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When Lambek (1958) introduced his syntactic calculus, he showed that it is
equivalent to a sequent axiomatization, the Lambek-Gentzen sequent calcu-
lus (henceforth: L). The calculus L defines a general notion of derivability
in the following sense: an expression consisting of the lexical items eq, ..., e,
of respective categories c1,...,c, is parsed as belonging to a certain cate-
gory c if and only if the statement ‘cy,..., ¢, is a ¢’ (written as a so-called
sequent c1,...,¢, | ¢) can be derived as a theorem of the system. Thus,
grammatical derivations are reduced to logical deductions, giving rise to the
slogan ‘parsing as deduction’. The calculus L contains, among other rules,
the so-called Cut rule. By proving that the set of theorems of L is not
increased by adding Cut, Lambek established the decidability of L: for an
arbitrary sequent the proof procedure is guaranteed to answer the question
whether the sequent is valid after a finite number of steps. The proof of
this fact is constructive: Lambek defined an algorithm which enables one to
eliminate all occurrences of Cut in proofs.

The semantic interpretation procedure of Moortgat (1988) for product-
free L is a sequent implementation of Van Benthem’s term construction al-
gorithm for the natural deduction formulation of L (1986, Chapter 7; 1991).
In this semantics, the interpretations of a grammatical expression (derivable
sequent) are directly determined by the proofs of its validity in the syntactic
calculus. The present paper provides an alternative formulation of the Van
Benthem/Moortgat semantics for L (which is introduced in Section 1) and
uses it to prove the following results. Section 2 contains a straightforward
proof of a semantic version of Lambek’s Cut elimination theorem which en-
tails that L is semantically decidable as well: the result of applying Lambek’s
Cut elimination algorithm is a derivation which is semantically equivalent
to the original derivation. Section 3 is devoted to further normalization of



L, resulting in a sequent calculus L* which is put to use in the subsequent
sections. First, we show in Section 4 that L* provides a solution to the
so-called ‘spurious ambiguity problem’ — the problem that different proofs
of a given sequent may yield one and the same semantic interpretation. In
L*, each interpretation of a sequent corresponds to exactly one proof. In
Section 5, we use L* to prove that an explicit elaboration of the suggestions
in Moortgat’s ‘Unambiguous Proof Representations for the Lambek Calcu-
lus’ (1990) leads to representations of L-proofs of sequents with atomic goal
categories which ‘summarize’ L* derivations and are, hence, indeed ‘unam-
biguous’, i.e., devoid of spurious ambiguity. A comparison of L* with the
proof nets proposed in Roorda (1991), on the other hand, shows that every
L* proof corresponds to a non-singleton set of proof nets. Finally, with the
help of L* we are able to show in Section 6 that syntactic recognition within
L can be mimicked using one basic category only, thus extending a result of
Ponse (1988) for LP, the Lambek calculus with permutation, to L proper.

1 Introduction

We will employ the following definitions of the notions of category and se-

quent:

(1)  Let ATOM be some finite set of atomic categories (none of which is
of the form (a/b) or (b\a)). Then CAT, the set of categories based
on ATOM, is the smallest set such that (i) ATOM C CAT, and
(i) if @ € CAT and b € CAT, then (a/b) € CAT and (b\a) € CAT.

(2) A sequent is an expression T' I ¢, where T is a finite non-empty

sequence of categories and ¢ € CAT. (So, T = ¢y, ...,c,, where
n > 0 and for all 7, 1 < i < n: ¢; € CAT.)

Outermost brackets of categories will be omitted. The sequence of categories
c1,...,c, will be called the left-hand side of a sequent cq,...,c, F ¢, and
the single category c its right-hand side or goal.

The product-free Lambek-Gentzen sequent calculus L consists of a set
of axioms plus five inference rules: /L, \L, /R, \R and Cut. The axioms
and rules are listed in (3) and (4), respectively. In (4), a, b, and ¢ denote
arbitrary categories and 1", U, and V arbitrary finite sequences of categories,
of which T' is non-empty.

(3)  AXi0M, the set of azioms of L, is the set {c ¢ | ¢ € CAT}.



(4 TFb UaVEiec THb U,a,VEec

U,a/b, T,V ¢ /L] U,T,b\a,VFc (]
T.bFa b,Tt+ a
T+ a/b /R] Tk b\a (\F]

TrFa Ua,VEc
UT,VFEc

[Cut]

Moortgat (1988) proposes a semantics for L in which every category occur-
rence ¢ in a derivation is assigned some typed lambda term . The type of
~ depends on c. For categories ¢ € ATOM, some type assignment TYPE(c)
is assumed, and the function TYPE is extended to non-atomic categories by
the stipulation that TYPE(a/b) = TYPE(b\a) = (TYPE(b), TYPE(a)). In this
semantics, which is given in (5) below, the axioms of L correspond to iden-
tity, the rules /L and \L to functional application, the rules /R and \R to
lambda abstraction, and the Cut rule to substitution.! The respective assign-

ment of terms yq,...,7v,,y to categories cy,...,c,,c in a derivable sequent
Cl,...,Cy - cis usually written as ¢1:71,...,¢p: 0 F ciy.
(5)  SYNTAX: SEMANTICS:
ck ¢ [AXI0M] vyEy
THb U,a,Vl—c[/L] B U,¢(B),V' -~
U,a/b, T,V ¢ U,e,T V' Fy
Tkb U,a,Vl—c[\L] T'Fp U,¢(B),V vy
U,T,b\a,V Fc u,T',¢,V' v
T,bFa T v+«
[/ R U
Tta/b T F M.«
b,TFa v, T+«
\R] P
T+ b\a T+ M.«

Tra Ua,Vic
UT, Ve

TFa U,a,V'Fy
U T, V'

[Cut]

1Viz., the substitution of T’ (which yields ) for a in U, a, V' |- 4.



In (5), only the terms of the ‘active’ categories are indicated separately.
The expression v denotes a variable of type TYPE(b), while o, 3, v and ¢
denote terms of type TYPE(a), TYPE(b), TYPE(c), and (TYPE(b), TYPE(a)),
respectively. The expressions 1", U’ and V' refer to the sequences of terms
assigned to the sequences of ‘inactive’ categories T', U, and V. Thus, the
terms assigned to the categories in T', U,V are identical in premise and con-

clusion.

The interpretation which a proof with conclusion ¢ :7y1,...,¢cp v, F ciy
assigns to a sequence of lexical expressions ey, ..., e, of categories c1,...,c,
with interpretations €}, ..., el is obtained by performing the simultaneous
substitution [y;:=¢€],...,y,:=¢€}] in the term ~y assigned to the goal of the
conclusion sequent: Y[y :=¢€],...,yn:=€l].

For example: let the lexical expressions someone, bores and everyone be
assigned the categories (s/n)\s, (n\s)/n and (s/n)\s, as well as the inter-
pretations AP.3z P(z), BORE and AP.Vz P(z) of type ((e,t),1), (e, (e,t)) and
((e,t),t), respectively. Then the following derivation shows that Someone
bores everyone is of category s:

(6) nkn sks
n, (’I’L\S)/’n,,n s [/R]
n,(n\s)/nt s/n sb s
n, (‘I’L\S)/n, (S/TL)\,S F s
(), s E s L
s/(n\s), (n\s)/n, (s/n)\s F s

(L]

"1/

An interpretation of derivation (6) is given in (7), where u, v, w, z, and y rep-
resent variables of type e, e, ((e,t),t), (e, (e,t)) and ((e, 1), 1), respectively:

(1 ubu z@)(u)F z(v)(u)
vhEv  u,z(v) Fz(v)(uv)
u,z,v - z(v)(u)
u,z b Avz(v)(u)  y(Avz(v)(u)) Fy(Av.z(v)(u))
u,z,y F y(Av.z(v)(u))
(v)(u)

z,y F Auy(Av.z(v)(u) wAuyAv.z(v)(u))) FwAu.y(Av.z(v)(u)))
Y(Av.z(v)(u)))

w,z,y Fw(A



Performing the simultaneous substitution (8) in w(Au.y(Av.z(v)(u))), the
term assigned to the conclusion goal in (7), supplies the sentence Someone
bores everyone with an interpretation equivalent to JuVv BORE(v)(u).

(8)  [w:=AP.3z P(z),z:=BORE,y:=AP.Yz P(z)]

Note, first, that semantics (5) needs to be supplemented with at least the
following condition, which guarantees that the abstractions introduced by
\R and /R bind only one variable occurrence:

(9) I T:T'F c:Av.y is the conclusion of a \R or /R inference,
then v does not occur freely in T".

For instance, if — violating this condition but in keeping with (5) — all oc-
currences of v in (7) are replaced by u, then the conclusion goal of (6) is
assigned the term w(Au.y(Au.z(u)(u))), which results in the incorrect in-
terpretation JuVu BORE(u)(u), ‘Everyone bores himself’, for Someone bores
everyone.

And, second, note that simultaneous substitution is not always well-
defined for semantics (5), which allows complex terms and different occur-
rences of the same term in the left-hand side of sequents. For () it is unclear
what is meant by a substitution of a term for a complex term (this requires at
least some extension of the notion of ‘free occurrence of’ to terms other than
variables), and (77) simultaneous substitution does not make sense when the
same term is to be substituted twice. The problem reappears at deeper lev-
els, e.g., when a left-hand side category c¢; is assigned a term -y; which also
occurs as a subterm of a term -y; assigned to another left-hand side category
cj. Moreover, this substitution problem causes a complication in the proof

of ‘semantic Cut elimination’.2

2Consider Moortgat’s treatment (1990, p. 151) of the crucial case 5 of Lambek’s Cut
elimination algorithm (cf. section 2 below), in which:
[A]T,d:v Fb:8 R Vikd:é [B]U,b:[Av.,B](J),Vz Feiy
Trb/d:Xv.B /] U,b/d: Av.3,V1,Va b ciy
UT Vi,Vabkc:y

[/L]

[Cut]

is replaced by:

(AT d:5 - b:plwi=08] BlUb:Blu:=06], V4 F e:y[[\w.B](8) := Blv:=4]]

Vikd:é§ U,T,d:68,Va F c:y[[Av.B](d) :=B[v:=46]]
UT,Vi,Vo - C:'y[[)(u.ﬂ](&) ::ﬂ[fu;:(S]]

(The terms assigned to U, T, Vi and V, have been omitted.) In order to be able to make
the transition from [A] and [B] to [A’] and [B'], respectively, Moortgat needs something

[Cut]
[Cut]




These considerations suggest that it is more natural to have a semantics
which always yields proofs of sequents ¢; : v1,...,¢, 1 v, F ¢:y where the
terms w1, ..., v, constitute a sequence of different variables. Therefore, the
alternative semantics (10) which will be used in the following sections is
based on the same category-to-type assignment as semantics (5), but differs
from (5) as regards the terms it assigns to the categories in a derivable
sequent ci,...,c, - c. For the left-hand side categories ¢; (1 < i < n), this
interpretation is some variable v; of type TYPE(c;), whereas for the right-
hand side category ¢, it is a (possibly complex) term 7 of type TYPE(c):
C1:V1,.-.,CniUn Fciny.

In (10), u, v, z and w represent variables of type TYPE(a), TYPE(D),
TYPE(c) and (TYPE(b), TYPE(a)); @, B and v denote terms of type TYPE(a),
TYPE(b) and TYPE(c); and T”, U’ and V' refer to the sequences of variables
assigned to the sequences of categories T', U and V. Again, only the terms
of the active categories are indicated separately, and the terms of other
categories are identical in premise and conclusion. The expression y[u:=a]

like: (3) Ifn[U:U',a:0, V:V' k(s c:], then for all terms o' of type TYPE(a):
alU:U'a:a',V:V' b ciy[a=a]].

(We let w[c1:v1,...,¢n:Yn b(s) c:7y] represent that semantics (5) assigns the respective
terms ~i,...7vn,y to the categories ci,...,cn,c in the conclusion sequent ci,...,¢n F ¢
of m. Note that [a@:=a’] is more than mere substitution for free variable occurrences; it
also involves replacement of compound terms — cf. the transition from [B] to [B].) But
such a lemma is not available, as can be seen from the following derivations — where a,
o', B and v are terms of type TYPE(a), TYPE(a), TYPE((a\b)/a) and (TYPE(a), TYPE(a)),
respectively:

(4) a:y(a) Fa:y(a) b:B(e)(y(x)) Fb:B(a)(y(a)) /1]
a:atka:a b/a:B(a),a:vy(a) Fb:B(a)(v(a)) L]
ara a\(B]a) B, a:y(a) F b: (@) ((@))
(i) a:y(a) Fa:y(e) b:B(a’)(y(a)) F b:B(a’)(v(e) /L]
a:a' Fa:d b/a:B(c),a:v(a) F b:8(a")(v(a)) NI

a:d/,a\(b/a):B,a:y(a) F b:B(a’)(v(e))

Since no variable-binding operator is present, it seems plausible to assume that both
occurrences of a in the term assigned to the conclusion goal of derivation (z) are free and
that, hence, [3(a)(y(a))][a:=q'] is the term B(a’)(y(a')). But, refuting ($), the term
assigned to the conclusion goal of (i) is B(a’)(y()).

If, however, condition (9) is met, then in every sequent T:T" I c:+ the sequence T" of
left-hand side terms has the same free variables as 7, and the following can be established
(where v is a variable and o is a term, both of type TYPE(a)):

(#) If n[T:T' () c:v], then n[T:T'[v:=a] b5 c:y[v:=a]].



denotes the result of substituting term « for all free occurrences of u in 7.
(10) SYNTAX: SEMANTICS:
¢k ¢ [AxI0M] zhkx

THb Ua,Viec
U,a/b, T,V ¢

T'F 3 U',u, V' y
U w, T, V' E ylu:=w(B)]

[/L]

THb Ua, Ve T+ B U u,V'F~y

L]

U,T,b\a,V Fc U, T, w, V' F ~y[u:=w(B)]
T,bFa T v+«
[/R] T v
Tta/b T F M.«
b,TtFa v, T'F
\R] P —
T+ b\a T F M.«

Tra Ua,VEc
UT,Viec

T'Fa ULu,V'Ey
U, T, V'F yu:=q]

[Cut]

In the context of a proof, we will assume that all variables  and w assigned
to axiom instances or introduced in the conclusions of /L or \L inferences
are different. Observe that, consequently, (7) the variables vy, . .. v, assigned
to the left-hand side of a sequent c¢y,...,¢, b ¢ are all different; (iz) these
variables vy, ... v, make up the free variables of the term ~y assigned to the
goal ¢; and (7iz) each variable vy, ... v, occurs exactly once in .

Note that semantics (10) is more ‘compositional’ than (5), in that the
complexity of the term -y assigned to the goal of a sequent ci1,...,¢c, F ¢
increases with the length of the proof of that sequent. This property makes
semantics (10) more perspicuous, which facilitates proving things about it.
In semantics (5), on the other hand, we see that the rule /L assigns a term
¢ to its conclusion category a/b which is less complex than the term ¢(0)
assigned to the category a in its right-hand side premise. (The same holds
for \L.) Moreover, semantics (10) is easier to use in practice, since it entails
considerably less duplication of semantic information than (5), witness its



interpretation of derivation (6):

(11) ubu zFz
vhEv w2 2 (u)
u,z,v F z(v)(u)
u,z F Av.z(v)(u) 22
u,z,y b y(Av.z(v)(u))
z,y F duwy(Av.z(v)(u) 2"
Y

Av.z(v)(u)))

w,z,y - w(Au.

Still, to the extent that semantics (5) is well-behaved, it is essentially the
same as semantics (10), on account of the following relationship. Suppose
that the assignment of terms by (5) is restricted by condition (9), and,
for i € {5,10}, let mler:y1,...,¢n iy b(i) ¢:7] represent that semantics (i)
assigns the respective terms 71, ..., v,,7 to the categories c1, ..., ¢y, ¢ in the
conclusion sequent cy, ..., c, I c of proof . Then the following holds:

(12)  wler:v1,. .., enivn b1y €] if and only if
m[e1:71, - et Fisy Cry[vr = vn =]

From (12), which is proven by induction on the length of 7w (where fact (#)
— see footnote 2 — is needed as a lemma for the cases \R and /R), it follows
that if the terms ~1,...,, of the left-hand side categories cy,...,c, in the
conclusion sequent ci,...,c, F ¢ of m constitute a sequence vq,...,v, of
different variables, then semantics (10) assigns a term to the goal category
¢ which is syntactically identical to the term assigned by semantics (5).

2 Cut Elimination and Semantics

Van Benthem (1986) proved that the number of distinct readings for an
L-derivable sequent is finite. However, in addition one would like to have
an effective method for generating all readings. The availability of such a
method could serve practical purposes by providing a solution to the ‘parsing
problem’, which is:

...to find all readings for a given string. This is a necessary
step if one wants to give a satisfactory parsing algorithm for L.
It should be noticed, however, that it is not at all clear which
members of the infinite set of derivations for a sentence S in L

10



lead to different readings, and thus, finding all possible readings
seems to be problematic to begin with, let alone finding them
efficiently. (Bouma (1989))

A possible way of solving this problem is to prove that the result of applying
Lambek’s Cut elimination algorithm is a derivation which is semantically
equivalent to the original derivation. Then for every derivation of an L-
derivable sequent there is a Cut-free derivation with the same interpretation,
and we can safely restrict our attention to the (finite number of) Cut-free
derivations. Each of the inference rules /L, \L, /R and \R derives its
conclusion from one or more premises with a strictly smaller number of
occurrences of / and \. Hence establishing the derivability of the premise(s)
is more simple than establishing the derivability of the conclusion, and it
follows that every sequent has only finitely many Cut-free derivations.

Adapting the proof of Lambek (1958), we will show in this section that
sequents in the proof of which the Cut inference rule has been used can also
be derived without using Cut, while keeping their semantics the same. That
is, Cut is a derived rule of inference which does not yield new theorems, nor
new interpretations. This is done in a constructive way: it is possible to
transform every proof which makes use of the Cut rule into a Cut-free proof
which determines the same interpretation as the original one.

The two base cases of this transformation procedure (case 1 and 2 below)
involve Cut inferences where one of the premises is an instance of the axiom
scheme ¢ | ¢. Here the conclusion coincides with the other premise, and
the Cut inference can be eliminated immediately. The recursive cases of the
procedure (case 3, 4 and 5 below) work by reduction of what is called the
‘degree’ of the Cut inference. Degree is defined as follows:

(13) (¢)  The degree d(c) of a category c is defined inductively:
d(c) =0 for c € ATOM; d(a/b) = d(b\a) = d(a) + d(b) + 1.
(12)  The degree d(cy,...,cy,) of a finite sequence of categories
Cly---5Cp equals d(c1) + ... +d(cp).
(14¢) The degree d(T | ¢) of a sequent T' - ¢ equals d(T') + d(c).
(tv) The degree d(a) of a Cut inference o =

Tra Ua,Viec
UT,VEc

equals d(T') + d(U) + d(V') + d(a) + d(c).

