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Abstract

A second order extension of Lambek’s sequent calculus for categorial grammars is presented.
‘We show that sequents provable with the Cut-rule can be proved without the Cut-rule as well.

1 Introduction

We will be concerned with a second order extension of Lambek’s [7] sequent calculus for categorial
grammars and the issue of Cut Elimination. Therefore, it is convenient to begin with a description
of the Lambek calculus.

To build syntactic types or categories, Lambek [7] uses the binary connectives ‘/’ and ‘\’; first
proposed by Bar-Hillel[1].! He refers to categorial reductions as sequents and defines the accepted
categorial reductions by a close variant of Gentzen’s sequent calculus for implicational propositional
logic. This is Lambek’s calculus, L(/:V):

(Az) T =z
Uy,V =z T=z T,z=vy
(/L) Uy/z, T,V = 2 (/R) T =>y/z
U,y,V = 2z T=>=zx z,T =y
(L) UT,z\y,V =z (\R) T = z\y

Here U,T,V are sequences of categories (U,V possibly empty), w,z,y are categories. With regard
to the names of the rules, ‘L’ and ‘R’ stand for left and right.

L/"Vstands out amongst other categorial grammars that make the same choice of connectives for
several mathematical and practical reasons. For example, there are soundness and completeness
results for the ‘standard interpretation’ of categories = as sets [z] C A* of strings over an alphabet

In common with several authors, we omit Lambek’s product connective (denoting concatenation) and use the
name Lambek calculus for what is really the product-free calculus.
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A, and connectives inrerpreted as [z/y] = {a : a € A*,a-b € [z] for each b € [y]}, and cor-
respondingly for \, where - is concatenation of strings. Buszkowski[2] showed that for this (and
similar) interpretations, we get L(/>\) |- z1,..., x, = y if and only if [z1]-...[z,] C [y] using - as
elementwise concatenation. Another interesting aspect is that via the Curry-Howard isomorphism,
an operational, semantic significance can be given to each proof of the calculus, where differing
proofs of a single sequent can have a differing operational meanings. This has the practical benefit
(potentially at least) to solve the linguistic puzzle of scope ambiguities that are not accompanied
by syntactic ambiguities.

However, certain aspects of linguistic coverage have eluded all those who have proposed purely
Lambek grammars. One is full coverage of extraction constructions, with Lambek grammars always
failing to cover non-peripheral extractions (eg. the (man); who Dave told e; to leave). Second, only
the scope-ambiguities of peripheral quantifiers are covered (eg. every student made one mistake).
Third, there is no purely Lambek grammar account of cross-categorial coordination, and other
constructs that need schematic categories. The standard approach is to add a coordination (axiom)
schema to the grammar, such as z,and,z = z, with a pure Lambek grammar being used to assign
some category to the strings to be coordinated.

Given the completeness result for L{/*\), a categorial grammar solution to these problems can only
be reached by restricting the possible interpretations using further axioms and rules and possibly
an expansion of the categorial language.? Moortgat[8] has, for example, proposed a connective that
would deal with non-peripheral extraction, and a further connective to deal with the quantifier
problems. Emms[3] proposed a single, simple generalisation of L(:\) to a polymorphic calculus that
enables all of the above problems to be solved. The reader is refered to [4] for demonstrations and
arguments why it constitutes a better solution to the above problems of linguistic coverage than
others that have been proposed.

In this polymorphic extension of the calculus, added to the categorial vocabulary are category
variables and the possibility of their quantification. For example, we will have such categories as
VX (X/X) that could be used as the category of a negation operation working uniformly for all

categories X. Then added to L’V are left and right rules for V, to give what will be called
L(/7\7V) :3

Ualy/Y],V = 2 (VR) T=z if Z is not free in T and
UvYz,V = 2 T = VY.z[Y/Z]’ Y is not free in VZ.x

(VL)

In the premise of the (VL) rule, a category y is substituted for a variable. Whether this y may
contain quantifiers is a parameter that may be varied in the definition of the calculus. The paper
will be concerned with the calculus that results when no restriction is placed on y.

The calculus extended with both universal and existential quantifiers will also be called ‘Second
Order Lambek Calculus’, because of its connection to second order propositional logic.

1.1 Cut Elimination and Categorisation

The concern of this paper is not a linguistic, but a technical one: whether there is a Cut Elimination
theorem for the second order calculus. The question is whether any new sequents would be derivable

2There are solutions to these problems that are not in any sense categorial, and an ever present obligation is to
find reasons to favour categorial over non-categorial solutions.
3In addition to [3], existential quantification will be also considered in later sections.
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if the following ‘Cut’ rule were added to the calculus:

U,z,V = =z T==z
UT,)V =z

(Cut)

The fact that no new sequents are derivable by the addition of Cut is called the Cut Elimination
property. In logical calculi, this is an important property because it says that the use of lemmata
in reasoning, useful to structure and shorten proofs, can in principle be avoided in favour of ‘direct’
proofs — although typically at the price of a blow-up in proof size.

In Lambek calculi, Cut Elimination has a similar relevance, reducing indirect to direct ways of
parsing — even without an increase in proof length. Parsing here is done with respect to the following
definition of syntactical categorisation for a sequent categorial grammar.

Where L is a sequent calculus, we might define ‘grammar’ and ‘categorisation’ as follows. A gram-
mar, G, is an assumed or ‘lexical’ assignment of (finitely many) categories to words. Reading
G |- s : y as ‘according to G, s has category y’, one would say G |- s : y, if (i) s is lexically assigned
y, or (ii) s is the concatenation sy - - - s, of n > 1 words s; with G |- s; : ;, and L |- 21, ...,2, = y.
Call z;,...,x, = z a ‘categorising sequent’ for s - - - s,, if the z; are lexically assigned to the s;.

