Axiomatic Foundations of Voting Theory (part I)

William S. Zwicker
Mathematics Department, Union College

Computational Social Choice Summer School San Sebastian, Spain

18-22 July 2016

COST IC1205

Axiomatic Foundations of Voting Theory

William S. Zwicker

Mathematics Department, Union College

Computational Social Choice Summer School San Sebastian, Spain

18-22 July 2016

COST IC1205

Axiomatic Foundations of Voting Theory

William S. Zwicker

Mathematics Department, Union College

Computational Social Choice Summer School San Sebastian, Spain

18-22 July 2016

COST IC1205

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election

	P_1	
102	101	100
а	b	С
b	C	b
C	a	а

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election

	P_1	
102	101	100
a	b	C
b	C	b
C	a	a

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate

	P_1	
102	101	100
a	b	С
b	C	b
C	a	a

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

	P_1	
102	101	100
a	b	C
b	C	b
C	а	a

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

	P_1	
102	101	100
a	b	C
b	C	b
C	a	а

P₁ is a **voting situation**, not a profile (*incomplete* info)

Plurality winner for P₁ is a

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- *Plurality voting rule*: winner = candidate with most votes

	P_1	
102	101	100
а	b	С
b	C	b
C	а	a

- Plurality winner for P₁ is a
- No *majority* winner exists

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- *Plurality voting rule*: winner = candidate with most votes

	P_1	
102	101	100
a	b	C
b	C	b
C	а	a

- Plurality winner for P₁ is a
- No majority winner exists
- For 3 or more candidates, plurality ≠ majority

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

	P_1	
102	101	100
a	b	C
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- *Plurality voting rule*: winner = candidate with most votes

	P_1	
102	101	100
a	b	С
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Who should win?

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

	P_1	
102	101	100
a	b	С
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Who should win? Why?

- Election with 3 candidates
 a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: $(b_1, b_2, ..., b_{303})$ complete information about an election
- A plurality ballot specifies a single most preferred candidate
- *Plurality voting rule*: winner = candidate with most votes

	P_1	
102	101	100
a	b	C
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote

	P_1	
102	101	100
a	b	C
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D'Amato (R),
 E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)

	P_1	
102	101	100
a	b	C
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D'Amato (R),
 E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)
- Outcome was very parallel to P₁
- H and J split L vote; D'Amato won

	P_1	
102	101	100
a	b	С
b	C	b
C	a	a

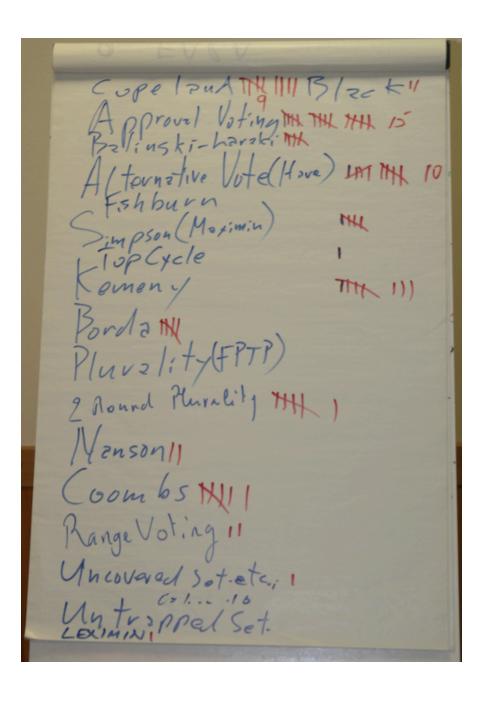
- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D'Amato (R),
 E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)
- Outcome was very parallel to P₁
- H and J split L vote; D'Amato won
- Such examples are major reason for opposition to plurality rule . . .
- ... and interest in voting theory

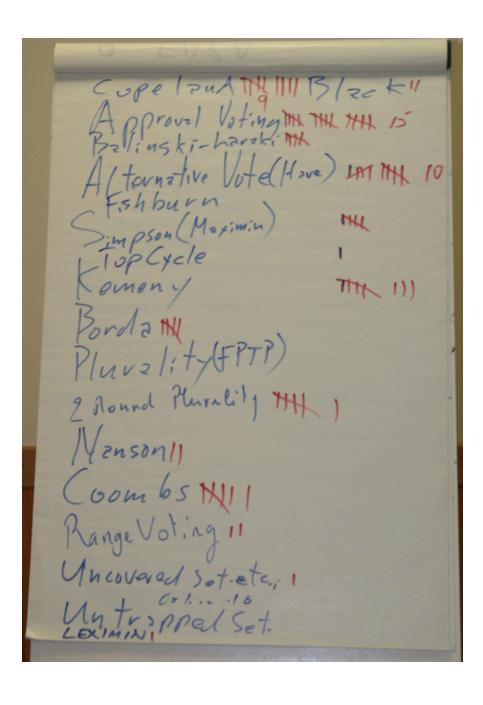
	P_1	
102	101	100
a	b	С
b	C	b
C	a	a

- Plurality winner for P₁ is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins

