), second order linear logic, with multiplicatives and additives,
by an adaption of a technique originally due to [Kanovich, 1995a], for the encoding of two counter
machines. An embedding of the classical version of LJ2 is of no use because this is decidable.
[Lafont and Scedrov, 1995] refines this technique to prove undecidability of classical second order
linear logic with just the multiplicatives. [Kanovich, 1995b] adapts the technique further to prove
undecidability of classical permutation-free second order linear logic with just the multiplicatives.
The proof entails also the result reported here. [Kanovich, 1995c] addresses the logic with the
restriction to non-empty antecedents, and using again an encoding of two counter machines, proves
undecidability of L/:®:\V.

It is also claimed in [Kanovich, 1995c] that one can eliminate o, and prove thereby undecidability
of the purely implicational second order Lambek calculus. However, as noted at the end of the
preceding section, we claim that e cannot be eliminated from L/>*\V, and claim that therefore the
undecidability of L/>\"Y remains an open question.

(/

We consider now what the reaction to our undecidability result for Le1 o/ ’.’\’V, and L¢ ’\’V)should be.
The strongest possible reaction would be to conclude that these calculi should now be ruled out as
playing a part in the linguist’s toolkit for describing languages. In response to this, one should note
that this undecidability result places Lg/ W) in some rather respectable company. [Lincoln et al,
1992] prove purely propositional linear logic (i.e quantifier-free) to be undecidable. [Schieber, 1986]
and [Johnson, 1988], each with respect to their own notion of feature-structure based grammars,
prove that the wuniversal recognition problem is undecidable: there can be no algorithm which,
given a feature-structure based grammar and a string, decides whether the string belongs to the
language generated by the grammar. It neither of these cases has this undecidability stifled interest
in the systems. It is also germane to note examples of decidable but provably intractable systems
which are in wide spread use, such as the type-checking algorithm for the polymorphic functional
programming language ML [Mairson, 1990].

In these cases, the continuing interest in the systems involved reflects a switch of emphasis from
the general situation to some restriction of it. Such a move seems the apt reaction to the unde-
cidability for the 2nd order Lambek calculus, with an investigation of decidable fragments moving
onto the agenda. [Emms, 1993a] contains a preliminary investigation of this, in which a subset of
all possible sequents is considered which have the property that, however a proof is unfolded, a
set of subproblems is generated having the form of (i) in the Unknown Elimination lemma above.
This forms the basis of a decision procedure for such sequents. Sequents involving the polymorphic
categories that have been proposed to have linguistic applications (eg. VX.X/(a\X) (quantifica-
tion), VX.X\X/X (coordination), VXVY.c/(X\a)/(X/b) (extraction)) have this nature, and their
derivability can be decided. It is interesting to note that of all the polymorphic formulae involved
in the above embeddings, all but the formula expressing Contraction have this nature as well.
Clearly the question of decidable fragments is one requiring further attention. The decidability of
one oft-mooted candidate, namely a fragment allowing only outermost quantifers, remains an open
question.



REFERENCES 75

The structural rule embeddings, besides allowing a proof of undecidability, also point up poten-
tially interesting new linguistic applications of polymorphism, in which a subcategorisation can
indicate which resource management regime is permitted. For example, a /CCCP subcategorisa-
tion indicates that material is needed which derives an x, with repeated access to Contraction and
Permutation if need be, whilst a z/PP subcategorisation indicates that material is needed which
derives an z, with at most 2 permutations. As far as I am aware no other categorial system in the
literature allows for such specifications.

A further line of investigation is a comparison with the work of [Kurtonina and Moortgat, 1994],
[Kurtonina and Moortgat, 1995], who also consider embeddings between logics with differing asso-
ciated structural rules. The logics studied are all based on L/'*\, and then vary according to (1)
their inclusion of particular structural rules and (ii) the inclusion of, and axioms for, the so-called
pure-residuation modalites. Of note is the fact that the embeddings are all amongst what have
been termed substructural logics, in which the structural rule package never includes Weakening
or Contraction. In this respect at least, the embeddings are of a different kind to those studied in
the present paper, and suggest directions for further extensions of the present line of study. For
example, [Kurtonina and Moortgat, 1995) consider embeddings between pairs of logics which differ
according to whether they adopt an Associativity structural rule. As with the other structural rules
considered in this paper, associativity can be reintroduced via axioms and Cut, and so there is rea-
son to think that we may in a similar fashion be able to use polymorphism to give an embedding
of LLJ2 into the non-associative variant of Lg/ ’\’V), thereby proving undecidability. For the moment,
however, this remains a conjecture.
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Appendix

The following sequent is derivable in L/>*\:Y, but not in L/"\"Y, where a, b, ¢, d are distinct atoms.
a/d/c, VX.X/(X\b)/X, ¢, d, d\c\b = a

We must first show that the sequent will only have a proof if we can find an X that make the leaves
of the following proof derivable:
X,d\c\b=b
a/dfe, X =a d\c\b=X\b c¢d=X
a/d/e, X [/(X/b)/X,c,d,d\c\b = a
a/d/c,VX.X/(X/b)/X,c,d,d\c\b = a

/L/L

One can quite quickly eliminate other possible proofs shapes by applying the following observa-
tions (whose proofs are here omitted). 1) Let the spine of a product free category be recursively
defined spine(z/y) = (/, spine(z)), spine(y\z) = (\, spine(z)), spine(VX.z) = (V, spine(z)), with
spine(z) = () otherwise. One can easily show that when a series, (, of inferences belonging to {
Slash L, Slash R, VL, VR }, separates a pair of inference steps # and $ belonging to { Slash L, VL },
associated with two consecutive connectives on the spine of a category, then there is an alternative
proof, ordering ( before # and $, and with # and $ consecutive. 2) Slash (and V) Right inferences
can be ordered before all others without loss of generality. 3) Quantifier-free sequents must satisfy
count-invariance [van Benthem, 1986).

The derivability of the sequent thus reduces to the problem of finding an X making the following
derivable:

1. a/d/e, X = a
2. X,d\c\b = b
3.c,d =X

Clearly, in the case of L/**\"V, ced is such a value for X. We will show that there is no product-free
value.

It is clear that no atomic X can be a solution. It also clear that the principal connective of X
cannnot be ¢/’, for this will not solve 1., and cannot be ‘\’, as this will not solve 2. This leaves
just the possibility that X is quantified. So assume X has the form VY; ...VY,,.y, where y is either
atomic or has a slash as principal connective. In case y is atomic, it is clear X is not a solution for
3. So suppose y has a slash as principal connective. Clearly the proofs of 1 and 2 must end with a
succession of n (VL) inferences, transforming Q1Y; ... Q,Y,.y to y; in the proof of 1, and to y, in
the proof of 2. The two proofs will therefore contain the premises:

1: a/d/c,y1 = a
2': yg, d\c\b = b

In order to solve 1’, y; must have a principal left slash, and in order to solve 2’, yo must have a
principal right slash, but both y; and ys must also have the same principal slash as y.

In this way we have eliminated all possibilities for X. O