11



Thus, the degree of a category, a sequence of categories and a sequent is
equal to the number of slashes it contains.

Any Cut inference of which at least one premise has been proven with-
out Cut can be turned into one or two new Cut inferences of strictly smaller
degree. Since the minimal degree of an inference is zero, these proof trans-
formations will ultimately converge on the base case.

We will now prove

1. that in any application of Cut,

TFa Ua,ViEec
UT,VFEc

[Cut],

of which at least one premise has been proven without Cut,
(a) either the conclusion is identical with one of the premises so that
the application of Cut can be eliminated,
(b) or the application of Cut can be replaced by one or two applica-

tions of Cut of smaller degree; and

2. that execution of this Cut elimination procedure always leads to se-
mantically equivalent proofs.

There are five main cases:

1: T I ais an axiom; then T" = a and the conclusion coincides with the
premise U, a,V |- c.

ata U,aVic u'bu UL u,V'Ey

Cut Cut
Ua,Viec [Cut] UL, V' yu:=] [Cut]

Cut can be eliminated, for note that the variable u’ does not occur in 7.
Hence we also have the interpretation U’, v/, V' - y[u:= /] for (the subproof
of) the premise U,a,V F ¢, due to the following fact (which is proven by a
straightforward induction on the length of =):

If7[U:U',a:u,V:V'F c:y] and v’ is a variable of type TYPE(a)
not occurring in y, then #[U:U",a:u',V:V'F c:y[u:=u']].

12



2: U,a,V F cis an axiom; then U and V are empty, ¢ = a, and the
conclusion coincides with the premise T' F a. Cut can be eliminated because
the terms « and u[u:= ] assigned to the coinciding premise and conclusion
coincide as well:

Thta aba T'Fo ubwu
== =2 2 [Cut =~ —~|Cut
Tha [Cut] T+ ulu:=q] [Gut]

3: The last step in the proof of T' F a uses a rule but does not introduce
the main connective of a. Then T + a is derived by /L (or \L) from two
sequents, one of which has the form T" b a, with d(T") < d(T'). Hence we
can reverse the order of the rules /L (or \L) and Cut, resulting in a new
Cut inference which has smaller degree than the old one. We only consider

/L. (\L is analogous.) Then T' = P,b/d,Q, R, and we can replace:

Qrd PbRla

P,b/d,Q,RF a /]

U,a,V I-c

[Cut]
U,P,b/d,Q,R,V Fc
by:
Pb,RFa U,a,VIc
2 7 7 C t
QFd U,P,b,R,Vl—c[/L][ ut]
U,P,b/d,Q,R,V Fc
Semantically, this amounts to replacing:
Q6 P',U,R'I—oz[/L]
PLw, Q" R+ alv:=w(d)] U u, V'~ [Cut]
U
U, Pw, Q' R,V F yu:=afv:=w(S)]]
by:
! / ! !
QFé ];', ?"Rv |_Ro'é ijl—’ :’[X.:'_a’]y [Cut]
7 7 7 7 [/L]

U, P w,Q R, V'F [ylu:=a]][vi=w(d)]

The terms y[u:=afv:=w(d)]] and [y[u:=a]]|[v:=w(d)] are identical because
v does not occur in «y; hence this replacement of Cut preserves interpretation.

13



4: The last step in the proof of U,a,V F ¢ uses one of the rules /L, \L,
/R, \R, but does not introduce the main connective of a. Then U,q,V + ¢
is inferred from one or two sequents, one of which has the form U’,a, V' + ¢/
with d(U")+d(V')+d(c') < d(U)+d(V)+d(c) (since the inference introduces
one occurrence of a connective). Again, we can reverse the order of the
rules; the new Cut inference has smaller degree than the given one. We only
consider \L and \R. (/L and /R are analogous.)

4.1: U,a,V F c is obtained by \L. Then U,a,V = P,Q,d\b, R. Note that
a and d\b are distinct category occurrences (for \L does not introduce the
main connective of a). Therefore, there are three possibilities: a is part of
P, Q or R (The last subcase, which is analogous to the first one, will not be
treated.)

4.1.a: The category a is part of P, so P = P;,a, P». Replace:

Qrd PuaPybREc,

Tka Pl,a,Pg,Q,d\b,Rl—c[C f
u

P]_,T,Pg,Q,d\b,Rl_C

Tra Pp,a,P,bREFc

Qrd Pl,T,P2,b,RI—c[\L]
PlaTaPZaQad\baR Fe

On the semantic side, this entails the replacement of:

QFS P/, u,P},v,R' ~

[Cut]

L
T'Fa Plu,Py,Q w,R F ~[v:=w(d)] [[\C ]t]

u
P, T P}, Q' w, R F [y[v:i=w(d)]][u:=¢q]

by:
T'Fa Plu,Pyv,R v
[Cut]

Q+FS§ PL,T Pyv,R Fvyu:=aq] N

P, T, B, Q' w, R - [y[u:=al][v:=w(9)]

The terms [y[v:=w(d)]][u:=a] and [y[u:=«a]][v:=w(d)] are identical, be-
cause u and v are different variables, u does not occur in w(§), and v does
not occur in o.

4.1.b: The category a is part of @, so Q = Q1,a, Q2. Replace:

Q1,0,02-d PbRFc NI

Tka Panaaanad\baRFC[C t]
U

PanaTaQ%d\baRl_c

14



TFa Qi,a,Q2Fd
Q1,T7,Q2+d P,b,RFc
P,Q1,T,Q2,d\b,RF c
This entails a semantic replacement of:
Ql,u,Qy 46 P v,R vy
T'Fa PL,QYu,Qw, R Fyvi=w(d)]
Py T, Qs B - o= w(o)Ju—a

[Cut]

L]

N\
[Cut]

T'ta QLu,Qyk o
o Ql,u’ Q2 [C’Mt]

Q,T', Q5 - dlu:=a] P v, R+

P'QL, T, Qyw, R F yvi=w(d[u:=a])]

L]

Again, the terms [y[v:=w()]][u:=«a] and y[v:=w(d[u:=a])] are identical,
for u does not occur in 7, and u and w are different variables.
4.2: U,a,V | c is obtained by \R. Then ¢ = d\b, and we can replace:
d,U,a,V b
T [\El
Tra Ua,VEd\b
[Cut]
U,T,Vtd\b

Tra d,U,a, Vb
d,UT,VFb
U,T,VFd\b

[Cut]
\E]

This is reflected in the semantic replacement of:

v, U u,V'Fp
! ! ! [\R]
TrFa ULu,V'EXvp

Cut
U, T, V' [dv.g]u=a] [Gut]
by:
TFa 0, U, u,V'Fp [Cut]
v, U, T, V'F Blu:=q] A

U, T, V'E dv[Blu:=d]]

Since u and v are different variables, the term [Av.S][u:=ca] is identical to

Av.[Blu=a]].
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5: The last steps in the proofs of both T'F a and U, a, V + ¢ introduce the
main connective, / or \, of a. So a = b/d or a = d\b. (Only the /-case is
treated here.) We can replace:

T,dF b Vikd UbVske
[/R]

TFb/d U,b/d, Vi, Vs F ¢
U,T,V1,Va ¢

[/L]
[Cut]

T,d-b UbVakc
Vitd U,T,d,Va - c
U,T,V1,Vakec

[Cut]
[Cut]

Semantically, this involves a replacement of:
T',vl—ﬁ[/R] Vik§ U u, Vi by
T+ \v.g U, w, V], Vi F yu:=w(d)]
T Vi, Vi - yfu=w()llfw:=ho

[/L]
[Cut]

T vEpB UL u,Vyty
VikEs U, T v, VyE yu:=p]
U, TV, Vi F [y[u:=p]][v:=4]

[Cut]
[Cut]

Because w does not occur in v, the term [y[u:=w(é)]][w:=Av.0] is identical
to y[u:=[w(d)][w:=Av.8]]. The latter term is identical to y[u:=[Av.5](d)],
because w does not occur in 4. Since the free variables V{ of § do not
occur in (3, they are free for v in 8 and we can apply (-conversion, with the
result [y[u:=B[v:=6]]].> As v does not occur in v, this is the same term as

[Y[u:=pg]][v:=4]. O
3 Further Normalization

We have shown that if ¢y :v1,...,¢,:v, F c:7y is derivable in L, then there
is a Cut-free L derivation of ¢y :v1,...,¢,:v, F c:v' such that v and ' are

3Thus, case 5 does not involve identity of terms, but equivalence under 3-conversion
(also called A-conversion): [Av.¥'](¥") = v'[v:=+"] if ¥" is free for v in «'.

It takes an induction on the length of the derivation to see that terms ~ assigned to
conclusion goals in Cut-free proofs are always in (B-normal form, i.e., they do not have
subterms of the form [Av.y'](y").
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equivalent. Consequently, we only have to consider the Cut-free derivations
of a sequent to obtain all its semantic interpretations. But in spite of the fact
that a given sequent has only finitely many Cut-free derivations, Cut-less
L still suffers from what has been called the ‘spurious ambiguity problem’
(Konig (1989)), viz., the problem that different proofs of a given sequent
may yield one and the same semantic interpretation. When the calculus
is actually used for parsing and interpreting expressions, this may entail
superfluous work: interpretations will be computed n times instead of once.
For example, the sequent ¢/c, ¢/c, c - ¢ has two semantically equivalent Cut-
free proofs, viz., (14) and (15), in which the symbol * is used to keep track
of the active category:

(14) cke CFC[/L] zhbz ubu
c/ct,ckec cl—c[/L] y,z Fy(z) /L] vl—v[/L]
c/ct c/e,ck e z,y,z b 2(y(z))
(15) ckFe ckec ubu vhko
ckec c/cﬂ,cl—c[/[/LI]/] zhz  zul z(u) [/[éﬁ]
c/e,c/dt ek e z,y,x F z(y(z))

Of course, not all ambiguity in L is spurious. Some sequents are really
ambiguous. The sequent s/(n\s), (n\s)/n, (s/n)\s F s, for example, has six
Cut-free derivations, which are not all equivalent. These derivations are
listed below. Each derivation is followed by the interpretation it assigns to
its conclusion sequent s/(n\s), (n\s)/n, (s/n)\s F s:

(16) nkn sks
nkn nn\stks [/[Y]-J]

n, (n\s)/nf,n ks /R]

n, (n\s)/n - s/n sks NI
n, (n\s)/n, (s/n)\sji Fs \E]

#
(n\s)/n,(s/n)\s F n\s sks
/(NS )E (0\) s (/s 5

[/L]

u, v, w F u(Au  wAw'.v(w')(u')))

17



(18)

(19)

(20)

nkn n\skn\s I
(n\s)/n*,n F n\s VL] sks /L]
s/(n\s)t, (n\s)/n,n ks
[/ R
s/(n\s), (n\s)/n F s/nt sks
s/(n\s), (n\s)/n, (s/n)\s" I s

u, v, w E w(Aw' u(v(w')))

\L]

nkn sks
n,n\st - s O]
i *(\E
nkn n\skn\s /L]
(n\s)/n*,n F n\s sks /L]
s/(n\s)*, (n\s)/n,n - 5
[/ Rl
s/(n\s), (n\s)/n F s/nk sks
s/(n\s), (n\s)/n, (s/n)\s* I s

(
u, v, w F wAw' u(Au' v(w')(u')))

(L]

nkn sks
nkn n,n\s'ks [/[Y]-J]
n, (n\s)/nf,n ks (A
(n\s)/n,n F n\s sks (/L]
s/(n\s)¥, (n\s)/n,n s /R
f
s/(n\s), (n\s)/nt s/n sks
/(m\5), (0\8) (5N s

(
u, v, w F wAw' u(dd'.v(w')(u')))

L]

n\skn\s sks L
ntn_s/(n\s)fn\s ks [[;L}
3/(n\s), (M\)/mFyn sy

#
3/(n\e), (m\e)/m b s/nd " " st s
s/(n\s), (n\s)/n, (s/n)\s* F s

u,v,w F wAw' . u(v(w')))

L]
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(21) nkn sks
ro s [\[\zg]
’)’L\s [ 'rL\sﬁ sk s
nkn 3/(”\8)ﬁ,n\s|—3 .
s/(n\s), (n\s)/rf,n b s [/}[z/] |
#
s/(n\s), (n\s)/nF s/n b
3/(n\s), (n\s) /n. (s/m)\s% F s
w0, w E woa(' o (w) ()

[/L]

\L]

The terms assigned to the conclusions of the derivations (18), (19) and
(21) are identical. Moreover, because the subterm Au’.v(w')(u') of the term
w(Aw'.u(Au' .v(w')(u'))) assigned to the conclusion goal of these derivations
is equivalent to v(w') by n-conversion, the interpretation of these conclu-
sions is equivalent to u,v, w F w(Aw'.u(v(w'))), the interpretation assigned
to the conclusions of (17) and (20). So, five of the six Cut-free derivations
of the sequent s/(n\s), (n\s)/n,(s/n)\ I s are semantically equivalent.

However, the interpretation u(Au'.w(Aw'.v(w')(u'))) of the conclusion of
derivation (16) is not equivalent to the interpretation of the other conclu-
sions. This can be seen as follows. If the expressions someone, bores and
everyone are assigned categories and translations as in (22), then perform-
ing the simultaneous substitution (23) in the term of the conclusion goal
in (16) supplies the sentence Someone bores everyone with the wide scope-
subject interpretation 3xVy BORE(y)(z), whereas performing this substitu-
tion in the terms of the conclusion goals in (17) through (21) yields the wide
scope-object interpretation Vy3z BORE(y)(z).

(22) EXPRESSION CATEGORY INTERPRETATION
someone s/(n\s) AP.3z P(x)
bores (n\s)/n BORE
everyone (s/m)\s APNy P(y)

*By n-conversion, the following equivalence is meant: Av.y' (v) = 4/, provided that v
does not occur freely in 4'. A term + is in 7-normal form iff it does not have subterms
of the form Av.y'(v). Equivalence in typed A-calculus amounts to identity of 3n-normal
forms in the following sense: for every term + there is a unique term ~#7 which is in
Bn-normal form (i.e., it is both in B-normal form and in 7-normal form) and which can be
obtained from v by performing a finite number of 8-conversions and 7n-conversions (where
renaming of bound variables — i.e., the replacement of subterms \v.a by M\ .[a[v:=2]] if
v’ is free for v in a — is allowed), and two terms v and § are equivalent iff their Bn-nfs v*"
and 6°" are syntactically identical (again modulo renaming bound variables).
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(23) [u:=AP.3z P(z),v:=BORE,w:=AP.Yy P(y)]

This example gives a nice illustration of what spurious ambiguity comes
down to: the wide scope-subject interpretation is derived only once, but the
wide-scope-object interpretation is associated with five derivations. Clearly,
if we want to put the calculus L to use in parsing and interpreting ex-
pressions, this is going to be a problem: the latter interpretation will be
computed five times instead of once.

Konig (1989) is the first attempt to solve the problem, but it does not
succeed completely. For instance, Konig’s system allows the two derivations
(14) and (15) for the unambiguous sequent c/c,c/c,c = c. In the sequel
we will show how this problem can be solved for L by further restricting
the Cut-free calculus. The resulting system L*, which is equivalent to the
system which was indepently proposed by Hepple (1990), is a solution to
the spurious ambiguity problem: it provides exactly one proof per interpre-
tation.

The ‘non-spuriously ambiguous’ calculus L* which will be presented be-
low is based on the following three observations:

A: First, each non-atomic axiom instance a/btF a/b and b\a I b\a can be
decomposed into a proof with two less complex axiom premises, a - a and
b - b. For instance, axioms b\a - b\a with interpretation w - w can be
replaced by:

bbb ala ulkFu vhkw

— o\ — [\
b,b\a tF a u,w F w(u)
b\a - b\a (E] w F duaw(u) (\E]

Due to 7-conversion, the term Au.w(u) is equivalent to w. (Axioms a/b+ a/b
can be treated analogously.)

B: Second, if a \R or /R inference yields the right-hand side premise of a
/L or \ L inference, we can always reverse the order of the rules, whereas the
semantics remains the same. We only consider the (/R, /L)-case, where the

rules involved are /R and /L, respectively. (The cases (/R,\L), (\R, /L)
and (\R,\L) are analogous.) We can replace:

(24) UcV,bta

T+Hd UcVEalb
U,c/d, T,V a/b

[/R]
[/L]
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THd U¢cV,bka
U,c/d, T,V,blF a
U,c/d, T,V +-a/b

[/L]
[/ R]

Semantically, this entails a replacement of:
U,z,V,ykF a

R
TS ULz, V' F Ay« /E]
UL, T V' [My.a][z:=v(d)]

[/L]

T F§6 U,2,V,yk«a
U,v, T V' y F a[z:=v()]
UL, T V' dy.a[z:=v()]]

[/L]
[/R]

The terms [Ay.a][z:=v(8)] and Ay.[a[z:=v(d)]] are identical, since z and y
are different variables.

C: Third, whenever a \ L or /L inference yields the right-hand side premise
of another \L or /L inference, and both inferences have different active
categories,® we can reverse the order of the inferences and shift the latter
inference to the left-hand side premise (cf. (25)) or to the right-hand side
premise (cf. (26)) of the former one. We only treat the (/L,\L)-case. (The
cases (/L,/L), (\L, /L) and (\L,\L) are analogous.)