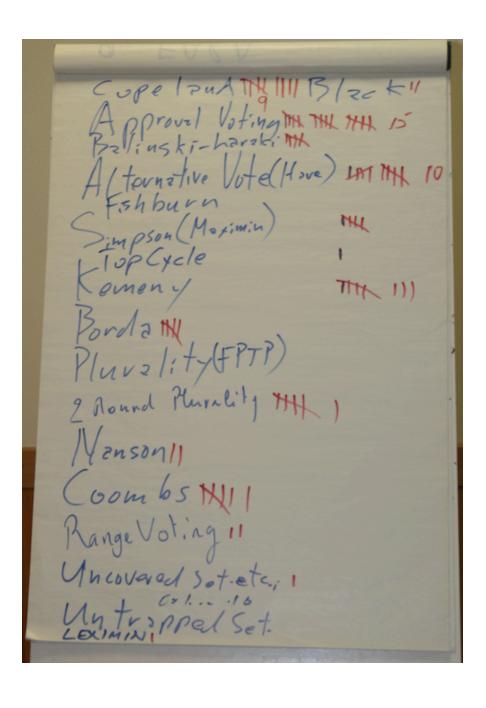
- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *



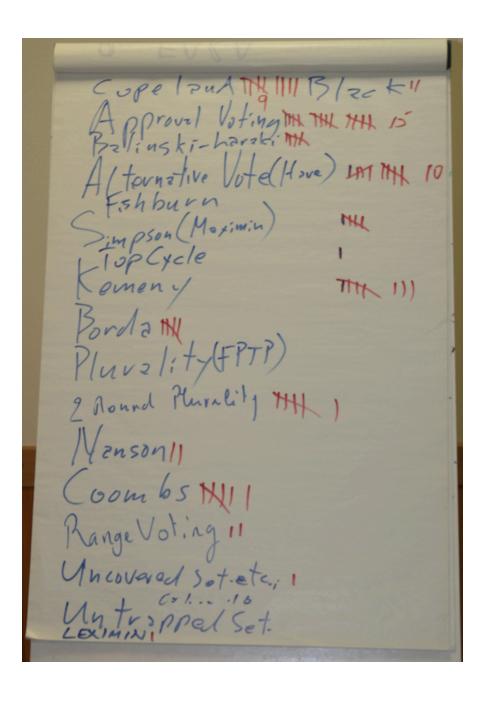
- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules



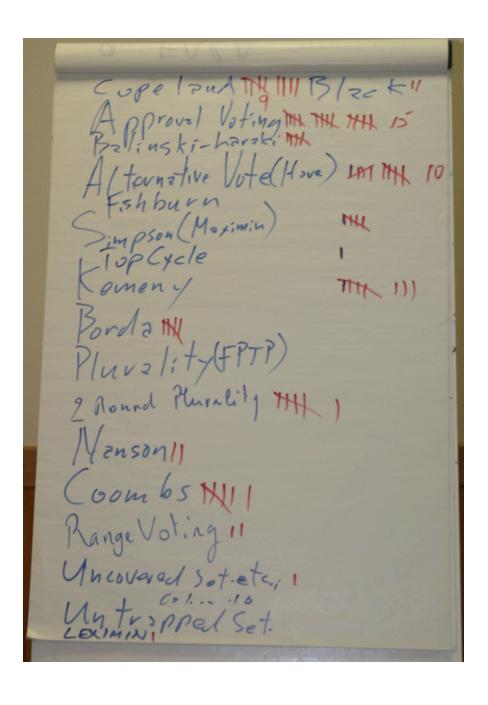
- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- ...*but note score for plurality is 0



- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- ... *but note score for plurality is 0
- Laslier's article: "And the loser is ... Plurality Voting"



- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- ... *but note score for plurality is 0
- Laslier's article: "And the loser is ... Plurality Voting"
- Which voting rule won?



- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- ...*but note score for plurality is 0
- Laslier's article: "And the loser is ... Plurality Voting"
- Which voting rule won?
- What question should you be asking me . . .?

P_2			
102	101	100	<u>1</u>
a	b	C	C
b	C	a	b
C	a	b	a

In profile P₂
 202 voters rank a over b

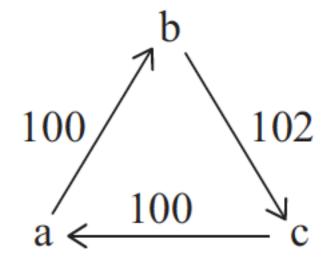
P_2				
102	101	100	1	
a	b	С	С	
b	C	a	b	
C	a	b	a	