Given this definiton of categorisation, one can show that Cut Elimination means that for any
grammar G, the decidability of categorisation (the question whether G |- s : z) reduces to the
decidability of sequent provability (the question whether L |- ).

A quick illustration of this follows. Consider deciding whether G |- sys3 : z, where s; and sy are
lexically assigned the categories z and y. One can first check whether the categorising sequent is
provable, that is whether L |—z,y = z. If it is, then G |- s152 : 2, and the parse tree would be that
n (1 a). However, if L |fz,y = z, that does not immediately imply that G |£s;s2 : z. For if there
are z' and y' such that z = z', y = v/, and 2',y’ = z were L-derivable, then G |-s;s2 : z. The
associated parse tree is shown in (1 b). Call this latter route to categorising s1s2 as z a ‘non-flat’
categorisation strategy.

a S1 So b S1 52

Ty oy

(1) 2 oy
z

So parsing with respect to the natural definition of categorisation requires one to decide whether
the ‘non-flat’ categorisation strategy will succeed. However, there is a problem in deciding this in a
straightforward way because there are infinitely many z' and y' such that L |-z = z', y = y'. This
would appear to open up a gap between the decidability of sequent provability and the decidability
of categorisation.

The Cut Elimination theorem?® closes this gap in the following way. If the string can be categorised
with the non-flat strategy, then there is a Cut-based proof of the categorising sequent. For example,
the parse tree (1 b) implies the existence of the following Cut based proof of z,y = 2:

4Taking [z] to be the set of strings assigned category z, soundness of L would give [z1] -+ - [z~] C [¥]-
5The completeness of the Cut-free calculus with respect to the interpretation of categories as sets of strings offers
an alternative argument why the ‘non-flat’ strategy is not needed.
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y=>y 2y =z
Cut

'y =z
Cut

T,y = 2z

But given Cut Elimination, a Cut-based proof of the categorising sequent implies the existence of
a Cut-free proof of the same sequent. This means that to decide the categorisation question for a
given string, it is sufficient to check simply the derivability of the categorising sequent, and thus the
decidability of categorisation is reduced to the decidability of sequent provability.

1.2 Degree of a Cut versus Proof Size

Before giving our proof of Cut Elimination, we note some difficulties for straightforward attempts
at a proof. These explain why section 2 begins by redefining the calculus somewhat.

Using L as neutral between L{/"Vand 1L(/\'¥) (these formulated as Cut free), one can say that Cut
Elimination will hold if we can show:

IL-U,z,V=>wand LT = z, then LI-U,T,V = w. (3)

To obtain a proof of Cut Elimination for L(/*\), Lambek basically adapted Gentzen’s proof for
propositional logic. This involves showing the above by induction on $(U,z,V,w,T), where f(y) is
the complexity of y as measured by a count of connectives.

With the second order Lambek calculus, induction on §(U, z,V,w,T) runs into a difficulty in the
case where the main connective of z is introduced in the last steps of the proofs of both T' = z and
U,z,V = w. If z contains a quantifier, say z = VY z, we would be considering a pair of sequents
with proofs

U z[y/Y],V =w T=z
(VL) —  (VR), (Y not freein T')
UVYz,V = w T =VYz

and attempting to show that (3) holds for these two sequents, assuming (3) for all cases of com-
plexity strictly less than n = §(U,VY 2, V,w,T). The natural move is to consider the substitution
throughout T' = z of y for Y, and show substitution for free variables preserves derivability. Given
that Y is not free in T, this would be the sequent T' = z[y/Y] and this, together with the as-
sumed provable U, z[y/Y],V = w, forms a pair instantiating the pattern that (3) concerns. So
if (U, 2[y/Y],V,w,T) < mn, we would have by induction, a proof of U,T,V = w. However, this
requires that f(z[y/Y]) < #(VY z), which does not hold in cases like y = VX (X/X) and z = X/X.

(As an aside, we note that for the restricted version of the calculus where quantifiers are not allowed
but for universal ones in prefix position, the straightforward extension of Lambek’s method will
actually yield a proof of Cut Elimination. In this case, y above is quantifier-free and so f(z[y/Y]) <
#(VY z) will hold if quantifier-rank is made the essential part of the complexity.)

In spite of the above set back to Lambek’s method, one can show that (3) actually holds for the
unrestricted second order calculus. The tactic is to do so not by induction on §(U, z, V,w,T), but by
induction on the size of the proofs of U,x,V = w and T = x, with the size of a proof taken to be
the number of nodes in it. Looking back at the above case, one can see that there will be no block
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just as long as substitution for free variables not only preserves derivability, but also preserves size.

However, in showing that substitutions preserve proof size one apparently needs that changes of
bound variables preserve proof size as well. But changes of bound variables will not be size preserving
for the calculus as presented. For example, VX (X/X) = VX (X/X) has a proof of size 1. By
a change of bound variables we obtain VX (X/X) = VY (Y/Y), which has proofs of size larger
than 1 only. (One cannot simply avoid this by requiring axioms to be quantifier-free, since then
substitutions of quantified formulas into axioms will not be size preserving.) We see three ways to
escape from this difficulty:

1. An obvious way to get around it would be to consider categories as equivalence classes modulo
renaming of bound variables. For doing the cut-elimination proof, we prefer a simpler syntactic
notion of category.

2. Change of bound variables preserves provability, so it can be added as derivable rule, CBV.
Ignore CBV nodes in proof size. Then, concerning L{/>\:¥)4+ CBV, show that substitution is proof
size preserving. This will allow a proof of Cut Elimination for L¢/*\"¥)4 CBV, which together with
the eliminability of CBV, entails Cut elimination for L{/:\:¥). The details have been checked, but
will not be given here.