Suppose that the conclusion X, W, d\¢,Z F e has been derived by ap-
plying \L to left-hand side premise W + d and right-hand side premise
X,c,Z F e, and that the right-hand side premise X, c, Z I e is the result of

5The notions ‘same’ and ‘different’ active category are defined as follows: in a structure

T1 |—b1 U,a,Vl—c
Tz"bz T3|—C
T4}—C [#L]

L]

(where $ and # € {\,/}), the inferences $L and #L have the same active category iff
(’L) $ = \, # = \, Ts = U, Tl,bl\CL,V and T4 = U, Tl,Tz,bz\(bl\a),V; or
(’L’L) $ = \, # = /, T3 = U, Tl,bl\a,V and T4 = U, Tl, (bl\a)/bz,Tz,V; or
(Z’Ll) $ = /, # = \, T3 = Uv7 a/bl,Tl,V and T4 = []7 Tz,bz\(a/bl),Tl,V; or
(’L’U) $= /a # = /a T3 = U’ a/blaTh Vand Ty = U’ (a/bl)/bz,Tz,Tl, V)
otherwise, the inferences $L and #L have different active categories.
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applying /L with an active category a/b different from ¢ — that is: X, ¢, Z
= P,a/b,Q, R, and the category a/b occurs in X or Z:

QFb Pa,RFe

WkEd X,c,ZFe
\L]
X, W,d\c,Z e

[/L]

Then there are three possibilities: ¢ occurs in @ (see (25)), or ¢ does not
occur in @, and then ¢ occurs in P (see (26)) or in R (analogous to (26)).
In all cases we can reverse the order of the rules while keeping the same
semantics. If ¢ occurs in @, then @Q = @1, ¢, @2, and we can replace:

(25) QlacaQQFb P,a,Rl—e
Wkd Paa/banacaQ2aR|_e
P,a/b,Ql,W,d\c,Q2,Rl—e

[/L]
\L]

Wid Ql,c,le—b[\L]
Q1,W,d\c,Q2 F b P,a,R&e
P,a/b,Ql,W,d\C,Q2,R|—6

Semantically, this entails the replacement of:

[/L]

QllazaQé}_/B P,’.Z‘,R,}_G
W'Eé  Ply Q1,2 Q5 R e[z:=y(B)]

[/L]

! ! r ! ! L L [\L]
P ayanaW 5U1Q2’R F [e[:n_y(ﬂ)]][Z—’U((S)]
by:
W Quaghhe
QllaWIa’UaQé}_ﬂ[Z::U(é)] PI,ZE,R,FG [/L]

Py, Q, W'v, Qy, R' = e[z:=y(Blz:=v(4)])]
The terms [e[z:=y(0)]][z:=v()] and €[z:=y(B[z:=v()])] are identical, be-

cause z does not occur in € and z and y are different variables.
If ¢ occurs in P, then P = Pj,c, P> and we can replace:

(26) QFb Pc,Py,a,RlFe
Wkd P,c,Pya/b,Q,REe
P, W,d\¢c,P>,a/b,Q,RF e

[/L]
L]
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Wrd P,ecPya,RFe
Qrb P,W,d\c,Py,a,RFe
Pl,VV,d\c,Pz,a/b,Q,Rl—e

\L]
[/L]

In the semantics, this amounts to the replacement of:
Qr+p P{,z,Pé,m,R’l—e[/L]
U', Pi,v, Py, @ R [ele =y (B)]][z:=v(6)]

L]

W'k § Pl',z,PQ',a:,R'I—e[\L]
QEB  PL,W,v,Pz R elz:=v()]
P, W0, Pyyy, Q' R - [e[z:=v(8)]][z:=y(B)]

[/L]

The terms [e[z:=y(B)]][z:=v(d)] and [e[z:=v(d)]][z:=y(B)] are identical,
since z and z are different variables, z does not occur in v(§), and z does

not occur in y(3).6

Observation A entails that for every proof of a sequent, there is a seman-
tically equivalent proof 7 in which all axiom instances are atomic: at | at.
For note that each non-atomic axiom instance can be decomposed in the way
sketched above, and that every decomposition strictly decreases the sum of
the degrees of the axiom instances. Hence every proof can be transformed
into such an equivalent proof 7 after finitely many decompositions.

SNote (i) that transformation (26) cannot arise when the right-hand side premise of
the first inference is an axiom, because the left-hand side of P;,c, P>,a, R | e contains
at least the two categories ¢ and a; and (i7) that if transformation (26) is executed in a
configuration such as the one indicated below, where on the left-hand side QL and $L
have the same active category and $L and #L have different active categories, then on

the right-hand-side QL and #L (as well as #L and $L) have different active categories:

Tita ToFd Tita Tord
Ts+b : £F5[$L][@L] Ts ke T4|—d[#L][@L]
Ts k¢ Tord RCOR Ry A Téi—d[$L]
To - d T Fd
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Moreover, given such a 7, we can use observations B and C for obtain-
ing a further normalized proof 7" in which () no major (right-hand side)
premise of a \L or /L inference is the conclusion of a \R or /R inference
(this corresponds to B);” and (ii) the same left-hand side category remains
active whenever one goes down from axioms via major premises of \L and
/L inferences (this corresponds to C).

In order to see this, we first define the notion ‘maximal major path’
(mmp) for Cut-free L proofs 7: an mmp is a sequence (oy,...,0p) (p € IN)
of sequent occurrences in , such that (7) og is an axiom instance; (7i) for all
i, 0 <14 < p, 0541 is the conclusion of an inference with sole (\R or /R) or
major (\L or /L) premise o;; and (iii) o, is not the sole or major premise
of an inference.’

It is not hard to see that every sequent occurrence in a proof 7 is on
exactly one mmp, and that every proof 7 contains as many mmps as it
contains axiom instances, i.e., at least one.

Now, consider a proof m with n + 1 mmps, and focus on the main mmp
p = (00, ..,0p) which culminates in the final conclusion o, of 7. Let g be
the number of \L and /L inferences in p, and r the number of \R and /R
inferences in p. So, 0, = 044, some sequent Ty, - c44r, and the sequent
o9 is an axiom ¢y F ¢y. Moreover, for 0 <7 < g+ r: (a) each o;41 obtained
by \R or /R is concluded from a subproof 7; of @ with conclusion o;, and
(b) each o;4+1 obtained by \L or /L is concluded from two subproofs of =:

77;- (where 1 < j < g) and m; (with conclusion o;):

@ g Im O w g
Oit+1 0i+1

The left-hand side subproofs 7] through 7r; have a total number of n mmps,
which is one less than the number of mmps in the whole proof .

Next, let k(u) < r - g be the number of pairs of sequents o; and o; in
p such that (1) 1 < i < j < g+ r; (43) o0; is the conclusion of a \R or /R
inference; and (#4i) o; is the conclusion of a \L or /L inference.

Note that an application of transformation (24) to a \R or /R inference
which yields the major premise of a \L or /L inference in an mmp v always

"Consequently, every major premise of a \ L or /L inference must be an (atomic) axiom
instance at b at or the conclusion of another \L or /L inference. Since \L and /L identify
the goal categories of their major premise and conclusion, every \L and /L inference in
7'/ necessarily derives a conclusion sequent with an atomic goal category: T + at.

8Therefore, o, must be either the minor (left-hand side) premise of a \ L or /L inference,
or the final conclusion of .
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leads to an mmp ¢/ which () has the same length, (i) has the same ogr,
(#44) builds on the same left-hand side subproofs 7y,...m;, and (iv) assigns
the same interpretation to 044, as v; but that k(v') = k(v) — 1:

!

) Ti—1 5 Ti—1
. X -5
i g; ~(24) I;
Oi+1 Oi+1

So, after k(u) applications of transformation (24) we obtain a semantically
equivalent proof 7' of Tyt F cg4, such that in the main mmp g’ of 7’ no
\R or /R inference precedes a \L or /L inference, i.e., k(p') = 0:

T coF o [AXTOM]

T Fd
" \L and /L
Té }_ Clq =
/ : / R and /R
Tgsn-1 " Gain1 \Rand /
Tq+7- = Cq+r _
Concentrate on the sequence v = (¢ F ¢, ... ,Té F cg) which is the main

mmp of the subproof of 7’ with conclusion T} I ¢, and consider the first
inference $L in v which has a different active category than the inference
#L which yields the major premise of $L (where $ and # € {\,/}). We
can apply one of the proof transformations (25) and (26). If (26) is appli-
cable, then inference $L reappears one place higher up in the main mmp,
now yielding the major premise of #L, and again having a different active
category than the inference which now yields its major premise (cf. footnote

6 (i)):

al Ti—1 . Ti—1
PR A BT ) A 5
¥ . s 4
R Oit1 % [$L] ) : Oit1 % [#L]

Observe that an application of transformation (26) to an mmp of length ¢
always leads to an mmp with (i) the same length, (i) the same oy, (ii7) the
same left-hand side subproofs 71,. .. 7r; (though appearing in a different or-
der), and (iv) the same interpretation for o,. Since the new situation is
structurally the same as the old one, transformation (26) can be applied
again and again, until transformation (25) is applicable — for $L yielding
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conclusion o; (2 < i < q), this happens after at most i steps: when $L
yields o9, transformation (25) must be applied (cf. footnote 6 (7)).
Transformation (25) removes inference $L from the mmp and adds it,
together with its left-hand side subproof 7r;- 11, to the left-hand side subproof
7r;- of #L, where the number of mmps in the newly created left-hand side

" - 1.9
subproof 7} is equal to the sum of the number of mmps in 7; and 7 :

' !
, ; Ti—1 I o |: i1
Tj+1 a; [$L] ~?(25)

Oi+1

§ ! s2) . .

Oi+1

!
qg—1
equals o4 of v, and receives the same interpretation. The same procedure

The resulting mmp v’ is one sequent shorter than v, but its last sequent o

can be reapplied to the first inference $L’ in v/ which has a different active
category than the inference #L' which yields its major premise. If this is
done s times, where 0 < s < ¢ — 1 and s is the number of \L and /L
inferences having a different active category than the first inference in v, we
obtain a semantically equivalent proof 7" of Ty,  cg4, such that in p”,
the main mmp of 7", no application of \ R or /R precedes an application of
\L or /L, and all applications of \L and /L have the same active category:

m  cgFcg [AXTOM]

T) F ¢}
" \L and /L: same active category
Ty_s
qu |— Clq =
: R and /R
T(Iq+T)—1 " Cl(q+'r)—1 \fand /
Tq_|_7- [ Cq+7- _

The finite procedure which led from 7 to 7" can be repeated for the subproofs
T}y, mq_s of ™. Moreover, the task of normalizing the proofs 7' through
773_ s involves less work than our initial task of normalizing 7, because we
started with a proof with n 4+ 1 mmps, whereas the total number of mmps

in 7} through 7_, equals 7.

The above considerations can be summarized in the form of the calculus

L*, which is given in (27) below. This calculus introduces the symbol ‘*’

9So that the new series of left-hand side subproofs 7} ,. .. ,W;_l,ﬂ;’,ﬂg-+2,. .. ,w; of v/’ still

has a total number of n mmps.
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which controls the activity of categories in derivations. Unlike the symbol
“ which was merely added to the L derivations (14) through (21) in order
to enhance their readability, the symbol ‘*’ is a substantial ingredient of L*

derivations, since there is a special rule which deals with its behaviour:

(27) SYNTAX: SEMANTICS:

at* F at [AXI0M] Tk zx

T U,a* VIt at /L] T+ p U,u, V'~
U,a/b%, T,V |- at U w, T V' y[u:=w(B)]

THY Ut Viat, o TS U u, V' F
U,T,b\a*,V I at U T, w, V' ~[u:=w(B)]

T,bt a* T vk a

% /Bl e —

Tta/b T F M.«

b, T a* v, T'F a

5 [\A] T

T+ b\a T F M.«

U,a*,V I~ at U',u,V’l—'y[*]

U,a,V F at* U u, V'~

The calculus in (27) observes the same conventions as regards categories,
types, terms and variables as (10) above, with the exceptions that at repre-
sents an arbitrary atomic category, that v refers to a term of type TYPE(at),
and that z denotes a variable of type TYPE(at).

Important properties of the calculus L* are the following. Let ' = v
denote equivalence of terms 4" and 7y (we will use v = «y for syntactic identity
of terms modulo renaming bound variables):

Theorem 1:

1. T by ¢* if and only if T by, c.

2. T:T by c*:iy, then T:T" by, c:.

3. If T:T' y, c:v, there is a 7' such that v/ =y and T:T" by c*:v'.

Proof: We have seen that if T: T’ b, c:vy, then there is a Cut-free L proof

mof T:T'F c:v' such that ¥ = v and 7 has the following properties:
(a) all axiom instances in 7 are atomic; (b) no major premise of a \L or /L
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inference in 7 is the conclusion of a \R or /R inference; and (c) the same
category remains active whenever one goes down from axioms via major
premises of \L and /L inferences in .

But this is sufficient, for there is an L* proof 7/ of T:T" - c¢*:~' iff there
is a Cut-free L proof m of T:T" I c:4' with the properties (a) through (c):

Observe (a’) that L* axioms at* b at involve only atomic categories;
(b') that the major premise of a \L or /L inference in L* can only be an
axiom or the conclusion of another \ L or /L inference (the asterisk must be
on the left-hand side); and (¢’) that if a \L or /L inference yields the major
premise of another \ L or /L inference, then they have the same (asterisked)
active left-hand side category. On account of (a') through ('), every Cut-
free L proof 7 of a sequent T':T" I c:+' having the properties (a) through
(c¢) can be turned into an L* proof ' of T : T' F ¢*:+' by (i) adding an
asterisk to the left-hand side category of every axiom instance; (i) adding
an asterisk to the active left-hand side category in every conclusion sequent
of a \L, /L, \R and /R inference; and (%iz) replacing every sequent of the
form U:U',a*:u,V:V'F at:v which is not the major premise of a \L or
/L inference by the following inference:

(28) U:U',a*:u,V:V'Fat:y
U:U',a:u,V:V'Fat*:y

[*]

And, conversely, every L* proof 7’ of T: T’ - ¢*:~+' can be turned into a Cut-
free L proof m of T:T" I c:+' with properties (a) through (c) by (¢) replacing
every inference of the form (28) by the sequent U:U",a:u,V:V' | at:v;
and (i¢) deleting all remaining asterisks. O

4 Spurious Ambiguity

In the present section we will show that L* is a solution to the spurious
ambiguity problem: if 71 is an L* proof of T:T' F ¢:~ and w5 is an L*
proof of T:T' I c:+' such that v = 7/, then 7, = m.10 As v = +' entails
that XT".y = AT".+/, this claim is a corollary of the following:

10 Above we merely required that in the context of an L (or L*) proof all variables = and
w assigned to an axiom instance or introduced in the conclusion of a \L or /L inference
be different. Accordingly, we will identify all derivations which differ only with respect
to the particular variables they assign. Thus for sequents o and 7, we let 0 = 7 iff 0 =
€1:0V1,...,Cn Uy Fciyand T = c1:v],...,cn:v), F c:v'; and for proofs m and p, we let
7w = p if and only if

e m =0, p=r, where o and 7 are (axiom) sequents such that o = T;
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Theorem 2:
If 71 is an L* proof of T:T' - ¢:+' and 3 is an L* proof of T:T" F c:+"
such that \T".y/ = XT" 4", then 7 = 7.

Proof: Suppose 7 and 7y are two different proofs of the same conclusion
T F c. Since axioms and non-axiom theorems in L* never have the same
degree (cf. definition (13) (¢4¢) above), no sequent can be both an axiom
and a non-axiom theorem. This entails that there must be at least one
non-axiom sequent 7° F ¢® which is derived from different premises in
and 7. Inspection of L* shows that the goal ¢® of this sequent cannot be
of the form b\a* or a/b*, for the rules \R and /R which yield conclusions
with such goals have the property that their conclusion sequents, T' - b\a*
and T F a/b*, completely determine the form of their premise sequents:
b, T - a* and T, b I~ a*, respectively. So, ¢® must be (i) an asterisked atomic
category at*; or (i7) a non-asterisked atomic category at.

(1) If ¢® = at*, then T° F ¢® must have been obtained with the * rule in
both m; and ms. Hence T° = U, a,V,b,W and the situation is as follows in
71 and my:

(29) U:U',a*:u',V:V' b:o!/,W:W'F at:y
U:U',a:d" V.V b, W W'k at*:v/

[*] and

U:U" a:u",V:V" b*:0" W W"F at:4"

*
U:U", a:u",V:V" b:o" W W"E at*:~" "]

It turns out that AU'Au/AV' A0’ AW' 4" and AU Au”" AV A" \W" 4" are non-

equivalent terms (see Fact 1 below).

T
' =p' and 0 = 7; or
! /!
er=T_T ,- 4 TP
Alternatively, we could enforce one particular assignment of different variables to each
derivation m, for instance by requiring (¢) that the sequence of axiom leafs of m equal
at1*:v1 F oat1 1v1,...,atn* v, b atn @ v,, where for all ¢, 1 < ¢ < n: vy is the i-th
variable of type TYPE(at;); and (i¢) that for all instances of \L and /L in 7 the variable
w be the i-th variable of type (TYPE(b),TYPE(a)) iff u is the i-th variable of type TYPE(a).
Note that this would not restrict the semantic potential of the calculus, for it is easily
checked that all m; and 72 such that m = 72 in the sense just defined are semantically
equivalent: if w4 = 7, then m is a proof of ¢1:v1,...,¢n:vn F c:7y and w2 is a proof of
CLiVY,. .. Cn il c:'y' such that Avy.. Av,.y = )\v'l...)\v;.’y' (and hence: Avi..Av,.y =
Avy...A\v},.y"). The more liberal option has been chosen since it links up better with the
alternative approaches to be discussed in the next section.

7
_ —
¢ T= P E T
ﬂ'l 7'!'” / / 1 1
,w=p, " =p" and o =7.
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(73) If ¢® = at, then the left-hand side T° of T° F ¢° must contain one
asterisked category d*. Because T° F ¢° is not an axiom, d* must be a
non-atomic asterisked category a/b* (or b\a*), and, accordingly, T° + z°
must have been obtained using /L (or \L) in both m; and ms. We only
consider /L, since the \L case is analogous. Then d* equals a/b*; T° =
U,a/b*,V,W, X, where W is a non-empty sequence of categories; and the
situation is as follows in m; and ms:

(30) V:V'Eb*:p U:U,a* /', W:W X:X"F at:v [/L] and
U:Ua/b*:w" V.V W W X: X"t at:~'[u:=w' ()]
V.V W.W"Eb*. 6" U:U",a*:u", X:X"F at:~" /L]

U:U" a/t*:w", V. V' W. W' X:X"F at:y"[u":=w"(8")]

The term AU Aw' AV AW'AX' /[ :=w'(B')] can be shown to be non-equi-
valent to AU Aw" AV AW AX" ~"[u" :=w"(8")] (see Fact 2 below).

Consequently, the intermediate conclusion T° - ¢° gets non-equivalent
interpretations in 7; and 7.

Moreover, it can be shown that any non-equivalence of the terms which
different proofs assign to some intermediate sequent is inherited by the terms
assigned to the conclusions drawn from that sequent (see Fact 3 below). So,
if the intermediate conclusion 7° + ¢° has non-equivalent interpretations
in m; and me, then T F ¢, the final conclusion of both proofs, will receive
non-equivalent interpretations in m; and 7y as well. O

In footnote 3 it was observed that terms v assigned to sequent goals in Cut-
free L proofs are always in 8-normal form, i.e., they do not have subterms
of the form [Av.y'](7”). In the proof of Theorem 1 we have seen that the
terms assigned to sequent goals in L* proofs constitute a subset of the terms
assigned to sequent goals in Cut-free L proofs and, hence, are in S-normal
form as well. However, they also meet the stronger requirement of being in
what we will call ‘B7-normal form’ (as can be seen by an easy induction on
the length of L* derivations):

A term 7 is in 7-normal form (7-nf) iff every occurrence of a
subterm ' # Av.y" of functional type (a,b) is applied to some
term «" in v, i.e., it occurs as v/(y") in 7.1

11 et n-expansion (‘fj-conversion’) be defined as the replacement of a subterm occurrence
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A term +y is in B7-nf iff v is in G-nf and +y is in 7-nf.