- In profile P₂
 - > 202 voters rank a over b
 - > 102 rank b over a

P_2			
102	101	100	1
a	b	C	C
b	C	a	b
C	a	b	0

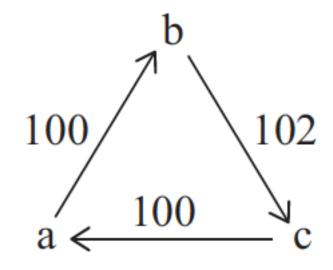
- In profile P₂
 - > 202 voters rank a over b
 - > 102 rank b over a
 - ightharpoonup Net_{P2}(a > b) = 202 102 = 100

P_2			
102	101	100	1
a	b	C	C
b	C	а	b
C	a	b	a

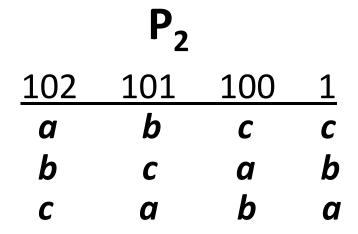


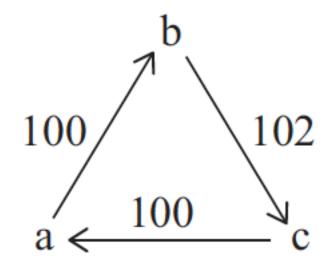
- In profile P₂
 - > 202 voters rank a over b
 - > 102 rank b over a
 - ightharpoonup Net_{P2}(a > b) = 202 102 = 100
- We get a weighted tournament induced by the profile P₂

P_2			
102	101	100	1
a	b	C	C
b	C	a	b
C	a	b	a

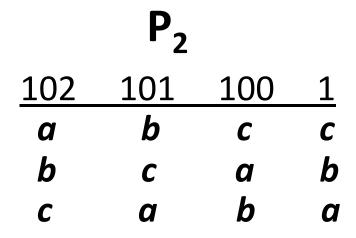


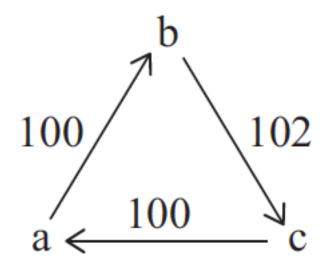
- In profile P₂
 - > 202 voters rank a over b
 - > 102 rank b over a
 - \triangleright Net_{P2}(a > b) = 202 102 = 100
- We get a weighted tournament induced by the profile P₂
- Tournament:
 - ➤ A graph in which the vertices are the candidates
 - For each two vertices, either $a \rightarrow b$ or $a \leftarrow b$ is an edge





- In profile P₂
 - > 202 voters rank a over b
 - > 102 rank b over a
 - \triangleright Net_{P2}(a > b) = 202 102 = 100
- We get a weighted tournament induced by the profile P₂
- Tournament:
 - ➤ A graph in which the vertices are the candidates
 - For each two vertices, either $a \rightarrow b$ or $a \leftarrow b$ is an edge
- Edge weights:
 - \triangleright Assign Net_{P2}(a > b) to a \rightarrow b

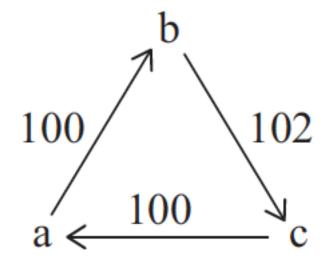




Pairwise Majority Preference

• $x > \mu$ y means (strictly) more voters rank x over y than y over x

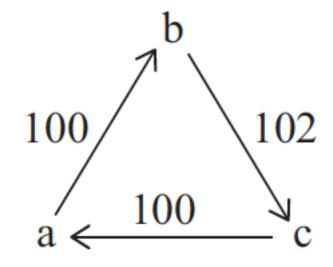
P ₂			
102	101	100	1
a	b	C	C
b	C	а	b
C	a	b	a



Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0

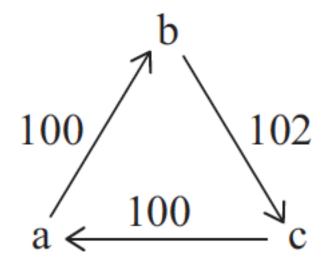
P_2			
102	101	100	1
a	b	C	C
b	C	a	b
C	a	b	a



Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_p(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - > majority cycle/Condorcet cycle
 - > > μ is **intransitive**

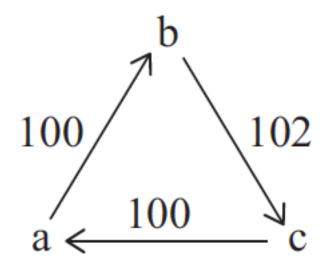
	P ₂		
102	101	100	<u>1</u>
a	b	C	C
b	C	а	b
C	a	b	a



Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_p(x>y) > 0
- For P_2 , we have a $>^{\mu}$ b $>^{\mu}$ c $>^{\mu}$ a
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

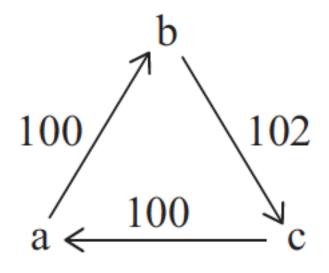
	P ₂		
102	101	100	<u>1</u>
a	b	C	C
b	C	a	b
C	a	b	a



Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - > majority cycle/Condorcet cycle
 - > > μ is *intransitive*
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

	P ₂		
102	101	100	<u>1</u>
a	b	C	C
b	C	a	b
C	a	b	a



Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_p(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - Gibbard-Satterthwaite Thm

Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

Copeland Voting Rule

Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 - |{y|y > μ x}|

Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - Gibbard-Satterthwaite Thm

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0

Pairwise Majority Preference

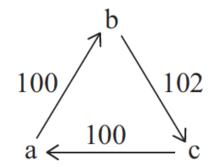
- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have $a > \mu b > \mu c > \mu a$
 - majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 00 = Cop(b) = Cop(c) Tie!

Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have a $>^{\mu}$ b $>^{\mu}$ c $>^{\mu}$ a
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!

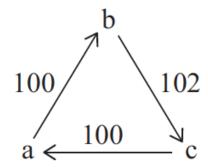


Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have a $>^{\mu}$ b $>^{\mu}$ c $>^{\mu}$ a
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - Gibbard-Satterthwaite Thm

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!

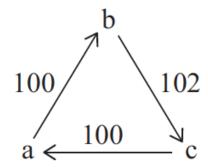


Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have a $>^{\mu}$ b $>^{\mu}$ c $>^{\mu}$ a
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!



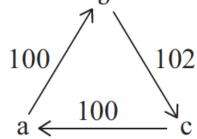
Pairwise Majority Preference

- $x > \mu$ y means (strictly) more voters rank x over y than y over x
- Equivalently, Net_P(x>y) > 0
- For P_2 , we have a $>^{\mu}$ b $>^{\mu}$ c $>^{\mu}$ a
 - > majority cycle/Condorcet cycle
 - > > μ is intransitive
- 3 BIG results of voting theory
 - > majority cycles
 - > Arrow's impossibility Thm
 - > Gibbard-Satterthwaite Thm

Copeland Voting Rule

Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 - |{y|y > μ x}|

Exercise 1: Do other versions of Copeland score yield the same h rule?

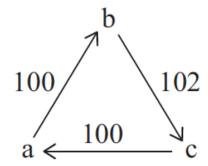


Borda Voting Rule

• Symmetric Borda Score $\beta(x) = \sum_{y} Net_{p}(x>y)$

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P₂, Cop(a) = 1 1 = 0
 0 = Cop(b) = Cop(c) Tie!

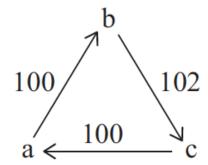


Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!

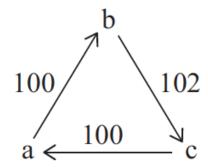


Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!

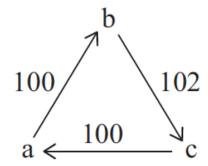


Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!



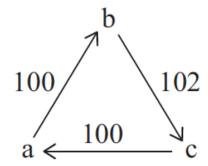
Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

Copeland Voting Rule

- Symmetric Copeland Score
 Cop(x) = |{y|x > μ y}|
 |{y|y > μ x}|
- For P_2 , Cop(a) = 1 1 = 0 0 = Cop(b) = Cop(c) Tie!



Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

Scoring Rules

w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m

Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

- w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m
- Each voter awards w₁
 points to top candidate in
 her ranking, w₂ to 2nd, etc;
 Winner = highest score total

Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

- w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m
- Each voter awards w₁
 points to top candidate in
 her ranking, w₂ to 2nd, etc;
 Winner = highest score total
- Standard Borda weights: m-1, m-2, ..., 0;
 2, 1, 0 for m = 3

Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

- w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m
- Each voter awards w₁
 points to top candidate in
 her ranking, w₂ to 2nd, etc;
 Winner = highest score total
- Standard Borda weights: m-1, m-2, ..., 0; 2, 1, 0 for m = 3
- "Symmetric" Borda wts m-1, m-3, ..., -(m-1) yield exactly β(x)

Borda Voting Rule

- Symmetric Borda Score $\beta(x) = \sum_{v} Net_{p}(x>y)$
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For P_2 , $\beta(b) = (-100) + (+102) = 2$, $\beta(a) = 0$, $\beta(c) = -2$, so b wins.
- The rules we discuss are all distinct you can learn a lot by constructing profiles for which the winners differ

This is **not** the standard definition of Borda Voting Rule

- w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m
- Each voter awards w₁
 points to top candidate in
 her ranking, w₂ to 2nd, etc;
 Winner = highest score total
- Standard Borda weights: m-1, m-2, ..., 0; evenly 2, 1, 0 for m = 3 spaced
- "Symmetric" Borda wts m-1, m-3, ..., -(m-1) yield exactly β(x)

Exercise 2

- a) Scoring vectors $w_1, ..., w_m$ and $v_1, ..., v_m$ are **affinely equivalent** if there exist constants γ , δ with $\gamma > 0$ and $v_i = \gamma w_i + \delta$ for each i. Show that
 - ➤ affinely equivalent vectors induce same voting rule, and
 - > any two evenly spaced vectors are affinely equivalent.
- b) Show symmetric Borda weights yield a total score = $\beta(x)$.