3. Reformulate the calculus so that bound and free variables are always distinct, making thereby the
definition of substitution simpler. A proof of size preserving substitution is then possible, leading
to a proof of Cut Elimination. This is the way taken in sections 2 and 3. It has the advantage that
one can easily give a bound on the size of the cut-free proof in terms of the proof at hand.

In the final section of the paper we demonstrate that the Cut Elimination proof for the reformulated
calculus entails Cut Elimination for the calculus as formulated above.

2 The Second Order Lambek Calculus

To avoid renaming of bound variables during substitutions, we assume two disjoint infinite lists of
variables. We use F'V(z) for the set of variables occuring in z that are taken from the first list (of
free) variables —ranged over by Y and Z—, and BV (z) for the variables occuring in z that come from
the second list (of bound variables) —ranged over by X. The result of replacing all occurrences of
the free variable Z in x by the bound variable X is denoted by x[X/Z]. The variable clashes this
may lead to are excluded by clause (iii) of the following definition.

Definition 1 Formulas (or syntactic categories) are inductively defined as follows:

i) Fach free variable Z is a formula.
i) If x and y are formulas, so are (z/y) and (z\y).

1) VXT and 3XZ is a formula, if z is a formula and & = z[X/Z], where X is a bound and Z a
free variable such that Z ¢ FV(QXz) for each subformula QXz of z with Q € {V,3}.

Henceforth we write QX.z[X/Z] for the formula QX z with z = z[X/Z]; in particular Z then does

not occur in subformulas 3Xy and VXy of z.

Note that if X is from the list of bound variables, z[X/Z] need not be a formula, as it may have
occurences of the ‘bound’ variable X that are not in the scope of a quantifier 3X or VX. Let us call
such an expression a pseudo-formula.
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For a pseudo-formula z and a formula y, we always have FV (y) N BV (z) = (), so that substitution
z[y/Y] of the free variable Y in z by y can be defined without change of bound variables:

Y[y/Y] =y Z[y/Y)] =Z forZ#ZY
(/2)[y/Y] = (2ly/Y]/z[y/Y])  (2\2)[y/Y] = (zly/Y]\2[y/Y])
(VX2)[y/V] = VX 2ly/V] (3X2)[y/¥] = 3X.2ly /Y]

Here we used Z for both free and bound variables. Since z in the quantified formulas in general is
not a formula, we have to define substition z[y/Y] for pseudo-formulas z.

Definition 2 The rules of the second order Lambek Calculus are the following. We use z, y and

z for formulas, X for bound and Y and Z for free variables, U and V for arbitrary and T for
nonempty lists of formulas.

Uyz,V = z T=z

(42) Tz (Cut) UT,)V = z
L) (/R o

o Dpvor o fo o P
(VL) U,ZB?E:J[G(Y;];’K ;}:i z (VR) T ij;;;[vX/Z] z
e S

The side condition Z! means that Z must not be free in the lower sequent.

3 Preservation of Proof Size under Substitution

By F* T = w we mean that T' = w has a derivation with at most n nodes in the proof tree.

Lemma 1 For every number n, sequent T = w, formula y and free variable Y,
FrT = w = F* Tly/Y] = wly/Y].
Proof by induction on the number n of nodes in the derivation of T = w. The claim is obvious for
n = 1, since axioms x = z are allowed not only for atomic, but also for complex formulas z.
Suppose it is shown for n, and let a derivation of 7' = w with n 4+ 1 nodes be given, denoted by
n+1
T = w.
Since the other cases are obvious by induction, we only consider the cases where the last step in
this derivation uses one of the quantifier rules. First note that where Z ¢ FV(z,y,Y),

(QX.2[X/Z))ly/Y] = QX.2[Z/Z]ly/Y][X/Z] (4)
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Case (VL): We have a derivation

U,z[z/Z],V = w

L) XWX/ 2V >

By induction, there is a derivation
Uly/Y),2[z/Z][ly/ Y], VIy/Y] = wly/Y].
Choose Z ¢ FV(z,y,Y). We then have
zlz/Z)ly/ Y] = 2[2) Z)ly/ Y [=ly/ Y]/ Z]
and hence we can add a (VL) step to the above derivation to get:

(VL) Uly/Y],2[z/Z][y/Y],V]y/Y] = wly/Y]
Uly/Y],YX.2[Z/Z]ly/Y][X/Z),V]y/Y] = wly/Y]

which establishes the claim using (4).
Case (IR): (Similar to (VL).) We have a derivation

T iw[z/Z]
T = 3X.2[X/Z]

(3R)

By induction, there is a derivation

n

Tly/¥] = o[/Z]ly/Y).

Choosing Z ¢ FV (z,y,Y), we have (5) again, and hence we can add a (3R) step to get:

Tly/Y] = 2lz/Z][y/Y]
/Y] = 3X.22)2)ly/ YIX] 2]

(3R)

which establishes the claim by (4).
Case (VR): We have a derivation

.n

(VR)

T=>zx 1
v A

T = VX.2[X/Z]