As was noted in footnote 4, equivalence in typed A-calculus amounts to
identity of On-nfs, i.e., two terms v and § are equivalent (v = §) iff their On-
nfs v#7 and 67 are syntactically identical modulo renaming bound variables
(v#" = 6P"). Together with the FACT mentioned in footnote 11, this yields
that v = & iff ¥%7 = 677, Terms assigned to sequent goals in L* proofs are
in Bn-nf, so they are equivalent just in case they are identical, a fact which
will be exploited in the corollaries of the following lemma. Let the function
# count the number of arguments of ¢ € CAT, i.e., #(at) = 0 and #(a/b) =

#(b\a) = #(a) + 1.

Lemma:
fU:U',c*:w,V:V'F at : v, then there are terms 71, ...,74() such
that v = w(y())---(71) and w does not occur in vy, ..., V(-

Proof: by induction on the degree of c.

e If c € ATOM, then #(c) = 0 and U:U',c* :w,V: V' I at :~ is an axiom
sequent at*:w b at:w, so v = w.

e If c = a/b (or b\a), then U:U',c*:w,V:V' | at:v is the conclusion of a
/L (or, analogously, a \L) inference:

Vi:V{ Eb*:p U:U',a*:u,Vo:VJ F at:y

L
U:U' a/b*:w,V1: V], Vo: V4 F at:y[u:=w(B)] /]

Applying the induction hypothesis to 7, we know that there are terms
Y15+« V#(a) Such that v = u(yx(q))--(71) and the variable u does not occur
iny1,...,74()- Notethat #(a/b) = #(a)+1, and that the term y[u:=w(3)]
is identical to w(8)(V#(a))---(71), where w, being different from the variables
in 8 and v, does not occur in Vi, ..., V4(a), 5 O

1

v # Mv.y" of functional type (a,b) which is not applied to any term v by Av.y'(v), where
v does not occur freely in 4'. One can show that n-expansion is strongly normalizing and
Church-Rosser: for every term + there is a unique term ~” which is in fj-normal form,
and which can be obtained from ~ by performing a finite number of n-expansions (where
renaming of bound variables is allowed). This is established by induction on the complexity
of (the type of) v, using the facts that () variables of non-functional (atomic) type are in
7-nf; (i¢) n-expansion of variables of type (a,b) only introduces variables of less complex
type; and (#i4) n-expansion of complex terms Av.y’ and 4/(y”) only involves n-expansion
of less complex terms. As 7n-expansion respects (-normality, we have the following FACT:
for every v and 8: %7 = 67 iff 4P = §P7.
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Let T" be a sequence of variables v1,...,v,, and T a sequence of categories
C1,...,cn. We will say that T' is of type T iff for all 4, 1 < 1 < n: v;
is of type TYPE(¢;). If TV = vi,...,v] is a sequence of different variables
and T" = v{,...,v! is a sequence of variables of the same type as T", then

~[T":=T"] denotes the result of performing the simultaneous substitution

r._ " ! "
[’Ul.—’U2,...,’Un n] m 7.

Note that for sequences 17", T" and T"" of different variables of the same
type such that T' and T" occur in o' and v”, respectively, and T"" occurs in
7' nor 4", we have: NXT'.y' = XT" " iff /[T":=T""] = ~"[T":=T"], since
o NI [[T":=T"]] = XT" [y [T" :=T"]] iff /[T :=T"] = +"[T":=T"];
o \T'.~' = XT".[{/[T":=T""]] by renaming bound variables; and
o \T" A" = XT".[4'[T" :=T"]] by renaming bound variables.

Fact 1. Consider (29). By the above Lemma: v = u ('y#( )) (7}) and
v =" ('ygé(b))...('yi' ). Let U" ", V" " W" be a sequence of different
variables of type U, a,V,b, W which do not occur in 7/ and +”. Abbreviate
UI U, V/ UI WI as Sl, U" ul/ V" U” WI/ as SII, and U/I/ u/" V/I/ ,U/II W/I/ as
S". Then A\S'.y' # X\S".4", since v'[S":=5"] = [u'(’y%&(a))...('y{)][S':=S’"]
= U”I(’Y%,__(a) [Sl ::S,I,])'i'(71 [Sl ::S”I]) ¢ ’UI”(’Y%E(I)) [SII::S/I/])“.(,yil[sll::S/I/])
V" (Vo)) (VD[S := "] = 4"[5":=8"]. Therefore, AS"y" # AS"~"

Fact 2. Consider (30). Again, by the Lemma: 7' = u (’y# )...(v}) and

,YII —

= "(fy;;( )) (7)), where v/ and u” do not occur in ~;,. ,’y;é( ) and

1

Y- ,'y#(a), respectively. Hence /[’ :=w'(f')] = w (,3')(')/# a)) .(7}) and
Y u":=w"(8")] = w"(8") (v} ) .(7}). Since the sequence of categories
W is non-empty, we have that W = Wy,e,Wo; W' = W{,o',W); and
W' = W] " Wi. Note that for 1 < i < #(a): v' occurs freely in
some v, but not in J', whereas v" occurs freely in 4” but not in any
v Let U, w" V" W" X" be a sequence of different variables of type
U,a/b,V,W, X not occurring in v'[u/:=w'(#')] and "[u" :=w" ()], and let
W' = W " W, Denote U',w', V', W', X' by S'; U" w" V" W" X"
by S”; and U"’, ,wlll’ V”l, WIII,XIII by S’”.

We now have that AS'.[y/[v':=w'(8')]] Z AS".[y'[u":=w"(B")]], since
= (B[S = 5" # [y T = (B[S = S

o Yl i=w (B[S :=5"] = [0 (B) (Yp(a))-- (]IS = 5"] =
w"(B'[8"=5"]) (V)| = 8"])--(H[S":= 5"));
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o /[ = (B])[S":=5") = [ (6") (y(a)) - (NS = 5] =
’U)I” (IBII [SII = SIII]) (’Y#(a) [SII SIII]) ( 11 [SII SIII]); and

e the variable v"" occupies the position of v’ in [y/[v':=w'(8')]][S":=S5"]
and of v" in [y"[u" :=w"(B")]][S" :=5"], so v"" occurs freely in some
7i[S":=5"] but not in F'[S":=S5"], and it occurs freely in 5"[S" := 5"
but not in any ~/[S":=5"].

Therefore: AS'.['[v':=w'(8")]] # AS".[y"[u":=w"(8")]].

Fact 3. Consider the following two inferences:

T:T'+b*:. 5 U:U, a*:u,V:V'Fat:v

— R : [/L] and
U:U' a/b*:w",T:T'V:V' at:~'[u':=w'(F')]

T:T"+b*: 5" U:U",a*:", V: V" at:~"
U:U", a/bF: 0", T:T",V: V" at:y"[u" :==w" (8")]

[/L]

By the Lemma: 7/ = v/(y(a))- (), V= ()] = 0 (8) i) (),
' = () () and = (5] = w(B) () ) Tt T

w" , T" V" be a sequence of different variables of type U, a/b, T,V which do
not occur in v'[u":=w'(8")] and "[u" :=w"(8")]. Abbreviate U',w',T", V'
as 8" U" w! T" V" as §": and U™ w", T" V" as S".

Now, suppose that AS".[y'[u":=w'(8')]] = AS".[Y'[u" :==w"(B")]]. This
entails that [y/[u/:=w'(3)]][S":=5"] = [/'[u" :=w"(B")]][S":=S"], that is:
[0 (B ()~ = 5] = [ (8) () (IS = 571,

So, p'[S":=8""] = p"[S":=5"] and for all 3, 1 < i < #(a): ~i[S":=5"]
= 'yz'[S" S"". Since the variables U',w', V' and U",w", V" do not occur
in B and p", respectively, we have that g'[S':=5"] = p'[T":=T""] and
B'S".:=8" = p'[T":=T"]. So, \XT'.#' = XT".8". Moreover, since the
variables w',T" and w"”,T" do not occur in any +; and v}, respectively,
we have that for all i: 4}[S":=8"] = AU, V':=U", V"] and +/[S":=5""]
= A/'[U",V":=U",V"]. Finally, since v’ and u" are different from the
variables in ~1,... ,’y;#( o) and Y- ,'y;;( a)> Tespectively, we can conclude
that )\U')\u')\V'.u'(’y%E(a))...(fy{) = )\U”)\u")\V”.u”(’y?’é(a))...('y{').

Consequently, if XT".8" # XT".8" or A\U'M/AV' 4" #£ XU "NV 4",
then AU MW XT'AV! [y [/ :==w'(B")]] # )\U”)\w”)\T")\V” [y [u":=w"(B")]]-

Furthermore, note () that the \ L case is analogous; (z7) that the seman-
tics of the * rule is identity; and (i77) that the cases \R and /R are trival
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as well. So, non-equivalence of terms assigned to some sequent is always
inherited by the terms assigned to the conclusions drawn from that sequent.

Returning to the examples treated earlier, it turns out that the unambiguous
sequent ¢/c,c/c,c F c* is indeed derived only once in L*, whereas it has two
Cut-free derivations, (14) and (15), in L:

(31) c*kcx
ckc* ke
L
c/c*,cl—c[*][/ )
c/e,ct c* cttec
c/c*,c/c,cl—c[*]
c/c,c/c,c b c*

[/L]

Modulo * inferences, derivation (31) has the structure of (14). There is no
L* proof with the structure of (15), for the main mmp of (15) contains two
different active left-hand side categories.

The two-way ambiguous sequent s/(n\s),(n\s)/n,(s/n)\s F s which
has the six Cut-free L derivations (16) through (21) is derived twice in
L*, cf. (32) and (33) below. These derivations are structurally similar and
semantically equivalent to (16) and (19), respectively. The remaining Cut-
free L derivations of the sequent do not have L* counterparts: (17) and
(20) because of a non-atomic axiom instance n\s F n\s; (18) due to a \R
inference which yields the major premise of a /L inference; and (21) on
account of an mmp with two different active left-hand side categories.

(32) n*bFn o«
n*Fnixy nkn* s*k s I
n}—n*[ ) n,n\s* ks (]

[*]
n, (n\s)/n,n F s*
n, (n\s)/nt s/n* /8]
n, (n\s)/n, (s/n)\s* s *]
n, (n\s)/n, (s/n)\s F s*
(n\s)/n, (s/n)\s* F n\s* (\E] s*
s/(n\s)*, (n\s)/n, (s/n)\s F s %]
s/(n\s), (n\s)/n, (s/n)\s - s*

/1)
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n*Fn %] nkn
n bk n* n,n\s* ks

n, (n\s)/n*,nk s

[*]
n, (n\s)/n,n F s*
(n\s)/n,n F n\s* (E] s¥ks /L]
s/(n\s)*, (n\s)/n,n ks

[*]
s/(n\s), (n\s)/n,n F s*
s/(n\s), (n\s)/nF s/n* [/R]
/() (n\5) /m, (s/m)\s* F s
3/(n\s), (n\s)/m, (s/m)\s F s*

s*ks

[*]

\L]

5 Partial Deduction and Proof Nets

In the present section we will discuss two alternative approaches to the
problem of spurious ambiguity which were proposed in Moortgat (1990)
and Roorda (1991). First, in Section 5.1, we give a formalization of the
proposals in Moortgat (1990), and prove that the resulting proof represen-
tations ‘summarize’ L* derivations of sequents with atomic goal categories
and are, hence, devoid of spurious ambiguity. Next, section 5.2 is devoted
to a comparison of L* with the proof nets proposed in Roorda (1991). It is
shown that every L* proof corresponds to a non-singleton set of proof nets.

5.1 Partial Deduction

Moortgat (1990) suggests that partial deduction offers a way of tackling the
problem of spurious ambiguity for L. The basic idea of partial deduction
is that theorem proving is preceded by a compilation of the lexicon, i.e.,
the set of categories which occur in the left-hand side of the sequents to be
derived and interpreted. This set of categories serves as the basis for the
generation of axioms and rules which are to replace the original axioms and
rules of L.1? The idea is that since they have more internal structure than
the rules of L, the new rules restrict the derivational freedom of the original
system, thus eliminating spurious ambiguity.

12Moortgat says that ‘partial deduction of the lexicon adds non-trivial AXIOMS to the
trivial axioms and logical rules’ of L, such that the resulting system ‘can do without the
original logical rules’ (1990, p. 388; small caps added, italics sic), but in the sequel we will
see that the addition involves both axioms and rules.
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Unfortunately, Moortgat (1990) does not contain a formal definition of
partial deduction, let alone a proof that the method is sound and complete —
i.e., that it eliminates all spurious ambiguity while preserving all L-derivable
sequents and interpretations.

The paper only treats two examples, viz., the categories (a1\as2)/as and
(s/(n\s))\s, where a1, a2, ag,n and s are atomic.

The first order!'? category (a;\az)/as gives rise to a single derived infer-
ence rule:'

(34) To:ThtF ag:vye Ti:T) F ay:m
T1:T7, (a1\a2)/asg:ve, To: Th F az:vo(y2)(71)

[(a1\a2)/as]

The higher order category (s/(n\s))\s, on the other hand, results in a set
consisting of two derived inference rules. One corresponds to the category
(s/(n\s))\s itself, and the other to the (only) argument n\s of the (only)

argument s/(n\s) of (s/(n\s))\s:

(35) Ty :T{,n\s:v1 F s:m

Ty (o (s \siuo - siopQog) )

T: T Fnim
Ty:T{,n\s:vp F s:vp(m)

[n\s]

We will show that a formal definition can be given which (z) is consistent
with the examples treated by Moortgat; and (i:) indeed solves the problem
of spurious ambiguity for sequents with atomic goal categories.

First, we define two functions from categories to sets of categories. For
c € CAT, A(c) is the set consisting of the arguments of ¢, while A4(c) is the
set consisting of the arguments of the arguments of c¢:

A(at) = 0; A(a/b) = A(b\a) = {b} U A(a);
A4 (at) = 0; A4(a/b) = A%A(b\a) = A(b) U A%(a).

13The order of a category ¢, o(c), is defined as follows: o(c) = 0 if ¢ € ATOM; o(a/b)
= o(b\a) = max(o(a),0(b) + 1). For example: o(n) = 0, o(n\s) = 1, o(s/(n\s)) = 2 and
o((s/(n\s))\s) = 3, whereas o((s\(n/s))/s) = 1.

“Different from Moortgat (1990), but in keeping with our modification (10) of his
semantics (5), the left-hand side categories (a1\az)/as, (s/(n\s))\s and n\s are assigned
a variable vo instead of a (possibly complex) term.
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For a set of categories C, let CT be the set which includes C' and contains,
for n € IN, any argument of (an argument of an argument of)™ an argument
of a category ¢ € C. More formally:

Let C C CAT. CT is the smallest set such that
(i) C C C*, and (i) for all c € Ct: A4(c) C CF.

If C is the set of categories which appear in the left-hand side of sequents,
then C'T is the set of categories from which new axioms and rules are derived.

That C is the required set can be seen from the examples (34) and (35).
A derived inference rule associated with a category ¢ deals with occurrences
of ¢ in the left-hand side of sequents: a category ¢ consisting of n arguments
¢1,...¢, and a (final) value at yields a derived inference rule consisting of
a conclusion with left-hand side category ¢ and goal category at, plus n
premises with goal categories cy,...c, — that is: provided that cy,...c, are
atomic categories, as in (34). If, as in (35), an argument category ¢; of ¢

itself consists of arguments c,...c,, and final value at’, then the relevant

m
premise has at’ as its goal category, while the categories ¢}, ... c}, appear in
its left-hand side. Now, the presence of arguments of arguments of ¢ in the
left-hand side of premises of the derived inference associated with c entails
that these categories should be associated with a derived inference rule of
their own.

For the example categories (a1\az)/asg and (s/(n\s))\s, the above defi-

nitions yield the following;:

A((a1\a2)/a3) = {a1, az}; A%((a1\a2)/a3) = 0;

so {(a1\az)/a3}" = {(a1\a2)/as}.

A((s/(n\s))\s) = {s/(n\s)}; A*((s/(n\s))\s) = {n\s};
A(n\s) = {n}; A%(n\s) = 0;

so {(s/(n\s))\s}* = {(s/(n\s))\s,n\s}.

Next, let f be the following function from interpreted sequents to interpreted
sequents:15

15Strictly speaking, f is a partial function, because terms assigned to goal categories
a/b or b\a are not necessarily of the form Av.7.

Below we will also employ the following straightforward extension of f to interpreted
sequents with asterisked goal categories:

Ff(T:T' + at*:v) =T:T' + at* : v;
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f(r:T'kat:y)=T:T'+ at:y
f(T:T'+a/b: vy) = f(T:T',b:v F a:v); and
f(T:T'Fb\a: w.y) = f(b:v, T:T'F a:vy).

Syntactically, the function f peels off the argument categories from the goal
category of the sequent to which it is applied. Semantically, it strips the
term assigned to the goal category of its lambda abstractions. Together with
the variables of the abstractions, these argument categories are added to the
left-hand side of the sequent. An induction on #(c)'® shows that if a proof 7
of T:T' & c¢:7 is of the form indicated below, where I, ... Iy € {\R, /R},
then the conclusion of the subproof 7’ of 7 is the sequent f(T:T'F c:7):

!
7y
S E—
T:T'Fc:vy [ #( )]

The function g assigns an axiom to every atomic category at and a derived
inference rule to every compound category b\a and a/b:

g(at) = at:vg F at:vy;

g(a/b

and

g(b\a)

) = F(Trmg1:Th g F b2 Av1 Mg () Ymag1) Om .. o1
X,a/b:vg, Tny1: Ty, Y 1= ativg(Avr. Avg ) -Fmt1) (0m) -+ (1)

_ F(Tmg1:Ty, 1 F b: A1 AV ) Amt1) Om e o1
X, Trny1:Thyp1,0\a:v0, Y I at :vg(Av1... Avg ) - Yms1) (0m) .- (1)

iff g(a) consists of the conclusion X,a : vg, Y F at : v9(dm)...(61) and the
premises oy, ...,01. (Note that m = #(a).)

The expressions T4 : T7,. .. Ty (o) :T#( o) occurring in a rule g(c) will range
over non-empty finite sequences of pairs consisting of a category and a

Ff(T:T'+a/b* : Av.y) = f(T:T',b:v - a*:v); and
F(T:T'Fb\a*: v.y) = f(b:v, T:T' F a*:7).