- w = (w₁ ≥ w₂ ≥ ... ≥ w_m) any vector of numerical *scoring* weights, w₁ > w_m
- Each voter awards w₁
 points to top candidate in
 her ranking, w₂ to 2nd, etc;
 Winner = highest score total
- Standard Borda weights: m-1, m-2, ..., 0; evenly 2, 1, 0 for m = 3 spaced
- "Symmetric" Borda wts m-1, m-3, ..., -(m-1) yield exactly β(x)

Goal: select one alternative from a finite set A

- Each voter (finitely many) casts a ballot
- 2. Apply some voting rule

Goal: select one alternative But ties are possible! from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

Goal: select one alternative from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

Alternatives = . . . ?

- candidates for mayor of small town
- € budgets for new firehouse
- Estimates for amount of oil lying beneath a region
- (amend the constitution?)
 yes or no
- different versions of an immigration reform bill
- committees

Goal: select one alternative from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

A ballot might be . . .

- an individual alternative
- a strict ranking of alternatives

```
Francine
d
a
c
b
e
```

linear ordering \geq_F of A = {a,b,c,d,e} $\mathcal{L}(A)$ = the set of all possible linear orderings of A. $|\mathcal{L}(A)| = m!$

Goal: select one alternative from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

A ballot might be . . .

- an individual alternative
- a strict ranking of alternatives
- a weak ranking of alternatives

Ahmed d,e c a,b

 $d \ge_A e$ and $e \ge_A d$ **both** hold, so we say "Ahmed is indifferent to d and e." **But maybe not . . .**

Goal: select one alternative from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

A ballot might be . . .

- an individual alternative
- a strict ranking of alternatives
- a weak ranking of alternatives
- yes or no or abstain or ...
- a set of 1 or more alternatives
 those you "approve" for mayor
- a separate score (1-10)
 assigned to each alternative

Goal: select one alternative from a finite set A

- Each voter (finitely many) casts a ballot
- 2. Apply some voting rule

A ballot might be . . .

- an individual alternative
- <u>a strict ranking of alternatives</u>
- a weak ranking of alternatives
- yes or no or abstain or ...
- a set of 1 or more alternatives
 those you "approve" for mayor
- a separate score (1-10)
 assigned to each alternative

Goal: select one alternative from a finite set A

- Each voter (finitely many)
 casts a ballot
- 2. Apply some voting rule

A ballot might be . . .

- an individual alternative
- a strict ranking of alternatives
- a weak ranking of alternatives
- yes or no or abstain or ...
- a set of 1 or more alternatives
 those you "approve" for mayor
- a separate score (1-10)
 assigned to each alternative

There are many types of voting.

We focus on one type: Social Choice Functions SCFs

- $N = \{1, 2, ..., n\}$ set of n voters
- A = finite set of m alternatives
- $C(A) = \{X \subseteq A \mid X \neq \emptyset\}$
- \geq_j = ballot cast by voter j, an element of $\mathcal{L}(A)$
- $P = (\ge_1, \ge_2, ..., \ge_n) \in \mathcal{L}(A)^n$ specifies a ballot for each voter $j \in N$. P is a *profile*.
- A *SCF* is a function that assigns, to each election, one winner (or several, if a tie) $f: \mathcal{L}(A)^n \to C(A)$

- A SCF with no ties is resolute
- A variable electorate SCF handles profiles for all finite n

$$\mathcal{L}(A)^{<\infty} = \bigcup \{\mathcal{L}(A)^n \mid n \in \mathbb{N}\}\$$

$$f: \mathcal{L}(A)^{<\infty} \to C(A)$$

Consider profile P_3 , in which Ali is one of the last 2 voters.

2	3	2
\overline{e}	d	a
\boldsymbol{c}	e	b
\boldsymbol{a}	b	\boldsymbol{c}
d	\boldsymbol{c}	d
b	\boldsymbol{a}	e

Consider profile P₃, in which

Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0$$

$$Cop(e) = 2$$

Consider profile P₃, in which

Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0$$

$$Cop(e) = 2*$$

 P_3 $\frac{2}{2}$ $\frac{3}{2}$

c e b

a b a

d c d

b a e

e loses to d and to no one else

Consider profile P₃, in which

Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

2	3	2
e	d	a
\boldsymbol{c}	e	b
a	b	c
d	\boldsymbol{c}	d
	e c a	e d c e a b

 P^3

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

2	3	2
\overline{e}	d	a
\boldsymbol{c}	e	b
a	b	C
d	\boldsymbol{c}	d
h	а	P

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

2	3	2
\overline{e}	d	а
\boldsymbol{c}	e	b
\boldsymbol{a}	b	\boldsymbol{c}
d	\boldsymbol{c}	d
h	\boldsymbol{a}	P

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$.