Choose Z ¢ FV(T,x,y,Y). By induction there is a derivation

- N

TIZ/ 2y /Y] = o[Z/Z)[y/Y]
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of Tly/Y] = :E[Z/Z][y/Y], using that Z ¢ FV(T). By the choice of Z, we can add a (VR) step to

the above derivation to get:

n

Tly/Y] = o[Z/Z]u/Y] 4,
WIY) = VX.2Z/ 2/ VX 2] 2

(VR) 7

which establishes the claim by (4).
Case (3L): (Similar to (VR).) We have a derivation

n

Uz, V=w
OL) T axex/Z.v 5 w

Choose Z ¢ FV(U,x,V,w,y,Y). By induction there is a derivation
U[Z/Z][y/Y],m[Z/Z][y/Y],‘V[Z/Z][y/Y] = wlZ/Z][y/Y]

of U[y/Y],m[Z/Z][y/Y],V[y/Y] = wly/Y], using that Z ¢ FV(U,V,w). By the choice of Z, we
can add a (3L) step to the above derivation to get:

n

ar) — U/YLalZ/Z /Y] VIy/Y] = wly/Y] g,
Uly/Y),3X.2[Z/Z]ly/Y][X/Z],V[y/Y] = wly/Y] "

which establishes the claim by (4). O

4 The Cut-Elimination Theorem

We are now ready to prove the Cut Elimination property. As motivated in the introduction, we
proceed by induction on the proof sizes of the premises of a cut.

Theorem 1 If a sequent is provable using (Cut), it can also be proved without using (Cut).

Let F} denote provability with a derivation with at most n nodes and exactly k applications of (Cut).
The first lemma is an instance of (3), claiming that cuts can be eliminated when their premises have
cut-free proofs. It’s statement also mentiones a bound on the size of the cut-free proof in terms of
the size of the original proof using (Cut). This is not just for external reasons, but actually needed
in establishing the lemma, since the induction hypothesis has to be used twice in one of the cases
(see case 5, subcvase v = z/y below).

Lemma 2 If-7 T,0,11 = w and F§ A = v, then 7" T, AT = v.

The second lemma says that removing an application of (Cut) will also remove a node in the
derivation tree. Hence, adding the (Cut)-rule does not reduce the minimal proof sizes of provable
sequents.
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Lemma 3 IfF T = w, then F} * T = w.

The cut-elimination theorem follows immediately from Lemma 3.

Proof of Lemma 3: If k¥ > 0, choose a topmost application of (Cut) in the given derivation of
I' = w, i.e. one whose upper sequents are derived without using (Cut). Using Lemma 2, replace
this subderivation of the lower sequent by a cut-free derivation. This gives a new derivation of
I' = w which shows I—Z:ll T = w. By induction, the remaining cuts can be reduced similiarly. O

Proof of Lemma 2. The proof is by induction on m + n. By [ :: » We here denote a cut-free
derivation of I' = w with at most n > 1 nodes.

Assume
m n
and
oIl = w A=’
in order to show
m+n
AT = w.

We distinguish several cases.
Case 1: m = 1. Then I',v,1I = w is obtained by (Az),so T = II = @), v = w, and the second

. m4+n

-n
assumption .  is used as rAT = w.

Case 2: n = 1. Then A = v is obtained by an application of (Az), so A = v and we can use

- m « m+4n

F,v,fl = w as F,A‘,H = w"
Case 3: m,n > 1 and the last step of , ::: , does not introduce the main connective of v.

Then the last step of , ::: , uses a left-rule, which is one of the following:
Subcase (/L): We have derivations

:nl :"2

:m UyV=av T=a
F,U,Hiw and (/L) U,y/iﬂ,T,V?’U

L m4n
By induction on m +n; < m +n, there is . U ViII 1:> ., and hence by an application of (/L)

. m+ny . na

(/L) F,U7y,V,H=>w T=>$
ru,y/z,T,V,I1 = w )

Note that this is a derivation of I'; A, II = w with at most m + ny + ns + 1 = m + n nodes.
Subcase (\L): Similar.
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Subcase (VL): We have

I n—1

cm U,zly/Y],V = v
LovII=w and (vL) UVXz[X/Y],V = v.

By induction on m + (n — 1) < m + n, we get

I m4n—1

T, U,aly/Y], V.1l = w

L) S VX2l X V.V > o

Subcase (IL): We have derivations

I n—1

:m UzV =
ronse 24 GDg IX.2[X/Z],V = v

Choose Z ¢ FV(I'II,w,U,3X.2[X/Z],V,v), so that z = x[Z/Z][Z/Z] By Lemma 1, there is a
(cut-free) derivation
n—1
UlZ/2),2[Z/2),V1Z]Z] = v[Z/Z]
of U7I[Z/Z],V, = v, whence by induction on m + (n — 1) < m + n there is
m—+n—1
U, z[Z/Z],V,l = w’
Since 3X.z[Z/Z][X/Z] = 3X.2[X/Z] and Z is not free in T, U,3X.2[X/Z],V,Tl = w, we obtain

. m+n—1

T,U,z[Z/Z],V,T1 = w

OL) 0 axax/ 7V > o

Case 4: m,n > 1 and the last step of F,mﬁm:} . does not introduce the main connective of v.

Subcase a) The last step is a right rule. For some connective o we then have derivations

Im—1
MoIl' = w
(o) Lol =w A =

By induction on (m — 1) + n < m + n, there is a derivation

I m—14n

MAI =

(OR) 2=y 7

T,AI= w
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In case o is V and w = VX.z[X/Z], we can assume that the side condition on the variable Z is
satisfied for this new application of (VR): otherwise, if Z € FV(A), choose a fresh variable Z such
that z[X/Z] = z[Z/Z][X/Z] and first apply [Z/Z] to the derivation of T, v,II = w.

Subcase b) The last step is an application of a left-rule. We then have, for some connective o €

{/,\,V, 3}, two derivations

:ml :mz

I'"olll 5w T=z ‘n
(L) Lol = w and A=’

where the subderivation in brackets is missing for o € {V,3}.

By induction on m; + n < m + n, there is

L mitn . Mo
A =>w T=z
(L) A= w

If o is 3, we can satisfy the side condition on the quantified variable as in the previous case.