Note that since the terms assigned to goal categories in L* derivations are in 7-nf (see sec-
tion 4 above), the restriction of f to L*-derivable interpreted sequents is a total function.
16Recall that the function # counts the number of arguments of ¢ € CAT: #(at) = 0

and #(a/b) = #(b\a) = #(a) + 1.
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variable.l” As before, we will require that in the context of a proof all
variables vy assigned to an axiom instance or introduced in the conclusion
of a derived inference rule be different.

Let us see what these definitions amount to for the example categories
discussed above. We start with the category (ai\a2)/as. Since #(a1) =

#(a3) = 0:

F(T:T) F ar:dor.dvgq,yvi) = Ti: T} a1:vi; and

1 (2

(T T a3: A1 AVg(q,) Vi) = T;:T! + ag:v;.
Since g(az2) = ag:vy F ag:vy, we have:
T1 ZT, [ al:iv
g(ai\a2) = L 7 , and

Ti,a1\a2:v9 F az: vo(y1)

To:Th - ag:ys Ty:T) F ay:m
T1:T{, (a1\az)/ a3, To: Ty = az:vo(vy2)(m)

g((a1\a2)/as) =

Note that g((a1\a2)/a3) is the same rule as (34). Now consider the second
example, (s/(n\s))\s. Since #(s/(n\s)) = 1:

f(T;: T + 3/(”\5)1)\Ul---/\’0#(s/(n\s))-’)’i) =T;:T],n\s:v1 F s:7;.

Hence, and because g(s) = s:vg I s:vp:

B Ty:T],n\s:v; F s:mq
g((s/(n\s))\s) = T1:TY, (s/(n\s))\s:vo b s:vp(Av1.71) )

Since #(n) = 0:

f(T;: T + N1 AV ) Yi) = T;: T = ney,.

"Since the expressions Ty : Ty, ... N :T;,!,&(c) and 71, ...,Y#() are distinguished by
their subscripts, each T;: T and +; can be instantiated independently. Strictly speaking,
the variables v1,... Vagr(b;) and vy, ... Va(b;) occurring in different premises o; and o; of a
rule g(c), as well as their counterparts in the conclusion of g(c), should be distinguished
for the same reason, for example in the following way:

i i J J
vi,...Vu,) and Vls V)

Readability considerations, however, restrained us from doing so.
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Moreover, g(s) = s:vy - s:vg, so that:

T :T Fn:m

g(n\s) = :
\ Ty:T],n\s:vo F s:vg(71)

The rules g((s/(n\s))\s) and g(n\s) are identical to the ones in (35). Thus,
our formal definition is consistent with the examples of Moortgat (1990).

Call an interpreted sequent ¢y :v1, . . . ¢, 1 v, F c:y a PD (‘Partial Deduction’)
theorem if and only if it is derivable using the axioms and rules in the set
{gle) | c€{c1,-.,en}T }

Notice that all PD theorems have atomic goal categories. We will show
that there exists a surjection h from L* proofs of sequents T : 1" | at*:~
with asterisked atomic goal categories to PD proofs of T:T" - at :+y.

On account of Theorem 1 (see section 3 above), this entails that partial
deduction preserves all (interpretations of) L-derivable sequents with atomic
goal categories.

Moreover, on account of Theorem 2 (see section 4 above), the existence
of h entails that partial deduction is devoid of spurious ambiguity in that it
derives every interpretation only once. The function h is defined as follows.

Let Ila .. I#(b) € {\R, /R}
t* Foat:

!
T )

() W o o) :

U:U',a/b*:w, T:T",V:V'F at:y[v:=w(B)]

U:U,a/b:w, T:T',V:V'F at*:y[v:=w(p)] ")

h 7TI Tn .
( ) U albiw, T 17,V - VI|_ at Jo=w(3 )] [g(a/b)] iff

n
hl m * Tn 1
(U:U’,a:v,V:V’l—at*:'y [ ]> U:U',a:v, V V'E atiy [9(a)];
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,n_l

: [Il]
(c) B|T:T'Eb*:p )] 0
U:U,T:T',b\a*:w,V:V' at:y[v:=w(p)]
U:U,T:T' b\a:w,V:V'F at*:y[v:=w(B)] [

SVl
]

h(r' Tn T X
U(:U)',T:T',b\a:w,V:V' + at:'y['u::w(ﬂ)l] lg(b\a)]  iff

7r” * _ T ™1
h(U:U',a:v,V:V'F iy | D_U:U’,a:v,V:V’I— at 1y 9@

On the level of proofs, the function h closely follows the pattern of the
rule-building function g. Due to clause (a) of the definition of h, the most
simple L* proofs 7 of sequents with asterisked atomic goal categories are
mapped to PD proofs h(m) which instantiate the value of g for atomic
categories. Moreover, clause (b) maps more complex L* proofs 7 of sequents
with asterisked atomic goal categories to PD proofs h(7) in which the last
rule applied is g(a/b), where a/b is a category occurring in the left-hand side
of the conclusion sequent of m. The #/(a/b) subproofs of h(m) which yield
the premises of this application of the rule g(a/b) are determined by two
subproofs — 7’ and 7" — of m: 7’ is an L* proof of a sequent with asterisked
atomic goal category, while 7"’ extended with * (‘7" + *’) is an L* proof of
a sequent with asterisked atomic goal category such that h(7” + *) is a PD
proof in which the last rule applied is g(a). Now, given the way in which
g(a/b) is defined (viz., in terms of g(a)), the conclusion of h(n') plus the
premises of g(a) in h(m"” + *) can serve as the premises of an application of
g(a/b) which infers the non-asterisked counterpart of the conclusion of .
(An isomorphic story can be told about clause (c).)

We will now prove the following facts: (1) for every L* proof 7 of a sequent
Z:Z'F at*:§ with asterisked atomic goal category, h(7) is a PD proof of
Z:Z'F at:6; and (2) for every PD proof 7, there is an L* proof 7* such
that h(7*) = 7.

(1) That for every L* proof m of a sequent Z: Z' b at*:§ with asterisked
atomic goal, h(m) is a PD proof of Z:Z' I at:§ is shown by induction on d,
the degree of the conclusion Z:Z' F at*:§ of w. Note that in view of its goal
category at*, the sequent Z:Z' & at*:§, ie., U:U',c:w,W : W' |- at*: 4,

41



must have been derived by the * rule from U:U’,c*:w, W : W' at:4.
e d = 0. Then the sequent U:U’, c*:w, W :W'} at:§ must be an L* axiom
at*:w F at:w. This case is covered by clause (a) of the definition of A which
states that h(m) = at:w F at:w, i.e., an application of g(at).
e d > 0. There are two possibilities: ¢ = a/b or ¢ = b\a. We only consider
the former case. (The b\a case is analogous.) If ¢ = a/b, then W : W' =
T:7,V:V"and § = y[v:=w(p)], because U:U',c*:w, W : W'}l at: 4, ie.,
U:U' a/b* :w, T:T",V:V'F at:y[v:=w(B)], must have been inferred by
/L from the premises (a) T:T' + b*:8 and (b) U:U’,a*:v,V:V'} at:~.
(a) As for the subproof of T:T" F b*: 3: such a sequent must have been
inferred using * (if b = at), \R (if b = b"\b') or /R (if b = V' /b"). Besides,
premises of \ R and /R inferences have asterisked goal categories as well. So
this subproof must have the following form, where I1,... I+ € {\R, /R}:

77'[ ZO [*]

30 [Il]
T F o8 1#0)

Note that since every I; (1 < i < #(b)) adds an abstraction Au; to the
term assigned to the goal category of its premise, the term 8 must be of the
form )\ul...)\u#(b).ﬁ'. So, using the observation concerning f made above,
we know that og is the sequent f(7:T" F b*: Auy ... Auyy).0'). This sequent
has an asterisked atomic goal and its degree is smaller than the degree of
the conclusion of w. Hence we can apply the induction hypothesis to =’
and infer that h(n') is a PD proof of f(T:T' I b: duy ... duyy).B') — e,
f(T:T" = b%: dug . .. Augp.f') minus asterisk.

(b) As for the subproof " of U:U’,a*:v,V: V' at:7: note that we can
apply the Lemma of section 4 above: v = v(v4(q))---(71), where v does not
oceur in 71, ..., 7). Moreover, the derivation 7" consisting of 7" plus an
additional * inference is an L* proof of a sequent with an asterisked atomic
goal category:

n
mn ™

- *
" U:U',a:v,V:V’I—at*:'y[ )

The degree of U:U',a:v,V :V'F at*:v is smaller than the degree of the
conclusion of m. Hence h(7"") is a PD proof of U:U',a:v,V: V't at:~ by
the induction hypothesis. Since v = v(vx(q))---(71), we know that g(a) must
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be the last inference of h(7""), a proof which, therefore, has the following
form:
W#(a) [ m™
h m —
(™) U:U'a:0,V:V'E at:v(v4(q))--(71) l9(a)]

Now, according to clause (b) of the definition of h,

_h(WI) T4(a) T
() _U:U',a/b:w,ﬁ;:T',V:V' F at:'y[vzzw(ﬂ)]l ly(a/b)],

which is indeed a PD proof, for recall that

 f(Tmg1: T B b Avr Avg ) Yme1) O4(a) - a1

b)= — ;
g(a/ ) X,a/b:vo,Tm+1 :Trln—f—l’Y [ at:’l)o()\'Ul...A’U#(b) -7m+1)(6#(a))'"(51)

where 04(q),...,01 and X,a:v9, Y F at :v9(dy())---(61) are the premises
and conclusion of g(a), and note that

e apparently, the conclusions of the subproofs T4 (,),...,m match the
respective premises ou(g); .. .,01 of the rule g(a) in such a way that
at:v(Yg(a)) (1), U:U'; a:v and V: V' match at:v9(d(q))---(61), X,

a:vg and Y, respectively; and

e obviously, the conclusion f(T:T" F b: Auy... uy ) .0') of h(n') matches
the first premise f(Tmqq1: Ty, b b )\vl.../\v#(b).'ym+1) of the rule
g(a/b) in such a way that T:T" and Auy... ug . match Tpi1:Ty, 14
and Avi...Avgp)-Ym+1, Tespectively.

But this means that the conclusion of g(a/b) is matched by the sequent
U:U\alb:w,T T,V : V' at s wug... duge)-8) (Ya(a)) - (11)- Note,
finally, that w(Au1 ... Mugey.B')(Ya(a))--(11) = y[v:=w(B)], because v =
V(Y4(a))---(71), the variable v does not occur in 71,...,Yx(@), and 8 =
)\Ul . )\U#(b)ﬁl O

(2) We show that for every PD proof 7 there is an L* proof 7* such that
h(7*) = 7 by induction on d, the degree of the conclusion Z:Z' - at:4 of
the proof 7.

e d = (. Then Z only contains atomic categories, so for ¢ € ATOM: 7 must
match g(c) = at:vg F at:vy. Consequently, 7 = at:v b at:v, and:
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at:vF at*:v

*. .
at:v bk at:v = h<w[*]>

e d > 0. Then the conclusion of 7 must have been obtained by a derived
inference rule g(c) such that the degree of ¢ is greater than 0. So:

7T_U:U',b\a:w,VV:W"I— at:6 Y ’
o= "#a@tl T - T

b
00 afbro, W - atis )

We will only consider the case of g(a/b). (The case of g(b\a) is analogous.)
Then W:W' = T:T",V:V' and v = w(Auz... \ugp)-8') (Ys(a)) - (71), where
(i) the conclusion of Ty (q)+1 is f(T:T' F b: Auy... \uyp).0'); and (i7) the
conclusions of the subproofs m4(g),...,m match the respective premises
O4(a)s - - - »01 of the rule g(a) in such a way that application of that rule to
these sequents yields U:U',a:v, V:V' I at:v(vs(a))--(11)-

Since the degree of the sequents f(7' : T’ F b: Auj... uy@p)-0') and
U:U'sa:0,V:V'F at:o(yga))--(71) is smaller than the degree of the
conclusion of 7, we can apply the induction hypothesis to m4(4)11 and p =

T4 (a) T
U:U',a:0,V:V'+ at:”('Y#(a))---(’)’l) [9(a)],

and conclude that there are L* proofs 7 (q)11* and p* such that h(mu(q)41%)
= Ty(a)+1 and h(p*) = p.

Because 74,41 and p are proofs of f(T':T = b: Auj...\uy@).0') and
U:U';a:0,V:V'E at:v(vg(q))--(71), respectively, we know that 7)1 *
and p* are proofs of the asterisked sequents f(T:T F b*: huy... \uy@w.0')
and U:U",a:0,V: V' F at*:v(y4(q))---(11), respectively.

As for m4(q)41™: it can be shown by induction on #(c) that any L* proof
7% of f(T:T F c*: Auy... \uy().0') can be extended to an L* proof ¥t
of T:T I ¢*: Auy... uy (.0 by adding #(c) \R and /R inferences to m*.
Hence there exists such an L* proof 77#(,1)+1*+ of T:T = b*: Auy..  uy . fB'.

As for p*: since U:U",a:0,V:V' I at*:v(v4(q))--(71), the conclusion
of p*, has an asterisked atomic goal which is assigned a term with leading
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variable v, we know (by the Lemma of section 4) that

) il ]

P = U:U' a:0,V:V'E at*:0(yu(a))--(11) [

where U:U’,a*:0,V: V' I at:v(v4(q))---(11) is the conclusion of p*'. Hence

7*, the proof below, is an L* derivation, where Iy, ..., Iy € {\R, /R}:
Th(a)41”
. [Il] *x+
: T
: [I#(b)] #(a)+1
T:T'F b*: huy... dugy .0 p*
[/L]

U:U'a/b%:w,T:T',V:V'F at :w(Auy ... AMug @) -0) (Va(a)) - (71)
U:U'a/b:w, T:T,V:V'F at*:w(Aug ... \ug@)-0) (Vi(a) ) - (1)

[*]
Finally, because h(p*) = p =

W#(a) m
U:U'a:0,V:V'E at:v(vg()--(11)

[9(a)],

clause (b) of the definition of h tells us that h(n*) =

My (a)417) T4(a) L [g(a/b)]
a
U:U'a/b:w,T:T",V:V'F at:w(duy .. dug@y-B') (V4(a)) - (71) I

And because h(mu(q)41%) = T4(a)41, We have that h(7*) =

Tt (a)+1 T4 (a) 1 lg(a/b)]
U:U'a/b:w, T:T,V:V'E at:w(duy... \ugw).B8) (Va(a)) - (1) g ’

which is nothing else but =. O

By way of illustration, we return to the sample sequents c¢/c,c/c,c F ¢
and s/(n\s), (n\s)/n,(s/n)\s F s treated in the previous sections. The
categories ¢/c and ¢ generate one rule and one axiom:

T1:T1I Feim
c/civg, Ty : Ty F c:vg(y1)

[g(c/e)]
c:vg vy [g(c)]

45



These yield one PD derivation of ¢/c,c/c,c = ¢, viz., (36). Observe that
(36) = h(31):

(36) ciztcix
c/c:y,cix b ciy(x)

[g(c/e)]

[g(c/<)]

c/c:z,c/ey,cix b ciz(y(z))

The categories s/(n\s),(s/n)\s and (n\s)/n generate the following rules
and axiom:

n:v, T :T] F sy

s/(n\s):vo, T1:T! F civp(Av1y1) [9(s/(n\s))]

Ty :T],n:v1 F sy

Ty :TY, (s/n)\s:vg F c:vg(Avi.y1) [g((s/n)\s)]

n:vg Fn:vg  [g(n)]

Ty:T5 F nivyy T:T{ Fn:m
Ty :Ty, (n\s)/n:vy, Ta: T4 = c:vo(y2) (1)

[9((n\s)/n)]

These yield two proofs of s/(n\s), (n\s)/n, (s/n)\s - s, viz., (37) and (38),
where (37) = h(32) and (38) = h(33):

(37) n:w' b niw n:u' Fnd
n:u', (n\s)/n:v,n:w' F s:o(w) (W)

n:u', (n\s)/n:v, (s/n)\s:w - s:w(Aw'.v(w')(u))

[9((n\s)/n)]
[9((s/n)\s)]

s/(n\s):u, (n\s)/n:v,(s/n)\s:w F s:u(Au’ . wAw' v(w')(u'))) [9(s/(n\s))]
R T T
o Y lg(s/(n\s))]

s/(n\s):u, (n\s)/n:v,n:w' F s:u(Au'v(w')(u'))
s/(n\s):u, (n\s)/n:v,(s/n)\s:w F s:wAw' u(Au' v(w')(u')))

[9((s/n)\s)]

46



5.2 Proof Nets

Roorda (1991) introduces so-called proof mets — which were invented for
linear logic by Girard (1987) — for the Lambek calculus. Proof nets are pro-
posed as a solution to the problem of spurious ambiguity, in that they replace
‘inessential’ order of rule applications in sequent proofs by ‘parallellism’.

In the present section we will assess the merits of this proposal. We start
with the definition of proof nets given in Roorda (1991), which is listed in (a)
through (g) below. Next, an alternative, equivalent definition is presented
in (a') through (h'). While Roorda’s definition recursively introduces con-
nectives, the alternative one proceeds by adding links. This different set-up
has two advantages. First, it allows a direct, inductive definition of the se-
mantic interpretation of proof nets — see the definition given in (a”) through
(h"). And second, it brings out the correspondence between applying rules
in L* and adding links to proof nets: there will turn out to be a one-many
relationship between L* proofs and proof nets.

Basically, a proof net is a structure of linked signed categories. For the
product-free Lambek calculus, the following links are distinguished:

(39) — az —az 4+ 7 T+ - - 7
at at ar a4t g bayy e b
b\a a/b b\a a/b

Below, the expressions X, Y and Z will denote sequences of signed cate-
gories, and tc(C) will be used for the sequence of so-called terminal (signed)
categories of a proof net C.