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

In P₃*, d now beats a, c by 4-3 d beats b by 6-1; d beats e by 4-3

Consider profile P_3 , in which Ali is one of the last 2 voters.

Copeland scores are:

$$Cop(a) = 0$$

$$Cop(b) = -2$$

$$Cop(c) = 0$$

$$Cop(d) = 0*$$

$$Cop(e) = 2$$

*d loses to a, c by 4-3 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

 By misrepresenting her preferences Ali does better

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

 By misrepresenting her preferences Ali does better – she has *manipulated* the election

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?

P_3	2	3	2
	\overline{e}	d	a
	c	e	b
	\boldsymbol{a}	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	P

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better she has *manipulated* the election
- How much better?
- We don't know cannot extract cardinal utilities from ordinal preferences.

P_3	2	3	2
	\overline{e}	d	а
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	h	a	P

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?
- We don't know cannot extract cardinal utilities from ordinal preferences.
- In P₃*, d beats each other alternative in the pairwise majority sense; d is a Condorcet alternative

P_3	2	3	2
	\overline{e}	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?
- We don't know cannot extract cardinal utilities from ordinal preferences.
- In P₃*, d beats each other alternative in the pairwise majority sense; d is a Condorcet alternative
- Condorcet's principle: if x is a Condorcet alternative, it should win

P_3	2	3	2
	\overline{e}	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?
- We don't know cannot extract cardinal utilities from ordinal preferences.
- In P₃*, d beats each other alternative in the pairwise majority sense; d is a Condorcet alternative
- Condorcet's principle: if x is a Condorcet alternative,* it should win *might not be any

P_3	2	3	2
	\overline{e}	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	\boldsymbol{a}	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?
- We don't know cannot extract cardinal utilities from ordinal preferences.
- In P₃*, d beats each other alternative in the pairwise majority sense; d is a Condorcet alternative
- Condorcet's principle: if x is a Condorcet alternative,* it should win *might not be any
- A SCF honoring this principle is called a *Condorcet extension*

P_3	2	3	2
	\overline{e}	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

 A SCF honoring this principle is called a *Condorcet extension*

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)

P_3	2	3	2
	\overline{e}	d	а
	c	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn.
 (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃

P_3	2	3	2
	\overline{e}	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	h	a	0

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P_3 ?

P_3	2	3	2
	\overline{e}	d	а
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	h	a	P

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}

P_3	2	3	2
	\overline{e}	d	а
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	\boldsymbol{a}	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P_3 *?

P_3	2	3	2
	e	d	a
	\boldsymbol{c}	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	\boldsymbol{a}	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P₃*? Still e. (14)

P_3	2	3	2
	\overline{e}	d	a
	c	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	\boldsymbol{a}	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn.
 (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P₃*? Still e. (14)
- Is Borda a Condorcet Ext'n?

P_3	2	3	2
	\overline{e}	d	a
	c	e	b
	\boldsymbol{a}	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P₃*? Still e. (14)
- Is Borda a Condorcet Ext'n? no!

EXERCISE 3 Show Borda can never be manipulated via reversal

P_3	2	3	2
	\overline{e}	d	а
	c	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P₃*? Still e. (14)
- Is Borda a Condorcet Ext'n? no!

EXERCISE 3 Show Borda can never be manipulated via reversal

• In P₃, can Ali manip'te Borda?

P_3	2	3	2
	\overline{e}	d	а
	c	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	a	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

- A SCF honoring this principle is called a *Condorcet extension*
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- News Flash! Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. (6)_{sym}
- Who wins in P₃*? Still e. (14)
- Is Borda a Condorcet Ext'n? no!

EXERCISE 3 Show Borda can never be manipulated via reversal

- In P₃, can Ali manip'te Borda?
- Yes: lift d to top, push others down. e: (6) d: (4)→(10)

P_3	2	3	2
	\overline{e}	d	a
	c	e	b
	a	b	\boldsymbol{c}
	d	\boldsymbol{c}	d
	b	\boldsymbol{a}	e

Ali decides to misrepresent her preferences by reversing her ballot: $e \ge d \ge c \ge b \ge a$. Now, P_3^*

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_v f(P)$, where P* is obtained from P by having v alone switch ballots from \ge_v to \ge_v^* , with no ties in f(P) or $f(P^*)$

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v} *, with no ties in f(P) or $f(P^*)$

Interpretation

v's ballot ≥_v in P = his sincere ranking

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v}^{*} , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \geq_v * in P* = an insincere ranking (manip. attempt)

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v} *, with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \geq_v * in P* = an insincere ranking (manip. attempt)
- f(P*) >, f(P)?

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \ge_{v} to \ge_{v}^{*} , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \ge_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) >_{V} f(P)$? the attempt succeeds: according to his sincere ranking \geq_{V} , he strictly prefers outcome from insincere ballot

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v}^{*} , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \geq_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) >_{v} f(P)$? the attempt succeeds

What goes wrong with ties?