Case 5: m,n > 1 and the last steps of . Hm:> » and 5 ::7; , introduce the main connective of v.
Then these last steps are corresponding left- and right-rules for one of the four connectives.

Subcase v = y/z: We have

. mi . mo . n—1

Uy, V =>w T=>zx Az =y
(/L) U,y/z, T,V =>w and (/R) A=>ylx’

By induction on m; + (n — 1) < m + n there is
mi4+n—1
UAz,V = w,
and since m; + my +n — 1 < m + n, we can use induction again to get

. mi+motn—1

UAT,V = w.

Subcase v = z\y: Similar.

Subcase v = VX.z[X/Z]: For some Y and Z with £[X/Y] = 2[X/Z] we have derivations

im—1

Uzly/YL,V =>w
UVX.ZX/Y],V =>w

cn—1

and  (VR) A=z Z!

(vL) A = VX .z[X/Z]

Lemma 1 applied to the second assumption yields

s n—1

A :> zly/Z].
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Since z[X/Z] = #[X/Y] gives z[y/Z] = Z[y/Y], by induction on (m — 1) + (n — 1) < m + n we get

I m—14n—1

UAV = w.
Subcase v = 3X.z[X/Z]: For some Y and Z with z[X/Z] = Z[X/Y] we have

Lm—1 In—1

Tz,lI=>w ' A = £[z/Y]
GOl saxaiznsw 20 @ GR 355xsx7

By Lemma 1 we get a derivation
m—1
L[z/Z],2[2/Z],11[2/Z] = w(z/Z]

of T',z[z/Z],11 = w. Since z[X/Z] = £[X/Y] implies z[z/Z] = Z[z/Y], by induction on (m — 1) +
(n — 1) < m + n there is a derivation

I m—14n—1

T,AT = w.

5 Relation to the Simpler Presentation of the Calculus

The purpose of this section is compare the system just considered with the simpler system of
the introduction based on just one infinite list of variables rather than two. The systems will be
henceforth referred to as L; and L.

Definition 1 Formulas (or syntactic categories) of Ly are inductively defined as follows:

i) Each variable X is a formula.
#) If z and y are formulae, so are z/y and (z\y).

11) If  is a formula and X is a variable, then VX and AXz are formulae.

The rules for L; were given in section 1, with the omission of the (3L) and (3R), which rules should
be clear from the corresponding L, rules. The notions of free and bound variables for L; and
the definition of substitution are the usual ones, with substitution involving a renaming of bound
variables (with respect to a given enumeration of the variables) to avoid clashes.®

Definition 2 (Substitution)

1. X[a/X]=a
2. (b1/bs)[a/X] = bi[a/X]/bs[a/ X], correspondingly for *\’

6See Hindley and Seldin[6]
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VXb)[a/X]=VXb
VYb)[a/X]=VY (bla/X]) f Y € FV (a) or X & FV(b)
VYb)a/X]|=VZ(b[Z/Y][a/X]) if Y € FV(a) and X € FV(b), where Z is the ‘first’ variable

not occurring free in b or a

3. (
4- (
5.

Where z contains an occurrence of VX.z, and z’ is the replacement in z of VX.z by VY.2[Y/X],
Y ¢ FV(z), we shall say ' comes from z by a change of bound variable, notated z ~; z'. Then
z ~ 7' if ' comes from z by a finite, possible empty, series of ~; steps. For reference purposes we
note the following, where X, Y and Z are distinct variables:”

(i) Z & FV (a) implies a[Z/X][b/Z] ~ a[b/X]

(ii) Y ¢ FV(b) implies ale/Y][b/X] ~ afb/X][e[b/X]/¥]
(iii) a ~ a’, b ~ b implies a[b/X] ~ a'[b'/X]

(iv) if 2[X/Y] ~ y then for some ', z ~ z', y = 2'[X] Y]
(

v) ~ is an equivalence relation

LY will be used to refer a restriction of L; that allows only zero-complexity axioms. We have the
following three lemmas:

Lemma 4 (Basic axioms)
(i) L1 - T = z implies LY - T = =z,
(ii) L1 + Cut |- T = z implies LY + Cut - T = =

Lemma 5 (Preservation of derivability under ~)
(i) if L1 | r, then for any ', r ~v', Ly |- 7/,
(i1) if Ly + Cut |- r, then for anyr', r ~7¢', Ly + Cut |- 7’

Lemma 6 (Preservation of derivability under substitution) For any category, a, for any vari-
able Z,

i)if L1 - T = =, then Ly | T[a/Z] = z[a/Z]

(1) if L1 + Cut |- T = =z, then Ly + Cut |- T[a/Z] = z[a/Z]

The Basic Azioms lemma is very easily shown. For the proofs of the other two lemmas see the
Appendix. They can be used in showing an equivalence between L; and Lo.

We will identify the BV (resp. F'V) set of Ly variables with the even (resp. odd) L, variables. We
will say concerning L; sequents that s ~» s’ if s’ comes from s by changes of bound variable and
substitutions of fresh (i.e. not all ready present) variables for variables. When the bound variables
of a sequent are even and the free variables are odd, we will call it clean. We have the following (for
proof see Appendix):

Lemma 7 (L; and L, equivalence) Where s and s' are Ly and Ly sequents such that s ~ s',
(’L) L1 |— S ZﬁLg |— SI
(’Ll) Ll + Cut |— S Zﬁ Lz + Clut |— s!

This lemma together with Cut Elimination for Lo entails Cut Elimination for L;. For suppose L;
+ Cut |- s. Then for some s', such that s ~ s', Ly + Cut |- s', so Ly | s', s0 Ly |- s.