PN, the set of proof nets, is the smallest set satisfying the clauses (a) through
(g) below, which also specify the sequence tc(C) for each C € PN:!8

'8 This definition is based on the definition in Roorda (1991, p. 30), but there are two
differences: (%) the condition ‘X or Y is non-empty’ has been added to clause (b) and
(¢), to the effect that every proof net has at least one terminal category signed ‘—’.
This mirrors the ‘non-empty antecedent property’ of L, i.e., the fact that the left-hand
side of L-derivable sequents is non-empty, a property which was effectuated in (4) above
by requiring that 7" denote a non-empty sequence of categories (Roorda (1991, p. 37)
captures this aspect by a ‘proof net condition’ on the assignment of lambda terms); and
(72) anticipating the semantic interpretation of proof nets, the various cases collapsed
by Roorda have been disentangled. (Note, for that matter, that Roorda collapses too
much: his clauses 2A and 2B — which comprise the clauses (d) and (g), and (e) and (f),
respectively — have the same condition: ‘if 3 and -y are proof nets with terminal formulas t A
resp. uBv’ (t,u,v and A, B range over sequences of signed categories and signed categories,
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(a) at at € PN and at at € PN;

te(at at) = at,at and te(at at) = at,at;

(b) if A € PN and tc(A) = X, —clt_, Z, Y and X or Y is non-empty,
then C' € PN, where C results from applying \1 to @ and Z;
te(C) = X, b—\i—a,Y;

(c) if A € PN and tc(A) = X, b,4,Y and X or Y is non-empty,
then C € PN, where C results from applying /1 to b and 5;
te(C) = X, a7b,Y;

(d) if A € PN and tc(A) = X, a,Y and B € PN and tc¢(B) = Z,—I;,
then C € PN, where C results from applying \2 to —g and a;
te(C) = X, Z,b\a,Y;

(e) if A € PN and tc(A) = X,z,Y and B € PN and t¢(B) = a, Z,
then C € PN, where C results from applying \2 to 41)— and a;
tc(C) = X, b\a, Z,Y;

(f) if A€ PN and tc(A) = X,a,Y and B € PN and tc¢(B) = b, Z

) )
+
b;

then C € PN, where C results from applying /2 to a and
te(C) = X, a7b, Z4,Y;

(9) if A € PN and tc(A) = X,—Ii)—,Y and B € PN and tc¢(B) = Z, a,
then C € PN, where C results from applying /2 to a and 4b—;

te(C) = X, Z,a/b,Y.

The proof nets defined in clause (a) correspond to the axioms of L (where

observation A of section 3 above — entailing the possibility of having only
axiom sequents with atomic categories — has been incorporated), while the
clauses (b), (¢), (d)+ (e), and (f)+ (g) are the proof net counterparts of the

L rules \R, /R, \L and /L, respectively.

On account of the clauses (d), (e), (f) and (g), two separate proof nets

respectively). Since one has to be ‘strict on order and adjacency of premises in proof nets’
(1991, p. 30), however, this will not work for clause 2B, which needs a separate condition,

viz., ‘if B and v are proof nets with terminal formulas At resp. uBv’.)
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can be combined into one: application of \2 and /2 has the effect of inserting
proof net B into proof net A.

Note that for every proof net C, the sequence tc(C) consists of exactly
one category signed ‘4’ and at least one category signed ‘—’. We will call
the unique positively signed category in tc(C) the goal of C, which will be
denoted by go(C). A proof net C' corresponds to a sequent T F ¢ iff

j— - + - j—
T=c1,..,Ci,Cit1,---,Cn and tc(C) = Cit1y.-.yCny Cy Cly .-, Cie

By way of illustration of the definition, consider proof net (40), which cor-
responds to the L-derivable sequent a/b,b/c - a/c; tc(40) is the sequence
listed in (40').

4b_ (40") b7c, a7c, a7b

Proof net (40) can be built up in two ways from the basic proof nets in (41),
which have the sequences of terminal categories listed in (42):

(41) (i) — az (17) ——az (134) m az

C a a

(42)  te(i) =b, b ; te(ii) =¢, ¢ ; te(ifi) =

A first possibility is that we add a /2 link to a in (444) and —g in (), due
to clause (g) (where (i) and (i77) instantiate A and B, respectively). Note
that (4¢7) is inserted into (7). The resulting proof net (43) has the terminal
categories indicated in (43'):

T+
(43) = — (43") b,a,a/b
b a a b/2
a?b

Next, we can add a /2 link to b in (43) and ¢ in (17), due to clause (f)
(where (43) and (4i) instantiate A and B, respectively): (i7) is inserted into
(43). The resulting proof net (44) has the terminal categories indicated in
(44"):
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e+

(44) I _JI;
beped a

b/c a/b

Secondly, we may add a /2 link to b in (z) and tin (2), due to clause (f)
(where (7) and (i7) instantiate A and B, respectively): (i¢) is inserted into
(7). The resulting proof net (45) has the terminal categories indicated in
(45'):

(45) ——= (45') b/e,c, b
beppe
b/c

S

— +
Next, we can add a /2 link to a in (z4¢) and b in (45), due to clause (g)
(where (45) and (i4¢) instantiate A and B, respectively): (ii7) is inserted
into (45). The resulting proof net (46) is identical to (44):

(46) ———=——=7 (46') b/c, <, 4, a/b
be ca abp
b7c (171)

Finally, the addition of a /1 link (by clause (c)) to the categories ¢ and 4
in proof net (44) (= (46)) yields proof net (40).

The above definition of the set PN is equivalent to the following one (in the
sense that PN = PNy), in which two sets, PN; and PNy, are defined as the
smallest sets such that:

(a') at at €PNy and at at EPNy;
~- + ~ 4+ + - + -
te(at at) = at,at and tc(at at) = at,at;
(0') if A € PNy and tc(A) = X, 5, E, Y and X or Y is non-empty,
then C' € PNy, where C results from applying \1 to & and Z;
+
te(C) = X, b\a,Y;
() if A € PNy and tc(A) = X, E,Z,Y and X or Y is non-empty,
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then C' € PNy, where C results from applying /1 to b and jz_;
te(C) = X, a7b,Y;

(d') if A € PNy and tc(A) = X, a,Y and B € PN2 and tc(B) = Z,Z,
then C € PNy, where C results from applying \2 to —lt and a;
te(C) = X, Z, b\a,Y;

(e') if A € PN and tc(A) = X,z,Y and B € PNy and t¢(B) = a, Z,
then C € PNy, where C results from applying \2 to 4I; and a;
tc(C) = X, b\a, Z,Y;

(f") if A€ PNy and tc(A) = X, a,Y and B € PNy and tc(B) = b, Z,

+

—+

then C € PNy, where C results from applying /2 to a and b;
te(C) = X, a/b, Z,Y;
(¢") if A € PNy and tc(A) = X,};,Y and B € PNy and tc¢(B) = Z, a,
then C € PNy, where C results from applying /2 to a and 4I;;
te(C) = X, Z, a?b,Y;
(k') if A € PNy and tc(4) = X, c—zi—t, Y, then C € PNy, where C results from
applying az to ;t and the non-connected occurrence of at in A;

+
te(C) = X, at,Y.

Note (z) that for all A € PN;: go(A) is an atomic category; (iz) that every
A € PNy contains exactly two occurrences of an atomic category at which
are not connected by az, viz., go(A) and one negatively signed occurrence of
at; and (i42) that if C' € PNg, then all occurrences of atomic categories in C
are connected by az. Hence clause (k') yields a C € PN; for every A € PNj.

Let C € PNy be such that go(C) = at. The az link which connects go(C)
with some negatively signed occurrence of at will be called the goal link of
C, and C'~ will denote the structure from which C is obtained by adding a
goal link. Obviously, if C € PNy is obtained from A € PNy by clause (h'),
then A = C"™.

Now, the set PNj is equal to { C™ | C € PN& go(C) € ATOM }, while PNy is
the same set as PN. This is shown by induction on the degree of tc(C):
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e Observe that (b) through (g) and (') through (g') yield structures C with
)

d(te(C)) > 0. Consequently, if d(tc(C)) = 0, then: (i) C' € PN must be due

to (a), therefore C' = at at or C = at at; and (it) C' € PN2 must be due to

(h'), i.e., C is obtained from C~ € PNy, where d(tc(C~)) = d(tc(C)) = 0.

" i
So, C~ € PNy must be due to (a'): C~ = at at (and C = at at) or C~ =

at at (and C = at at).

e If d(tc(C)) > 0, then either (i) go(C) = b\a (or, analogously, a/b); or
(i7) go(C) € ATOM.

o (¢) If go(C) = b\a and C € PN, then tc(C) = X, b4\—a,Y, and — by an
‘easily verifiable’ fact!® — for some A € PN with tc(A4) = X, Z, Z,Y: C can
be obtained by applying (b) to A. Conversely, C' € PNy must be obtained by
applying (b') to A € PNy. Since A € PN iff A € PN3 by induction hypothesis,
we have that C € PN iff C € PNs.

o (i1) If go(C) € ATOM, then C € PN is due to (d), (e), (f) or (g). Suppose
(d) is involved. Then tc(C) = X, Z, bia, Y, and C is the result of applying
\2 to —Ii)— in B € PNand ain A € PN, where t¢(B) = Z,—g and tc(A) =
X, a,Y. By induction hypothesis: B € PNy and A € PNs. Since go(B) = b,
we have that at = go(A). Therefore, A € PNy must have been obtained by
(h') from A~ € PNy, i.e., A with missing goal link. By (d'), we can apply \2
to a in A~ € PN; and 4b— in B € PNy, yielding C~ € PNy, i.e., C' with missing
goal link, which, by (h'), can be added so as to obtain C' as a member of

PNy. (The cases (e), (f) and (g) are analogous.) Conversely, C' € PNy must

19Viz., the proof net version of observation B made in section 3 above: If C € PN and
+ + -
te(C) = X,b\a,Y (or X,a/b,Y), then there is an A € PN with tc(A4) = X,-c}z_, b,Y (or
X, Z, -ziz_, Y') such that C results from applying (b) (or (c)) to A. (Roorda (1991), p. 33)
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have been obtained by (k') from C~ € PN;. Note that tc(C~) = te(C) and
d(tc(C)) > 0, so C~ € PNy must be due to (d'), (¢'), (f') or (¢'). If (d') is
responsible, then tc(C™) = X, Z, b(a, Y, and C~ results from applying \2 to
—g in B € PNy and a in A’ € PNy, where tc(A’') = X, a,Y and tc¢(B) = Z,—lt.
By induction hypothesis: A’ = A~ for A € PN, while B € PN. Therefore,
by (d), we can apply \2 to Z in B € PN and a in A € PN, yielding C~ with
additional goal link — i.e., C — as a member of PN. (The cases (¢), (f') and
(¢') are analogous.) O

It was said above that the definition of the set of proof nets in terms of (a’)
through (h') has two pleasant properties: (z) it allows a direct, inductive
definition of the semantic interpretation of proof nets, and (7¢) it brings out

the correspondence between the application of rules in L* and the addition
of links to proof nets.

As for (7): let u and v be different variables; let the sets of variables occurring
in A and B be disjoint; let w be a variable which does not occur in A and
B; and let A[v:=7] denote the structure which results from A € PN; by
replacing all occurrences of the variable v in A by the term . Then the
semantic interpretation of proof nets can be defined as follows:

(a") at:u at:v €PN; and at:v at:u€PNy;
te(at:u (_1|—t:v) = at:u, at:v and tc((_zbf:v atiu) = ;—t:v, at:u;

(b") if A € PNy and te(A) = X, d:a, b:o,Y and X or Y is non-empty,
then C € PNy, where C results from applying \1 to $:a and b:v in A;
te(C) = X, b—\i—a:)\v.a,Y;

(") if A € PNy and tc(A) = X, Z:’U, jz—:a,Y and X or Y is non-empty,
then C € PNy, where C results from applying /1 to b:v and ¢: e in A;
te(C) = X, a7b:)w.a,Y;

(d") if A € PNy and tc(A) = X, a:v,Y and B € PNy and tc(B) = Z,Z:ﬁ,

then C € PNy, where C results from applying \2 to
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4I;:ﬁ in B and a:w(g) in Afv:=w(p)];
te(C) = X', Z, b\a:w, Y", where X', a:w(B),Y" = te(Afv:=w(B)]);
(€") if A € PN2 and tc(A) = X,Z:ﬁ,Y and B € PNy and tc(B) = a:v, Z,
then C' € PNy, where C results from applying \2 to
—I;:ﬁ in A and a:w(B) in Blv:=w(B)];
te(C) = X, bia:w, Z')Y, where a:w(B), Z' = tc(Bv:=w(B)]);
(F") if A € PNy and tc(A) = X, a:v,Y and B € PNy and te(B) = b:g, Z
then C € PNy, where C results from applying /2 to
a:w(B) in Afvi=w(8)] and b:3 in B;
tc(C) = X', a/b:w, Z,Y", where X', a:w(B),Y" = te(Afv:=w(B)));
(¢") if A € PNy and tc(A) = X,Z:ﬁ,Y and B € PNy and tc¢(B) = Z, a:v
then C € PNy, where C results from applying /2 to
a:w(B) in Blv:=w(B)] and —I;ﬁ in A;
tc(C) = X, Z',a/b:w,Y, where Z', a:w(B) = te(Blv:=w(B)]);
(W) if A € PNy, te(A) = X, at:v,Y and af:y in A is not connected by az,
then C € PNy, where C results from applying az to
at:y and at:y in Afvi=1];
te(C) = te(Afv:="]).

The proof nets C defined in (v"), ("), (d"), ( "y (F"), ( M), and (h") will
be called \1(4), /1(A), \2(4"/*, B), \2(A, B*/*), /2(A*/*, B), /2(A, B*/?)
and az(A), respectively.

Though it is not exactly simple, the above definition is straightforward in
comparison with the indirect semantic interpretation procedure given in
Roorda (1991, pp. 34-38):

First, the set of proof frames PF is defined as the smallest set such that:

(a) if X is a list of signed atomic categories, then X € PF; t¢(X) = X;
(B) if A € PF and tc(A) = X, —5, Z,Y, then C € PF, where C results from
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applying \1 to & and b in A; te(C) = X, b—\i—a,Y;

(C) if A € PF and te(A) = X, b, &, Y, then C € PF, where C results from
applying /1 to b and & in A; te(C) = X, Jb,Y;

(D) if A € PF and tc(A) = X,z, a,Y, then C € PF, where C results from
applying \2 to Z and a in A4; tc(C) = X, b(a, Y;

(E) if A € PF and tc(A) = X, a, —lt, Y, then C € PF, where C results from
applying /2 to a and Z in A; te(C) = X, a?b,Y.

Moreover, a proof structure is defined as a proof frame together with a

linking of all its atomic categories by az links, and a planar proof structure

is defined as a proof structure of which the az links do not cross.?°

Second, for every category occurrence in a proof structure C a lambda term
is constructed:

(1) every category occurrence in tc(C) is assigned a different variable;
(11) the assignment of terms to the conclusions of \2, /2, \1 and /1 links
in C is extended to the premises of these links in the following way:

+ _ o+
b:? azj b:?

7 ay \2
bia:fy a?b:fy

/2

_|_
In \2 and /2 links, the category b is assigned a fresh variable u,

and the term assigned to a is y(u).

+ .7 +

a:j b7 b:7 a:y
+ \1 + /1
b\a:$ a/b:é

2°Though a proof net also consists of linked signed categories of which the atomic ones
are all connected by non-crossing az links, the set of planar proof structures is considerably
larger than the set PN defined earlier. This is due to the fact that on account of the
clauses (B) through (E) above, the links \1, /1, \2 and /2 are allowed to connect any
pair of adjacent (and appropriately signed) categories in a proof structure. The clauses
(b) through (g), on the other hand, have the effect that the links \1 and /1 only connect
adjacent terminal categories of a single proof structure, whereas the links \2 and /2 only
connect adjacent terminal categories of separate proof structures.
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In \1 and /1 links, the respective terms assigned to b and ¢ are
two different fresh variables u and v, and the conclusion term ¢
is rewritten®' as \u.v.

(111) every az link in C' which connects (;—t:'y and at:§ induces a sub-
stitution?? of by §. This substitution is global: it involves all

occurrences of v in C.

23 ‘proof net conditions’ which a proof

Third, Roorda supplies a list of five
structure interpreted in the way indicated in (1) through (111) must observe in
order to be a proof net, and shows that the set of proof nets corresponding to
L-derivable sequents is identical to the set of planar proof structures which
satisfy these conditions. Except for the first one (which requires that there

be exactly one terminal category signed ‘+’), these conditions constrain the

positively signed categories are always assigned variables, so this rewriting of & is
essentially a substitution. Moreover, though Roorda (1991) does not mention this, the
substitution will have to be global: just as the substitution specified in (111) below, it must
affect all occurrences of § in the proof structure. This can be seen as follows:

a:ml(mg)(z‘4) -Ii)_:$4 b:xy z:mg
a?b::l:l(mg) t:ﬁ?g c:xs a-}_b:me
(a/_b)/c:ar:l (a/_lt)/c::cz

Stage (1) yields the initial assignment of z; and w2; the clause for /2 in stage (11) takes
care of the assignment of z1(x3), x3, £1(x3)(z4) and z4. Now, the clause for /1 assigns x5
and ze, substitutes x2 by Azs.ze, assigns x7 and zs, and substitutes ¢ by Az7.xs. If the
latter substitution is local and does not affect the occurrence of zg in Azxs.z¢, then after
(111) (which — globally — replaces xs, s and z4 by z1(x3)(z4), x5, and 7, respectively)
the undesirable term Azs.x¢ is obtained for the goal of the proof net. Global substitution,
on the other hand, will eventually yield the right result, viz., AzsAz7.z((25)(z7).

22Roorda says that v and § are unified but that ~ is always a variable, so ‘the unification
is nothing else than the substitution [of « by 4]’ (1991, p. 35). The notion of unification
is probably invoked for the reason that Roorda wants the process to fail, ‘typically’ when
7 occurs in 4. ‘In that case we draw the conclusion that the proof structure is not a proof
net, and we do not provide a lambda term.” (1991, p. 35). (Note that a substitution under
such circumstances would be impeccable.) However, the fact that this eventuality does
not arise in PNy U PNy kept us from taking over this subtlety.

2In fact, a sixth proof net condition enforces the ‘non-empty antecedent property’
alluded to in footnote 18 above.
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assignment of lambda terms to proof structures.

Their precise contents need not concern us here, since the equivalence of
the interpretation procedures specified in (a”) through (h"”) and (1) through
(111) for members C of the set PNy U PNy can be established directly:?* it
is easy to see that both (1) through (111) and (a”) through (h") license an
assignment of lambda terms to category occurrences in C' € PNy U PNy iff:

e every c occurring in tc(C) is assigned a different variable;

e the assignment to every \1, /1, \1 and /2 link in C is as follows:

v _ +

b:8 a:a(f) \2 a:a(f) b3ﬁ/2
b{a:a a?b:a
+ 7 T+
oy bivy\y 71’;” 7 /1; and
b\a: \v.y a/b: Av.y

- +
e if an az link connects at:y and at:§, then «y is identical to 6.

Do proof nets consitute a solution to the problem of spurious ambiguity?
Observe that the proof net semantics defined above in (") through (k") is
closely related to L*, viz., via the function k from L* proofs to the power
set of PNy U PNy which is defined below.