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v}^{*} , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \geq_v^* in P^* = an insincere ranking (manip. attempt)
- f(P*) >, f(P)? the attempt succeeds

What goes wrong with ties?

Say a ≥, b ≥, c

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v}^{*} , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥_v in P = his sincere ranking
- v's ballot \ge_v^* in P^* = an insincere ranking (manip. attempt)
- f(P*) >_v f(P)? the attempt succeeds

What goes wrong with ties?

- Say a \geq_v b \geq_v c
- $f(P) = \{a,c\}, f(P^*) = \{b\}$

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P* is obtained from P by having v alone switch ballots from \geq_{v} to \geq_{v} *, with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥, in P = his sincere ranking
- v's ballot \geq_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) >_{v} f(P)$? the attempt succeeds

What goes wrong with ties?

- Say a \geq_v b \geq_v c
- $f(P) = \{a,c\}, f(P^*) = \{b\}$
- Does he prefer b alone to an a-c tie? It depends!

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P* and voter v s.t. $f(P^*) >_{v} f(P)$, where P^* is obtained from P by having v alone switch ballots from \geq_v to \geq_v^* , with no ties in f(P) or $f(P^*)$

Interpretation

- v's ballot ≥, in P = his sincere ranking
- v's ballot \ge_v^* in P^* = an insincere ranking (manip. attempt)
- f(P*) >, f(P)? the attempt succeeds

What goes wrong with ties? If a rule always yields ties,

it is never s-v manipulable

- Say a \geq_v b \geq_v c
- $f(P) = \{a,c\}, f(P^*) = \{b\}$
- Does he prefer b alone to an a-c tie? It depends!

4) The GST: Gibbard-Satterthwaite Theorem and Arrow's Impossibility Theorem

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- > resolute
- nonimposed
- > and strategyproof

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- resolute unique winner for each profile
- > nonimposed
- > and strategyproof

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- resolute unique winner for each profile
- \triangleright nonimposed for each alternative x, $\exists P f(P) = \{x\}$
- > and strategyproof

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- resolute unique winner for each profile
- \rightarrow nonimposed for each alternative x, $\exists P f(P) = \{x\}$
- ➤ and strategyproof not single-voter manipulable

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- resolute unique winner for each profile
- \rightarrow nonimposed for each alternative x, $\exists P f(P) = \{x\}$
- and strategyproof not single-voter manipulable

then f must be a dictatorship – winner is dictator's top-ranked alternative

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

- > resolute
- nonimposed
- > and strategyproof

then f must be a dictatorship

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

Question: are each of the

> resolute

4 assumptions necessary?

- nonimposed
- > and strategyproof

then f must be a dictatorship

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable

Theorem (Alan Gibbard, Mark Satterthwaite) Let f be any SCF for three or more alternatives.

If f is:

Question: are each of the

> resolute

4 assumptions necessary?

- > nonimposed
- > and strategyproof

then f must be a dictatorship

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for **three or more alternatives**.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome F(P) of an election is a weak order of A

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

then f must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome F(P) of an election is a weak order of A

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

then f must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome F(P) of an election is a weak order of A

A SWF F satisfies the Weak Pareto property if

- whenever each voter i ranks x >; y,
- the outcome under F has x > y

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

then f must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome F(P) of an election is a weak order of A

A SWF F satisfies the Weak Pareto property if

- whenever each voter i ranks x > y,
- the outcome under F has x > y
 in strict preferences

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

then f must be a dictatorship.

A SWF F satisfies **IIA** if

- for each pair x, y of alternatives
- the relative ranking of x VS y in the outcome F(P)
- depends only on the relative ranking of x VS y in the ballots

Example P	<u>Robert</u>	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	<u>Mei-Ling</u>
	X	X	X	y	y
	y	y	y	X	X
	а	а	а	а	а
	b	b	b	b	b
	С	С	С	С	С

Example P	<u>Robert</u>	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	X	X
	а	a	а	а	a
	b	b	b	b	b
	С	С	С	С	С
P*	Robert	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	а	a
	а	a	а	b	b
	b	b	b	С	С
	С	С	С	X	X

Example P	Robert	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	X	X
	а	a	a	а	а
	b	b	b	b	b
	С	С	С	С	С
P*	Robert	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	а	а
	а	a	a	b	b
	b	b	b	С	С
	С	С	С	X	X

 $P \mapsto P^*$: no individual voter changes **relative** ranking of **x** VS **y**.

Example P	Robert	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	X	X
	а	a	a	а	а
	b	b	b	b	b
	С	С	С	С	С
P*	Robert	<u>Sandra</u>	<u>Dieter</u>	<u>Pablo</u>	Mei-Ling
	X	X	X	y	y
	y	y	y	а	а
	а	a	a	b	b
	b	b	b	С	С
	С	С	С	X	X

 $P \mapsto P^*$: no individual voter changes **relative** ranking of **x** VS **y**. So IIA says "If F(P) = x > y > a > b > c then $F(P^*)$ must have x > y"

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- > the weak Pareto property for SWFs
- > and independence of irrelevant alternatives "IIA"

then f must be a dictatorship.