7when no variable bound in a is free in Z,b, ¢, (i) - (ii) become identities
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Concluding Remarks and Problems

. It is easily seen that the cut elimination theorem also holds if we allow the associative product
connective - to build formulas, together with the proof rules

Uyz,y,V = 2

(- L) U=z, V=y
Uz -y, T,V = 2 )

UV=z-y

(- R)

. The question whether a given sequent is provable in the second order Lambek calculus remains
open. By the Cut elimination result, decidability of provability for the calculus including ( Cut)
is reduced to the same question for the calculus without (Cut). In contrast to the first-order
case, cut elimination seems not to guarantee a finite search space for proofs, since apparently
there is no useful ‘subterm property’ because of (VL) and (3R).

Note that Gabbay[5] proved the undecidability of second order intuitionistic propositional
logic. However, this does not directly apply to the second order Lambek calculus with its
different quantifier rules and missing structural rules.

. A particularly interesting fragment of the second order calculus is the one where all quanti-
fiers in formulas must be universal ones in prefix position. Cut-elimination for this fragment
apparently does not follow from Theorem 1, because in a cut-free proof of a sequent of the
fragment, formulas quantified away in the (VL) and (IR) rules need not belong to the the
fragment. However, it is easily checked that its proof works as well for this fragment, — even
the straightforward extension of Lambek’s proof by induction on the complexity of Cuts does.
Again, the question whether decidability of provability holds for this fragment is left open.

. We have not discussed semantics of the quantifiers. The ‘standard semantics’ using sets of
strings as the value of categories can be extended by interpreting V and 3 via intersection and
union, or least upper and greatest lower bound in residuated partially ordered groups (c.f.
Buszkowski[2]). However, there is some doubt whether arbitrary intersection and union give
the right denotations from a linguistic point of view. We leave a treatment of the semantics
to further investigations.
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7 Appendix

7.1 Proof of Change of Bound Variable

Proof For part (i) of the lemma, it suffices to show that c.b.v.’s preserve derivability in L?, which
we show by induction on the number of nodes. A proof of size 1 must be £ = z, where z has
zero complexity, and then = bears the relation ~ only to itself, so there is nothing to show. So now
suppose the statement is true for all proofs of size less than some h, and consider some arbitrary
proof, v of size h, with root r, and some x chosen in r as the category to undergo the c.b.v.
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We can make a first division into cases according to whether the category, z, in r is the active
category. In the case that z is not the active category, then r is concluded by some rule R, from
some r1, containing z, and possibly one further sequent, r5. See proof (6a) below:

a 1 2 b 1 2

ri[z] T2 rife'/x] 2
(6) r[z] r[z'/x]
1) is of size less than h, and so by induction there is an L? proof, 1'), of 7 [z'/z] for any z’ ~ x. The
rule R will allow the deduction of the desired r[z'/z] from ri[z'/z] and r3. See proof (6b) above.

Now suppose that z is the active category. We make a division into cases according to the particular
inference introducing the main connective of z. The cases for the slash connectives are trivial, so
we consider just the quantifier cases, and of these just the V cases, as the 3 cases are parallel.

e z =VX.y and z is an antecedent. We have for ~y, a proof of the following form, of size h:
1
U,yla/ X,V = w
[a/ X] VL
UVX.y,V=>w

We must consider all z such that VX.y ~ z, for which the following observation is necessary:

if VX.y ~ 2z then z =VX'y'[X'/X], where y ~y' and X' ¢ FV (VX.y)

Proof of the observation: By induction on the length of the sequence of ~; steps linking
VX.y to z. There are two cases to be considered for a 1-step c.b.v. on VX.y, according
to whether the bound variable undergoing the change is bound by a quantifier in y, or is
bound by the outermost quantifier, VX .

Inner: VX.y ~; VX.y', where y ~; 3. Clearly VX.y' is of the desired form.
Outer: VX.y ~ VX' y[X'/X], if X' & FV(y). Because y ~ y, VX' y[X'/X] is of the
desired form if X' ¢ FV(VX.y), which follows from X' & FV (y).

So now suppose that for sequences of ~; steps of length < n, any z derived from VX.y
by such a sequence is of the desired form, and consider an arbitrary sequence of length n.
So at the penultimate step we have a z,_; of the form VX'.y'[X'/X], where y ~ y',and

X' ¢ FV(VX.y). We consider the two possibilities for the nth step:

Inner: VX'y'[X'/X] ~1 VX'.®, where y'[X'/X] ~1 ®. Therefore for some y". y' ~ y",
® = y"[X'/X]. By the transitivity of ~, y ~ y". Therefore, VX'.®, ie. VX' y"[X'/X],
is of the desired form.

Outer: VX'y'[X'/X] ~1 VX" y'[X'/X][X"/X'], where X" ¢ FV(y'[X'/X]). Now
X' ¢ FV(VX.y) implies y'[X'/X][X"/X'] ~ ¢'[X"/X]. So for some y", y' ~ y",
Y [X'/ X X"/X'] = y"[X"/X]. So, VX"4'[X'/X][X"/X'], i.e. VX".4"[X"/X] will
be of the desired form if X" ¢ FV(VX.y). We have X" ¢ FV (y'[X'/X]), which implies
X" ¢ FV(y[X'/X]). Unless X" = X, this implies X" ¢ FV(y), which is sufficient for
X" ¢ FV(VX.y). It X" = X, then clearly also X" ¢ FV(VX.y)

End of proof of the observation
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The proof establishing the claim then is:
1
U, y'[X'/X][a/X'],V =>w
UVX'y'[X'/X],V = w

The inductive hypothesis guarantees the upper proof, using y[X'/X][a/X'] ~ y[a/X] (because
X' ¢ FV(VX.y)).

e £ =VX.y and z is an succedent. We have a proof of the following form, of size h:

1

T=uy
T = VX' y[X'/X]
We must consider all z such that VX'.y[X'/X] ~ z, where X' € FV(VX.y), for which we use

the following observation:

X ¢ FV(T), X' ¢ FV(VX.y)

if VX' y[X'/X] ~ z, where X' ¢ FV(VX.y), then z = VX" 4'[X"/X], y ~ ¢, X" &
FV(VX.y).