As before, we let 7[T:T' F c:v] represent that 7 is an L* proof with
interpreted conclusion sequent T:T" I c:+y.

o k(at*:vt at:v) = {at:v at:u|u#v}U{at:u at:v|u#v}

o for w[b:v, T:T' t- a*:a: k(T:T’ |—7Tb\a*:)\v.oz \R]) = {\1(4) | A € k(m)};

o for w[T:T',b:v - a*:al: k(T:T' I—Wa/b*:kv.a [/R]) = {/1(A)| A € k(m)};

o for m[T:T'+ b*:0] and mo[U:U',a*:v,V:V'F at:v]:

24Strictly speaking, the set PN; transcends the range of the clauses (1) through (1Ir),
because its members fail to be proof structures. However, they can be incorporated easily,
for instance by allowing (1) through (III) to operate on members of the set PO (of proof
objects): the smallest set which includes the set PF defined above and is closed under the
operation of adding az links.
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k(gl U, T:T' b\a*:w,V:V'H at:'y[v::w(gi] N\L]) =

(\2(A™/", B) | A € k() & B € k(m) & te(B) =T:T", b: 8} U

(\2(4, B/?) | A € k(m) & B € k(m2) & te(B) =a:v, V: V', at:u, U:U"};

k(gl U a/b¥:w,T:T'V:V'+ at:’y[’u::w(gi] /L) =

{/2(A"/, BY | A € k() & B € k(my) & te(B) =b: B, T:T'} U
{/2(A, B/?) | A € k(m) & B € k(m2) & te(B) = V: V', atiu, U: U, a:v};

™

77! *. i vai . . * =
o for 7[U:U",a*:v,V:V'F at:v]: k(U:U’,a:v,V:V'l—at*I’)’[ )=

{az(A)| A € k(n)}.

Next, for (non-asterisked) interpreted sequents T': T" I c:+, we define the
set ep(T:T" + c:) of cyclic permutations of T:T' I c:7, as follows:

ep(T:T'F ciy) = {fg:Tz',t:fy,’flle' | T:T' =T1:T],T»: Ty }.

Note that a proof net C corresponds to a sequent T : T + ¢ :«y if and
only if t¢(C) € ep(T : T' F c:v). By a straightforward induction on the
length of 7 (which will be omitted here) it can be proven that for L* proofs
m[T:T"+ ¢*:v] and p[U:U, c*:0,V:V'F at:v]:

k(r) = {C €PNy | te(C) € ep(T:T"F c:7)}; and

k(p) ={A€eprNy | forsome u: tc(A) € cp(U:U',c:v,V:V'F at:u)

and at:y occurs not connected by az in A}.

So, the function k assigns a subset of PNy to every L* proof of a sequent
with an asterisked goal and a subset of PNy to every L* proof of a sequent
with a non-asterisked goal.

Moreover, the set {k(m) | 7 is an L* proof } partitions PN; U PNg, for
(z) it is obvious that every C' € PNy U PNy is a member of at least one k(7);
and (77) Theorem 2 (see section 4 above) entails that every C € PN; U PNy
is a member of at most one k(7).
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Now, since for every L-derivable sequent cj:v1,...,c,:v, F c:7y there is
one L* derivation of ¢ :v1,...,c, v, - c*:9' such that v = v/ and since for
a sequent ¢1:v1,...,¢n 0y iy the set ep(cr:vi, ..., cn:vy F ci7y) contains
n+1 members, the above means that every reading of an L-derivable sequent
ci,...,¢n F ¢ corresponds to n + 1 proof nets.

Accordingly, there are four proof nets for the sequent ¢/c,c¢/c,c F ¢, and
eight proof nets for s/(n\s), (n\s)/n, (s/n)\s I 5.2 Note that the proof nets
in (47) make up k(31), and that the proof nets in (48) and (49) constitute
k(32) and k(33), respectively.

(47)

La(ye)  caly(@) eyle) oyl Gz o
c/cz c/cy
cx bay(e)  cz(y@) Eyl) oyl o
c/e:z c/cy
cylz) bz cx o eay(n)  czy(@)  eyl)
c/ey c/e:z
ciz(y(z))  Cy(x) eyl bz ez Ea(y(x)
c/e:z c/ey
(48)

et
3|
3+
|
3+
]
et

s n\s nis

§ s/(n\s) (n\s)/n (s/n)\s

25 As above (cf. footnote 10), we identify all proof nets which differ only with respect to
the particular variables assigned.
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(49)

n 3 ¥ n " s
5711 g g ’rL—i\—S nis _Tt
(s/n)\s § s/(n\s) (n\s)/n
+ - o~ + + o~
- T + _ _ +
n\s n s/n s s n\s
(n\s)/n (s/n)\s 5 s/(n\s)
+ = + - = +
- + - i _
s n\s n\s n s
5/(n\s) (n\s)/n (s/n)\s 5
+ o~ + - o~ +
- + - 4 + -
s n\s n\s n s/n S
s s/(n\s) (n\s)/n (s/n)\s
n 3 ¥ n " s
s7n s s n—i\—s nis _r'i
(s/m)\s 5 s/(n\s) (n\s)/n
+ - o~ + + o~
- T + _ i +
n\s n s/n s s n\s
(n\s)/n (s/n)\s § s/(n\s)



-t
S|
S+
W |
S+
N
-t

s n\s nis

s/(n\s) (n\s)/n (s/n)\s

wt

If s/(n\s), (n\s)/n, and (s/n)\s are assigned the variables u, v and w, then
the term u(Au’.w(Aw'.v(u')(w'))) is assigned to the positively signed termi-
nal category s in the proof nets listed in (48), and w(Aw'.u(Au'.v(u')(w"))) is
assigned to the positively signed terminal category s in the proof nets listed
in (49).

Roorda (1991, p. 27) claims that

a proof net can be considered as a parallellized sequent proof
and as such it lacks the spurious ambiguity of (even Cut-free)
sequent proofs. A proof net is a concrete structure, not merely
an abstract equivalence class of derivations [...].

However, we have just seen that the set of proof nets has to be partitioned
into equivalence classes if it is to serve as a solution to the spurious ambiguity
problem: for every reading of an L-derivable sequent cy,...,¢c, - ¢, there
are n + 1 proof nets.

Of course, these n + 1 proof nets are equivalent in that they make up
a set of cyclic permutations. But on the one hand, one cannot isolate one
specific representant — e.g., the proof net with its positive terminal category
in rightmost position — from this set, since one has to be strict on order
and adjacency of premises in proof nets, so that all these permutations are
required for the definition (cf. clause (b) and (c)). And on the other hand,
it is not possible to consider this set of permutations as a monolithic object,
since sometimes a specific representant (e.g., the proof net with its positive
terminal category in rightmost position — cf. B in clause (d)) has to be
isolated from this set.

So, ironically, it is the proof net approach which has to resort to ‘abstract’
equivalence classes, whereas sequent normalization (as well as partial deduc-
tion) associates one concrete object with each interpretation of a derivable
sequent: its L* (PD) proof.
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6 Encoding Atomic Categories

Ponse (1988) proved that LP derivability in an atomic goal category can be
mimicked by LP derivability using one atomic category only. LP refers to
the Lambek calculus with Permutation, which is also known as Lambek-Van
Benthem calculus.?® In the present section we will show that (a generaliza-
tion of) this result can be extended to L, the Lambek calculus proper: L
derivability in any category can be mimicked by L derivability using one
atomic category only. More formally:

Let the set AT consist of the distinct atomic categories aty,..., aty, let at
be an atomic category, and let CAT,r and CAT(,) be the sets of categories
based on AT and {at}, respectively. Then there is a substitution o replacing
every at; € AT by a ¢; € CAT {44} such that for all ¢1,...,¢,,c in CAT,r:

(50) c1,...,¢q FL cif and only if o(cq,...,cn) b1 o(c).

If 0 is a substitution and « is a category or a sequence of categories, then
the expression o(a) denotes the result of performing o to a. The atomic
category at will be abbreviated as t in the sequel.

The proof of theorem (50) is organized as follows. First, the calculus
L* will be used for establishing the facts (51) and (53), which express use-
ful properties of L-derivable sequents that will be exploited throughout.
Next, a Lemma will be proven which concerns the non-derivability of cer-
tain sequents that involve categories built up from the categories (t/t)/t,
((t/t)/(t/t))/(t/t) and atomic categories different from ¢. This Lemma is
then shown to entail Claim 1, which states that the categories (¢/t)/t and
((t/t)/(t/t))/(t/t) can be used to encode two atomic categories, viz., t and
some other atomic category, also in the presence of yet other atomic cat-
egories. Finally, the substitution ¢ employed in Claim 1 is generalized in
Claim 2: by means of a substitution o(; 41, 4s,,), any finite number of
atomic categories t, at1, ..., at,, can be encoded in terms of ¢.27

26See Van Benthem (1986; 1991).
*"The above theorem follows from Claim 2, since the following substitutions will meet
the requirement specified in (50):

® 0 aty,..at,) if t @ AT (note that any category based on AT is based on AT U {t});

® O aty,.., ati_1,atiyy,..., aty) if t € AT and AT = {atl, oy ati—,tatipr, ..., atk}.
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We start by putting each category ¢ in CAT,r into an equivalence class
lep\-.\ei\at/cpy1/...[cprq].- Let ¢ and ¢q,...,¢psq be members of CAT,;
(where p + ¢ > 0), and let at € AT. Then:

c€lep\..\a\at/cpi1/...[cpiq] iff

(a) ¢ = at and p+ ¢ = 0;
(b) c=cp\ and ¢’ € [¢p_1\...\e1\at/cpy1/.../cprq]; OF
() e={/epyqgand ¢ € |gp\..\e1\at/cpi1/.../cprq—1].

The sets [c,\...\c1\at/cpi1/.--/cptq) partition CAT,;.2® Note that the fol-
lowing claims hold:

(61) Ifce [ep\...\a1\at/cpi1/-../cpiq], then
Tryciffer,... 0T, cpigy---,cpy1 FL at.

(62) U,c*,V Fpx at and c € |¢p\...\c1\at' [cpi1/.../cptq] iff
at' =at; U=T1,....,Tp; V=Tptq,---, Tpt1;
and for all 7, 1 <+ <p+q: T; by ¢;*.

Both (51) and (52) are proven by induction on p + g.

As for (51):

o If p+ g =0, then the claim is trivial.

e If p+q > 0, then (i) ¢ = ¢,\¢ and ¢’ € |cp_1\..\c1\at/cpt1/.../cpiql;
or (i1) ¢ = ¢ [eprq and ¢ € |g\...\e1\at/cpi1/.../cpyq—1]. We only treat
(), since (4z) is analogous. Note that the following claims are equiva-
lent: (1) T br cp\d; (2) T Frx cp\*; (3) ¢, T bFpx %5 (4) ¢, T b1 5
(5) ¢1y---y¢py Ty Cpygy---,¢pr1 FL at. Theorem 1.1 (see section 3 above)
yields the equivalence of (1) and (2) as well as (3) and (4); the equivalence
of (2) and (3) is due to L*; and (4) and (5) are equivalent on account of the
induction hypothesis. O

As for (52):

28 Different categories ¢ and ¢’ are members of the same set | ¢, \...\c1\at/cpt1/-../Cptq]
iff c and ¢’ have the same final atomic value (viz., at) and the same series of left-hand side
(¢py- .-, c1) and right-hand side (¢p+1, ..., Cp4q) arguments, but combine with these argu-
ments in a different order. The set |t\t/(t/t)/t], for example, consists of three categories:

(a) ((BA\)/(t/8))/¢, (b) (E\(¢/(2/t)))/t and (c) t\((/(¢/1))/1).
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ep+q=0. Then U,c*,V by at must be an axiom at* Fp* at; so at’ = at
and U and V are empty.

ep+q>0. Then (i) c = ¢\ and ¢ € |cp_1\...\c1\at'/cpi1/.../cpiq]; OF
(it) ¢ = ' Jeprq and ¢ € [cp\...\c1\at'/cpi1/.../cprq—1]. We only treat (i),
since () is analogous. The sequent U, ¢'/cp14*, V I at must be derived by /L
in L*. Hence U, /cpiq*, V b at i U, *, V' Frx at and Tpiq Frx cpig™,
where V' = Ty, 14, V'. By induction hypothesis: U, c'*, V' -y« at iff at’ = at;
U=T,...Tp; V! =Tpiq-1,.-.Tpt1; and for all i such that 1 < i < p+g—1:
T; b c*. O

Given (52), suppose that 7' by, at. This holds iff 7' by at* by Theorem 1.1
(see Section 3 above). The sequent T+ at* must have been derived by the
* rule in L*. Therefore, T = U,¢,V and U,c*,V k1 at. Now, for some

Cly.- s Cpigyat’s ¢ € |ep\...\a\at'/epy1/.../cprq). By (52), we have that
at' = at; U =T1,...,Tp; V =Tpig,- .-, Tpt1; and for all i, 1 < i < p+g¢:
T; b1 ¢;*, which is equivalent to T; b, ¢; by Theorem 1.1. Summing up:

(63) T by atiff thereisa c € [¢p\...\c1\at/cpt1/.../Cptq] such that T =
Ti,...,Tp,¢,Tptqy---sIpt1 and for all 3, 1 < < p+q: T; Iy, ;.

Let A be a set of categories. In the sequel we will say that c is an A-
category iff ¢ is built up from categories in A.2° We will abbreviate sequences
t/t,...,t/t consisting of n occurrences of the category t/t as (¢/t)".

Lemma: let A be the set {at1,...,atg, (t/t)/t, ((t/t)/(t/t))/(t/t)}, where
aty,...,at; and t are distinct atomic categories; and let T' be a non-empty
sequence of A-categories. Then:

(a) Ta t |7(L 1
(b) for all n € IN: T, (t/t)" t/1, t; and
(c) T,t/t,t /L t.

Proof of (a) and (b): by induction on m, the number of occurrences of

aty,...,aty, (t/t)/t and ((¢/t)/(t/t))/(t/t) in T.

em=1. Then T = at; (1 <i<k); T=(t/t)/t; or T = ((¢t/t)/(t/t))/(t/t):

2That is, the set of A-categories is the smallest set A’ such that (i) A C A’; and (i7) if
c€ A and ¢ € A', then ¢/c’ € A" and c'\c € A’.
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(a) ati, ¢ i/ & (¢/)/t, i/ 8 and ((¢/1)/(t/1))/(t/1), ¢ Y .

(b) That T, (t/t)" t/L t can be shown by at-count, a notion introduced in
Van Benthem (1986). Let at € AT. Then at-count|c] is defined as follows: for
¢ € AT, at-count[c] = 1 if ¢ = at, while at-count[c] = 0 if ¢ # at; at-count[a/b]
= at-count[b\a] = at-count|a] — at-count[b]. Moreover, at-count|cy, ..., cy]
= at-count[c;|+. ..+ at-count[c,]. A useful property of L-derivable sequents
T + cis that for all at € AT: at-count[T'] = at-count[c]. (The proof proceeds
by an easy induction on the length of the derivation of T | ¢.)

Note that t-count[(t/t)/t] = —1; that t-count[((¢/t)/(t/t))/(t/t)] = 0;
and that for all ¢ € {1,...,k} and n € IN: t-count[at;| = t-count[(¢/t)"] = 0.
Hence t-count[(t/t)/t, (t/t)"] = —1 and t-count[((t/t)/(t/t))/(t/t), (t/t)"] =
t-count|at;, (t/t)"] = 0. On the other hand, t-count[t] = 1. So, for all n € IN:
ati, (L/1)" Y, 1 (1]1) /1, (1", 15 and ((1]0)/ (1) (t]1), (t2)" /s 1.

e m > 1. Note3? that if ¢ is an A-category and c€ |cp\...\c1\t/cpt1/ -/ Cpiql,
then (i) cpy1 = cpr2 = t, 50 ¢ € [p\...\e1\t/t/t/cpi3/ .../ cptql; OF (i1) cpia
=t and cppo = cpy3 = t/t, s0 c € | \..\c1\t/t/(t/t)/(t/t)]/cpsa/ .-/ Cprql-

(a) Suppose T, t 1, t. By (53), thereis a c € |cp\...\c1\t/cps1/-../cptq] such
that Tt =Ty,...,Tp,¢,Tpiqy--.,Tpr1 and for all 4, 1 <4 < p+gq: T} b, ¢;.
Since T is non-empty, this ¢ cannot be the rightmost category ¢ in T, t. Hence
c is an A-category in T" and either (i) ¢ € [¢p\...\c1\t/t/t/cpt3/ ../ Cptql; OF
(i1) ¢ € [cp\..-\e1\t/t/(t/t)/(t/t)/cp+a/.../cptq]. Focus on T, s. On the one
hand: if (7), then cpy2 = t, so Tpyo b1, t; and if (i2), then ¢pp0 = t/t, so
Tpi2 b1, t/t. On the other hand: Tp,i2 is non-empty, since Tp12 Fr, cpyo;
Tp+2 is a sequence of A-categories, since t in T',t is part of Tp41 (which must
be non-empty since Tpi1 b1, ¢pi1); and T,i2 contains less occurrences of
ati, ..., atg, ((t/t)/(t/t))/(t/t) and (¢/t)/t than T, since ¢ occurs in T but
not in Tp 9. Therefore, the induction hypothesis for (b) (n = 0) yields that
Tp+2 171 t, while the induction hypothesis for (a) yields that T},19,t t/1, t.
Because t/t € |t/t], the latter entails — by (51) — that Tp,12 /1, t/t. So, both
(z) and (27) lead to contradiction, which means that 7't /1, t.

(b) Suppose T, (t/t)" F1, t. By (53), thereisa c € |[¢p\...\c1\t/cpt1/.../Cptq]
such that 7', (¢t/t)" =T1,...,Tp, ¢, Tptqs-- -, Ipt1 and for all i, 1 < i < p+g¢:

30This is easily seen by induction on the number of occurrences of ati, ..., atg, (t/t)/t

and ((/8)/(¢/t))/(¢/t) in c.

65



T; b1 ¢;. Since T is non-empty, this ¢ cannot be a category in (¢/t)". Hence
c is an A-category in T and either (i) ¢ € [cp\..\c1\t/t/t/cpt3/.../Cptql;
or (it) ¢ € |¢cp\...\c1\t/t/(t/t)/(t/t)/cp+a/-.-/cptq].- Focus on Tpyq. On the
one hand: both (i) and (i4) entail that c,41 = t, so Tpq1 Fr t. On the
other hand: 7,41 cannot be of the form (t/t)™ for m < n, since (t/t)™ and
t have different ¢-counts; hence T}, consists of a non-empty subsequence
T of T followed by (t/t)", where T contains less occurrences of aty, ...,
aty, ((t/t)/(t/t))/(t/t) and (t/t)/t than T, since ¢ occurs in T' but not in
Tp+1. Therefore, the induction hypothesis of (b) yields that 7", (¢/t)" t/1, t in
both cases. Since T”, (t/t)" = Tp+1, we have a contradiction. Consequently,

T, (t/t)™ tu t.