This follows from the observation that was made in the preceding case. The proof which
establishes the claim is:

1

T=4qy
T = vX"4/[X"/X]

The existence of the upper subproof is given by induction. That X" ¢ FV(VX.y'), follows
from X" ¢ FV(VX.y).

VR X ¢FV(T), X" ¢ FV(VX.y')

To show part (ii) of the lemma, it is sufficient to show that c.b.v’s preserve derivability in L? + Cut,
the proof for which will be exactly like that above with the addition of the case for Cut, which will
be trivial.

FEnd of Proof

We have shown that c.b.v’s preserve derivability in L; (and L; + Cut). Therefore, the addition of a
CBYV rule to Ly (or L; + Cut) would yield no new sequents. The other rules of L; will be referred
to as its ‘logical’ rules.

7.2 Proof of Substitution

Proof For part (i) of the lemma, it suffices to show the corresponding property for L; + CBV, which
we do by induction on the size of the proof, this time defining size to ignore CBV steps. It turns
out to be necessary to prove that size is preserved in the substitution. L; + CBV will be referred

to as L{BY.

Proofs of size 1 can consist only of a possibly empty series of CBV steps leading from an axiom form
sequent, x = z. First consider the case that there are no CBV steps. Then we simply observe that
z[a/Z] = z[a/Z] is still an axiom form sequent, and has a size 1 proof. Now suppose for some n,
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we have preservation of derivability under substitution for proofs consisting of an axiom followed by
less than n CBYV steps. Consider a proof, of r,,, consisting of n CBV steps leading from an axiom.
We seek a proof of r,[a/Z]. Call the sequent from which 7, is obtained r,,_;. We have r,,_; ~ r,.
Therefore r,_1[a/Z] ~ rp[a/Z], and so if we had a proof of r,,_;[a/Z], we could obtain a proof of
rnla/Z] by adding one CBV step. But we have a proof of r,_1, so by induction we have a proof of
Tn—1la/Z], of size 1.

So now suppose that for all proofs of size less than some h, the root remains provable, and with the
same size, after a substitution throughout for a free variable. We take some arbitrary proof of size
h, and consider what its last possible step could be. As the other cases are trivial we consider just
the quantifier cases, and of these just the V cases, because the 3 cases are parallel.

o Last step is (VL). We have an Ls proof, of size h:

1
U,yb/ X,V = w
[b/X] oI,
UVX.yV=w

Choose X' ¢ FV(a,y, Z). The proof establishing the claim is:

e

Ula/Z), yIb/X)[a/Z], V]a/Z] = wla/Z)
Ula/Z), y[X'/ X]la/Z][bla/Z]/ X], V]a/Z] = w[a/Z]\:L
Ula/2), ¥X'IX'/ XNa/Z]), Via/Z] = wla/Z] oo

Ula/Z], (VX.y)la/Z], V]a/Z] = wla/Z]

The upper proof is given under the inductive hypothesis. For the lower CBV step we use
where X' is a variable & FV (a,y, Z):

(VX.y)la/Z] ~ (VX' y[X'[X])[a/Z] = (VX' y[X'/ X][a/Z])
and for the upper:
y[b/X][a/Z] ~ y[X'/ X][b/X"|[a/Z] ~ y[X'/X][a/Z][bla/Z]/ X]

e Last step is VR. So we have a proof of the following form, with size h:

‘1

T=uy v
T = VX' y[X'/X]
Let X" be a variable ¢ FV(T,y,a,Z,X’). The proof establishing the claim is:

X ¢ FV(T), X' ¢ FV(VX.y)

1
T(a/Z] = y[X"/X][a/Z]
Tla/Z] = (VX" y[X"/X])a/Z]

~

Tla/Z] = (VX"y[X'/X])]a/Z]

The upper proof is obtained by two applications of the inductive hypothesis, for the substitu-
tions [X" /X] and [a/Z]. For the (VR) step, note that VX" (y[ X"/ X][a/Z]) = VX" y[X" ]/ X])[a/Z],
and that X" ¢ FV(T[a/Z]). For the CBV step we use:
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VX' y[X'/X] ~ VX" y[X'/X][ X"/ X]
y[ X'/ XX/ X ~ y[X" [ X]

e Last step is CBV. This last CBV step may be preceded by n other CBV steps.

When the number of preceding CBV steps is zero, r is proved from a sequent rg, which itself
has a proof of size h, whose last step is not CBV. This is a case already considered, and so
there is a proof ro[a/Z]. Since rola/Z] ~ r[a/Z], adding a last CBV step will give the desired
proof.

For the case where the number of preceding CBV steps is non-zero, we reason exactly as we
did in the corresponding case concerning size 1 proofs.

For part (ii) of the lemma, including Cut, it again suffices to show the corresponding property for
L, + Cut + CBV. The proof of this will be exactly as above, with addition of a case for Cut, which
is trivial.

FEnd of Proof

7.3 Proof of Equivalence of L; and L,

To prove this lemma we use the preceding lemmas for change of bound variable and substitution in
L. Besides these we assume (a) a change of bound variable lemma for Lo, and (b) that in LBV,
when a proof ends with a logical step, followed by a CBV, the order of these may be interchanged,
and without changing the size of the proof. For substitution according to the L; or Lo definitions

we will use [z/Z]; or [z/Z].

Proof For part (i) of the lemma, first note that for L;, for any s, s’ such that s ~ s', Ly |- s iff Ly
|- s'. So it will suffice to show, for all clean s, Ly |- s iff Ly |- s.

Left to Right

Since L; is equivalent to L{BVY | it will suffice to show L{'BY |-s implies Ly |-s, which will be shown
by induction on the size of the L{BY proof, ignoring CBV steps in the size.

A size 1 proof is an axiom, followed by m CBYV steps (m > 0). When m = 0, we have just an
axiom in L; and this is an axiom also in L,. As at all stages of the CBV sequence there are only
two categories to which a c.b.v. can be applied, it is sufficient to consider CBV sequences of length
< 2. When m = 1, we have a proof of s by CBV from some axiom z = z. Because s is clean, so is
z = z. So L derives x = x, and by c.b.v in Ly, Ly derives s. When m = 2, the root is ' = z",
where ¢ ~ ', and = ~ z"”. Because z' is clean, Lo derives ' = z'. ' is also clean, and because
z' ~ z", by c.b.v. in Ly, Ly derives =’ = z”.

Suppose the claim for all proofs of size less than n, and consider an L{2Y proof of size n. The cases
where the last step is a Slash rule are trivial, so we consider just the remaining cases. First note
that where z,y, Z are clean, z[y/Z]; = z[y/Z]..

e (VL) is the last step. The proof introduces a category VX.y. For some clean y', Z, Z not in
the scope of VX in y', y = y'[X/Z]1(= y'[X/Z]2). We have a L{BY proof of size n:

U, y'[X/Z)i[z/X], V ndvd
U, VXy'[X/Z),V =>w
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Let z' be derived from z by ‘cleaning’ bound variables. As y'[X/Z]1[z/X]1 ~ y'[X/Z]1[z"/ X]1,
we have (in L{BY):

U, y'[X/Z]l[wz/X]l, V = w“B
U, y[X/ZL[2' /2], V = w

For each X' € fuv(z') such that X occurs in the scope of VX' in y, pick an odd X' ¢
fo(U,y,z,V,w, X), and substitute for X' in z’. Call the result #'. From the above, there
is a LYBY proof, size n — 1 of U[X'/X"]1,y'[X/Z)1[z' /X1 [X"/X "1, VX' X'y = w[X']X"];.
Because y'[X/Z]1[2' /X[ X'/ X"] ~ y'[X/Z]1[#' | X]1, there is a LBV proof, size n — 1:

UK /XN, [X/ 20 /X1, VIR X Ty = w[ XX,

of U[X'/X']z,y'[i'/Z]Z,V[X'/X']g = w[X'/X']z. Because all the categories are clean, we
have by induction a proof of the same sequent in L. We may add a step of (V L) to get an
Lo proof:

U[X”/X’]z,y’[%’/Z]z,V'[X’/X’]z = w[X'/X']
UIX')X"2,VXy'[X/Z]2, V[X'/X")s = w[X'/X )2

of U[X'/X']z, (VXy'[X/Z]g)[X'/X']g,V[X'/X']z = w[X"/X']g. Subsitution throughout this

will give the desired sequent, so there will be an Ly proof of it

(VR) is the last step. We have a LEBY proof of size n:

T=vy X ¢ fuI),
T = vx'y[x'/x] X & fo(VXy)

For some clean y', Z, Z not in the scope of VX' in y', we have y[X'/X]|: = ¢'[X'/Z]: =
y'[X'/Z]2. We seek an Ly proof of T = VX'y'[X'/Z]>. We can assume Z ¢ fu(T). There
exists a LBV proof:

T= y.[Z/X 2
C%V
T =y

The subproof is given by the substitution [Z/X], and for the CBV step we use that y' ~
y[Z/X]. Therefore the Ly proof establishing the claim is:

T=>y RZ¢ )
T = VX'y'[X'/Z);

The upper proof is given by induction.
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e The proof ends in a CBV sequence. Some logical step immediately precedes the CBV sequence.
We use the fact that a logical step and a CBV step can be interchanged and without change
of size. Therefore proofs of size n ending in a CBV sequence imply the existence of proofs of
size n ending in a logical step, which is then a case already considered.

Right to Left

All but the quantifier cases are trivial.

e (VL) is the last step. We have an Ly proof, of size n:

U,ylz/Z]s, V = w
U,VXy[X/Z]2, V =>w

y is clean, and Z does not occur in the scope of VX . By induction we have an L{BV proof of U,
y[2/Z]1,V = w. Because X ¢ fu(y), and no variable free in z is bound in y, y[X/Z]1[2/X]1 =
y[z/Z]1. Therefore the proof establishing the claim is

U, y[X/Z)i[2/ X1, V »u
U,VXy[X/Z]:,V =>w

e (VR) is the last step. We have an Ly proof of size n:

T .
Y g Z¢ (D)
T = VXy[X/Z]

As usual Z is assumed not in the scope of VX in y. For some Z ¢ fo(T,y, Z),let § = y[Z:/Z]g.
By the substitution lemma for Ls, we have an Ly proof, size n — 1 of T[Z/Z]s = y[Z/Z]2,
which is in fact a proof of T => §. By induction this may be also proved in L{ZY. Then

because y[X/Z]; = §[X/Z]1, by the choice of Z, the proof establishing the claim is

T = 5
=Y _yR Z¢5(D)
T = VX§[X/Z)

The second part of the lemma, concerning the versions of the calculi with Cut, involves the same
proof as above with the addition of a case for Cut, which is a trivial case.

End of Proof
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