Proof of (¢):

Suppose T,t/t,t by, t. By (53), there is a ¢ € |cp\...\c1\t/cps1/-.-/Cptq)
such that T, t/t,t = T1,...,Tp, ¢, Tptq,---,Tpt1 and for all i, 1 <i <p+gq:
T; 1, ¢;. Since T' is non-empty, this ¢ cannot be ¢/t or ¢ in T,t/t,t. Hence
c is an A-category in T and either (i) ¢ € [cp\...\c1\t/t/t/cpt3/.../Cptql; OF
(5) ¢ € Lep\-\er\e// (/1)) (/1) cpra )l pra-

Suppose (). Then on the one hand: cpy9 = ¢, so Tpy2 b1, t. But on the
other hand: T} b, ¢ entails that T}, is non-empty and includes at least 2.
Hence t/t must be part of (a) Tp41 or (b) Tpi2. Suppose (a). Then T, o is a
sequence of A-categories which is, moreover, non-empty since T}, 12 k1, ¢p12,
so that Tp 9 by, t contradicts Lemma (b) (n = 0). Suppose (b). Then T}, 2
consists of a sequence T” of A-categories followed by t/t and T' must be
non-empty since t/t /1, t, so that T2 b1, t contradicts Lemma (b) (n = 1).

Suppose (7). Then on the one hand: c,13 = t/t, so Tpys b1, t/t and
Tp+3,t FL t by (51). But on the other hand: T},11 Fr, t entails that T, is
non-empty and includes at least ¢. Hence ¢/t must be part of T4 or Tpyo.
Anyway, T}, 3 is a sequence of A-categories which is, moreover, non-empty
since Tp43 L ¢py3, so that T, 3,t b, t contradicts Lemma (a).

All cases lead to contradiction, so T',t/t,t b/, ¢t. O

Corollary:
(1)  There is no sequence S of A-categories such that

S t,t =T".T",T', where T" b, t/t, T" br t/t and T' by, t.
Suppose the contrary. Then T, T" and T" are non-empty, so the second ¢
in S,t,t is part of T', and the first ¢ is part of T" or T". Either way T" is
a non-empty sequence of A-categories. But T"" by, t/t entails 7"t b, ¢ by
(51), and the latter contradicts Lemma (a).
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(2)  There is no sequence S of A-categories such that

S,t/t,t/t,t =T",T', where T" 1, t and T" by, t.
Suppose the contrary. Then T" and T" are non-empty, so the category ¢ in
S,t/t,t/t,t is part of T, so that T" = S, (¢/t)™, where m € {0,1,2} and
S’ is (a subsequence of) S. But then T" t/1, t, since (t/t)™ t/1, t by t-count,
and for non-empty S’: §',(¢/t)™ I/1, t by Lemma (b).
(3)  There is no non-empty sequence S of A-categories such that

S,t,t =T",T', where T" Iy, t and T" b, t.
Suppose the contrary. Then T" and T are non-empty, so the second ¢
in St,t is part of 7", and (z) T = S,t; or (iz) T = S’ and non-empty
S" is (a subsequence of) S. Now, (ii) contradicts Lemma (b) (n = 0),
and (z) contradicts Lemma (a) for non-empty S. Hence S is empty (and
T =T' = 1),
(4)  There is no non-empty sequence S of A-categories such that

S,t/t,t/t,t =T", T",T', where T" by, t/t, T" b t/t and T' by, t.
Suppose the contrary. Then T"', T" and T' are non-empty, and T" is
not a subsequence of S, since T" by, t/t entails that 7" ¢t Fr, ¢t by (51),
contradicting Lemma (a). So T"" includes the first ¢/t in S,t/t,t/t,t — but
not the second one, for then 7" or T’ would have to be empty. Hence
T" = S,t/t (so that T" = t/t and T' = t) and S is empty, since S, ¢/t by, t/t
entails S,t/t,t 1, t by (53), and the latter is impossible for non-empty S on
account of Lemma (c).

Let t and aty be two distict atomic categories. The following claim shows
that the compound categories (t/t)/t and ((¢/t)/(t/t))/(t/t) can be used for
encoding t and atg, respectively.

Claim 1:

Let the set AT = {t, ato, aty, ..., aty} consist of distinct atomic categories;
and let o be the substitution [t:=(t/t)/t; ato:=((t/t)/(t/t))/(t/t)]. Then
for all T, c in CATup: T b, ¢ iff o(T) b1 o(c).

Proof: by induction on d(T F c), the degree of T - c.

e d(T'F ¢) = 0. Then the categories T,c are members of the set AT =
{t, aty, at1, ..., atr}, while the categories o(T'),o(c) are members of the set
AT = {(t/t)/t, ((¢/t)/(t/t))/(t/t), aty,. .., atr}, and the claim holds in view
of the fact that both for T, c € AT and for T,c € AT' we have that T -y, c
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entails that 7' = c¢. This is straightforward for T, ¢ € AT (by at;-count for
at; € AT). For T, c € AT":

o If T by, atj and 1 < j < k, then for ¢ € [¢p\...\e1\atj/cpy1/.../cprq): T
=T1,..., Ty, Tptq,- -, Tpt1 (and for all 4, 1 < i < p+¢q: T; Fr, ¢;) by
(53). The only member of AT in [cp\...\c1\at;/cpt1/.../cptq] is atj, and
atj € |at;]. Therefore, p+q =0 and T = at;.

o If T by, (t/t)/t, then T,t,t 1, t by (51), since (t/t)/t € [t/t/t]. By (53),
for ¢ € [¢p\...\c1\t/cpt1/...[cprq): Tht,t =T1,..., Tp, ¢, Tpiqs. .., Tpt1 and
foralls, 1 <i<p+q: T;FL c;. For ¢ € AT, this entails () ¢ = (¢/t)/t
and ¢ € [1]1/t]; or (i) ¢ = (1/0)/(t/0)/(4/8) and & € [t]t(t/0)/(t]1)).
If (i), then T, ¢t,t = ((t/t)/(t/t))/(t/t), S,t,t and S,¢,t = T",T", T', where
T" bty t/t, T" Fr t/t and T' b1, t — which is impossible by Corollary
(1). So, assume (i). Then T',t,t = (t/t)/t,S,t,t and S,t,t = T",T', where
T" by t and T' b1, t — which, by Corollary (3), entails that S is empty and,
consequently, that T = (¢t/t)/t.

o If T ki, ((¢t/t)/(t/t))/(t/t), then T, t/t,t/t,t Fr t by (51), due to the
fact that c € [t/t/(t/t)/(t/t)]. By (53), for ¢ € [cp\...\c1\t/cp+1/.../Ccpiq]:
T, t/t,t/t,t = Th,..., Tp, ¢, Tptqy---,Tp+1 and for all i, 1 < ¢ < p+ ¢
T; FL ¢, so that again (i) ¢ = (t/t)/t; or (ii) ¢ = ((¢t/t)/(t/t))/(t/t). If
(1), then T, t/t,t/t,t = (t/t)/t,S,t/t,t/t,t and S,t/t,t/t,t = T",T', where
T" 1, t and T' 1, t — which is impossible by Corollary (2). So, assume
(12). Then T,t/t,t/t,t = ((t/t)/(t/t))/(t/t),S,t/t,t/t,t and S,t/t,t/t,t =
T T",T', where T" by, t/t, T" by, t/t and T' b1, t — which, by Corollary
(4), entails that S is empty and, consequently, that T = ((¢/t)/(t/t))/(t/t).

ed(TtFc)>0. If c€ CAT,p and c € |¢p\...\c1\at/cpy1/.../cpiq], then:

(A) ate{aty,...,aty} and o(c) € [o(cp)\...\o(c1)\at/o(cpt1)/ ../ o(Cptq) ]
(8) at = t and 0(c)€ Lo{ep)\ -\ \H/t/t/0(eps1) /o7 eprg) ; o7

() at = atgand o(c) € [o(cp)\...\ao(c1)\t/t/(t/t)/(t/t)/o(cps1) /-] (Cptq) ]

Since p+¢q > 0 or p+ g = 0, six cases can be distinguished:

oc€ [cp\...\e1\atj/cpt1/-..[cprq), 1 <j<k,and p+ g > 0:

T I—L C lffl Cl,...,cp,T,CP+q...,Cp+1 |_L atj
iffo o(c1,...,¢p, T, Cptq---,Cpt1) Fr o(at;) =
oletyooy e, T Cpyg -y Cpt1) FL at; =
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o(c1),...,0(cp),0(T),0(cptq) ---,0(cps1) Fr at;
iffs o(T) 1, o(c).
‘iff;” and ‘iffs’ hold by (51) (since ¢ € [cp\...\c1\at;/cpt1/-../Cptq], While
a(c) € lo(ep)\--\o(a)\atj/o(cpt1)/--[o(cptq) ] due to (A); and ‘iffy” holds
by induction hypothesis (d(ci,...,¢p, Ty cpyq--- cp41 F at;) < d(T F ¢),
because p + g > 0).

océ€ |e\...\e1\t/cps1/.../ptq] and p+q > 0:

Thyciffy e1,...,¢p, T Cpg---scpp1 FL E
iffy o(c1,. .. ¢p, Ty Cpig---,Cpt1) FL o(t) =
o(cty o s¢p, Ty Cpig---rcpt1) FL (E/1) ]t
iffy o(c1,. .., ¢p, Ty Cpiq---rCpt1), Lt Lt =

o(cr),---,0(cp),0(T),0(cptq) ---,0(cpy1),t,t FL t
iffy o(T) 1, o(c).
‘iffy’, iffs” and iffy” hold by (51) (c € [cp\...\c1\t/cpt1/.../cprql, (t/t)/T €
[8/t/1), and o(0) € Lo{ep)\\TN//4/5(Eps2) - leppay] i to (B)):

and ‘iffy” holds by induction hypothesis (since p + g > 0).

oc€ [ep\...\a\ato/cpt1/.../cprq] and p+¢q > 0:
Tryciffy c1,...,¢p, T cpyg---,cpy1 L atp
iff o(c1,...,¢p, Ty Cpig---,cpt1) Fr o(aty) =
olctre s Ty rg o repsn) 1 (410 (1/0)/(t]1)
iffy o(c1, ..., ¢p, Ty Cpig---yCpt1), b/t t/E t FL t =
(cl)a ofc ) o(T),o (CP-HI)"'aa(cp+1)7t/t’t/tvt kLt
iffy o(T) t1, a( )-
‘iffy’, iffs” and iffy’ hold by (51) (since ¢ € |¢p\...\c1\ato/cpt1/---/Cpiql,
((t/t)/ (/1)) /(t/t) € [t/t/(t/t)/(t/t)] and — on account of (C) — o(c) €
La(cp)\...\a(cl)\t/t/(t/t)/(t/t)/a(cp+1)/.../o(cp+q)J); and ‘iffy” holds by in-
duction hypothesis (since p + g > 0).

oc€ |atj| and 1 < j <k:
T b at; iffy for c € [¢p\...\c1\at;/cpt1/.../cpyql:
T:Tl,...,Tp,C,Tp+q,...,Tp+1
and forall:, 1 <:i:<p+gq: T; b ¢
iffy for c € |¢p\...\e1\atj/cp1/.../cpiql:
T:Tl,...,Tp,C,Tp+q,...,Tp+1
and for all i, 1 <: <p+¢q: o(T;) Fr o(c)
ity for o(c) € [o(cpN\o-\0(e1)\at3/0(cp11)/ /o (cpsa)
o(T) = o(T1),. .. ’G(Tp)a o(c), U(TP+Q)’ s ’G(TP-H)
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and for all i, 1 <i<p+q: o(T;) Fr o(c)
iffy U(T) F1, at;.
Note that at; = o(at;), and that ‘iff;” holds by (53); ‘iffs” holds by induction
hypothesis (d(T" Fy, at;) > 0 entails that p + ¢ > 0, hence d(T; Fr, ¢;) <
d(T by, atj) for all 7); ‘iffs” holds by (A); and ‘iffy” holds by (53).

océ€ |t]:
T by tiffy for c € [ep\...\c1\t/cpt1/...[Cptql:
T = Tl,...,TP,C,Tp+q,...,Tp+1
and for alli, 1 <i<p+gq: T;FL ¢
iffy for ¢ € [¢p\...\c1\t/cpt+1/.-.[Cptql:
T = Tl,...,Tp,C,Tp+q,... ,Tp_|_1
and for all 1, 1 <i <p+gq: o(T;) Fr o(c;)
iffs for o(c) € |o(cp)\...\o(c1)\t/t/t/o(cpt1)/ ../ o(cptq)]:
U(T) = U(Tl)a s ,U(Tp)’ U(C)’ U(TP-H])’ s aU(TIH—l)
and for all i, 1 <i<p+q: o(T;) FrL o(c;)
iff4 O'(T),t,t |_L t
iffy; o(T) k1, (t/t)/t.
Note that (t/t)/t = o(t), and that ‘iff;’ holds by (53); ‘iff2” holds by induction
hypothesis; ‘iffs’ holds by (B); ‘iffs” holds by (51) (since (t/t)/t € [t/t/t]);
and the ‘only if” part of ‘iff4’ is an application of (53) (since ¢ b1, ). As for
the ‘if” part of ‘iffs’: if the final value of o(c) is ¢, then either

o(¢) € [o(ep)\--\a(e)\E/L/ (t/8)](t/8) [0 (cps1) ] [0 (cpig) ] or
o(0) € Lo(ep)\\{eON/t/t/0(cp 1)/ T (Cpig) -

Hence if o(T),t,t b1, t, then, by (53), either
() for some o(6) € [o(ep\\o{ex)\t/8/ (/1) (1]0) o (cps) /o (eps )]
B U(T)’ it = G(Tl), Tt ,G(Tp)a U(C)’ U(TP-H])’ Tt ,G(TP-H)a T”,a T”a Tla
—foralli, 1 <i<p+q: o(T;) Fr o(c;), and
~T" b t/t, T" by, t/t, and T' b, t; or
(i2) for some o(c) € |o(cp)\...\o(c1)\t/t/t]o(cpt1)/.../o(cprq)]:
- o(T),t,t = o(Th),...,0(Tp),0(c),0(Tptq),---,0(Tpt1), T", T,
~foralli, 1 <i<p+q: oT;) b1 o(c), and
~T"Fg tand T' b1, t.
However, (¢) is impossible by Corollary (1), and Corollary (3) entails that
(12) is only possible if 7" = T" = t.
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o c€ |atg]:
T by, atg iffy for c € |, \...\c1\t/cpt1/ ./ Cprql:
T = Tl,... anaC;Tp—}—q,- .. ,Tp+1
and for all 7, 1 <: <p+q: T; by, ¢
iffy for ¢ € |¢p\...\c1\ato/cpt1/ ./ Cpiql:
T = Tl,... ,Tp,c,Tp+q,. .. ,Tp+1
and for all i, 1 <i <p+q: o(T;) k1, o(c)
ity for 0(c) € [7(ep) \-\o (e1)\1/8/ (1)) (6/2) [0 (e 1) S () )
o(T) = o(T1),--.,0(1p),0(c), 0 (Tptq)s - - - s 0 (Tp41)
and for all 7, 1 <i <p+q: o(T;) b1 o(c;)
iffy o(T), t/t,t/t,t by t
iffs o(T') Fr ((¢/)/(¢/1))/(t/1).
Note that ((¢/t)/(t/t))/(t/t) = o(aty), and that ‘iff;’ holds by (53); ‘iffy’
holds by induction hypothesis; ‘iffs’ holds by (c); ‘iffs’ holds by (51) (since
((¢/t)/(t/t))/(t/t) € |t/t/(t/t)/(t/t)]); and the ‘only if’ part of ‘iffy’ is an
application of (53) (since t/t b1, t/t and t b, t). As for the ‘if’ part of ‘iffy™:
again, if the final value of o(c) is t, then either

o(¢) € lo(ep)\-\T(ONL/(t/0)](1]1) [0 (ep1) [ (epig) ) or
o(0) € Lo(ep)\e\ e\t /t/(cp1) ] T (Cpia) |-

Hence if o(T'),t/t,t/t,t F1, t, then, by (53), either
(¢) for some o(c) € [o(cp)\...\o(c1)\t/t/t/o(cpt1)/ ..[o(cptq)]:
-o(T),t/t, t/t,t = o(Th),...,0(Tp),0(c),0(Tptq)s-- - 0(Tp41), T", T,
—for alli, 1 <i<p+gq: o(T;) b o(c;), and
—T"Fytand T' by, t; or
(i) for some o(c) € [o(cp)\...\o(cr)\t/t/(¢/)/(t/t)[o(cpt1)/- /o (Cpq)]:
—o(T),t/t, t/t,t = o(Th),...,0(Tp),0(c),0(Tpiq)s---r0(Tps1), T", T", T,
~foralli, 1 <i<p+gq: o(T;) b1, o(c), and
~T" by t/t, T" by, t/t, and T' by, t.
This time, (7) is impossible by Corollary (2), and Corollary (4) entails that
(iz) is only possible if 7" = T" = t/t and T' = t. O

T)’
T)

Finally, the following claim shows that one can generalize the substitution
used in Claim 1 to encode any finite number of atomic categories. Let, for
c € CAT and n € IN:

Ble) = ((¢/e)/(¢/e))[(c/e);
a(e) = (¢/c)/¢
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a%(c) = ¢; and
a™t(c) = a™(a(c)).

Claim 2: Let A = (¢, aty,...,aty) be a sequence of distinct atomic cate-
gories such that m > 1, and let 04 be the substitution

[t=a™ (2); aty = (@™ (1)); . atni= B (1),
Then for all T, ¢ in CAT(y o4, ... at,,}: T FL ¢ iff 04(T) Fr 0a(C).
Proof: by induction on m.

e m = 1. Then Claim 2 comes down to Claim 1 (with aty and k instantiated
as at; and 0, respectively).

e m > 1. Observe (i) that o4(c) = 0'4(0’(c)) for the substitutions o'y =
[t:= o™ 1(t); aty := B(a™ D=1();.. s atpy_1 := B(a™ D=1 (4))] and
o'y = [t:=a(t); aty,:=pF(t)]; and (4) that o'y(c) = oa/(c) for the sequence
A" = (t,atq,...,aty,—1). Consequently, we have the following equivalences:
oa(T) Fr oa(c) iffy oy (o4(T)) Fr oy (o4 (c))

iffy 0’4 (T) b, o’y (c)

iﬁ3 T l_L C.
‘iff;” holds by observation (z); ‘iffy” holds by induction hypothesis and ob-
servation (i) (note that m —1 < m, and that o4(c) € CAT{; a1, ... at,n_,} if
€ € CAT{y qt,,..,atn}); and ‘iffs’ is another application of Claim 1 (with atg
and k instantiated as at,, and m — 1, respectively). O
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