Equivalently . . . NO SWF for 3 or more alternatives satisfies weak Pareto + **IIA** + nondictatoriality

• A profile of 201 voters

<u>101</u>

100

b

a

A profile of 201 voters

 For the moment, only top choices visible <u>101</u> <u>100</u>

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins

<u>101</u> <u>100</u>

A profile of 201 voters

 For the moment, only top choices visible

- Based on this limited info, b wins
- Argument for b is stronger than "b is the plurality winner" . . .

<u>101</u> <u>100</u>

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- Argument for b is stronger than "b is the plurality winner" . . .
 WHY?

<u>101</u> <u>100</u>

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- Argument for b is stronger than "b is the plurality winner" . . .
 WHY?

Majoritarian Principle

<u>101</u> <u>100</u>

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info

101	100

(

d .

e b

f c

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win?

101	
-----	--

- d
- e k
- f c

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win?
- Or should it be a?

<u>0</u>	<u>1</u>			

100

d

e k

f

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a?

<u> 101</u>	<u>10</u>

d

e b

f

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a? hands

<u> 101</u>	100

(

d

e k

f c

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a? hands

b is Condorcet alt, so b wins Copeland

<u>101</u>	<u>10</u>
b	a
a	d
С	е
d	f
e	b

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a? hands

b is Condorcet alt, so b wins Copeland

a is Borda winner. . . Borda "favors compromise over Maj."

1	01	1	0

d .

e

f c

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a? hands

b is Condorcet alt, so b wins Copeland

a is Borda winner. . . Borda "favors compromise over Maj."

1	01	1	0

d .

e

f c

A profile of 201 voters

• Someone says it is c, not a or b, who should win

101	10

a c

c e

d f

e b

f

A profile of 201 voters

• Someone says it is c, not a or b, who should win

Counterargument is ... ?

<u> 101</u>		

100

a

c e

d ·

e b

f

- A profile of 201 voters
- Someone says it is c, not a or b, who should win
- Counterargument is ... ?

<u>101</u>	100
b	а
a	d
C	е
d	f
e	b
f	C

- A profile of 201 voters
- Someone says it is c, not a or b, who should win
- Counterargument is ... ?
- Every voter prefers b to c

<u>101</u>	<u>10</u>	<u> </u>
_		

- **D** a
- a c
- C
- d f
- e b
- f

 A profile of 201 voters 	<u>101</u>	<u>100</u>
 Someone says it is c, not a or b, who should win 	b	а
 Counterargument is ? 	a	d
 Every voter prefers b to c 	C	е
c is "Pareto dominated"	d	f
by b	е	b
	f	C

- A profile of 201 voters
- Someone says it is c, not a or b, who should win
- Counterargument is ... ?
- Every voter prefers b to c
- c is "Pareto dominated" by b

Axiom An SCF f satisfies the Pareto Principle if f(P) never includes a Pareto dominated alternative

<u>101</u>	<u>100</u>
b	а
a	d
C	е
d	f

6

Easy Theorem: *Pareto Principle* is satisfied by

- Plurality rule
- Borda
- Copeland

<u>101</u>	<u>100</u>
b	а
a	d
C	е
d	f
e	b
f	С

Easy Theorem: Pareto	<u>101</u>	<u>100</u>
Principle is satisfied by	b	а
 Plurality rule 	а	d
• Borda	a	u
 Copeland 	C	е
(And by most "reasonable"	d	f
SCFs)	е	b
	f	С

Easy Theorem: Pareto	<u>101</u>	<u>100</u>
Principle is satisfied by	b	а
 Plurality rule 	а	d
• Borda	C	е
 Copeland 	d	f
(And by most "reasonable"	.	h
SCFs)	е	D
Pareto implies that winner for this 201-vote profile is	f	C

a or b

Assume the winner for this	<u>101</u>	<u>100</u>
profile is a .	b	а
	а	d
	С	е
	d	f
	Δ	h

Assume the winner for this profile is **a**.

Anna is a type **I** voter

 (among 1st group of 101);
 Stevo is type **II**

<u>101</u>	100
b	а
a	d
С	е
d	f
e	b
f	С

Assume the winner for this	<u>101</u>	<u>100</u>
profile is a .	b	а
 Anna is a type I voter 	а	d
(among 1 st group of 101);	С	е
Stevo is type II	d	f
Anna is convinced by Sara	e	b
to change her ballot to type II .	f	С

Assume the winner for this profile is **a**.

- Anna is a type **I** voter (among 1st group of 101);
 Stevo is type **II**
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I

<u> 101</u>	<u>100</u>
b	а
a	d
С	е
d	f
е	b
f	С

Assume the winner for this profile is **a**.

- Anna is a type **I** voter (among 1st group of 101);
 Stevo is type **II**
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I

<u>101</u>	<u>100</u>
b	a
a	d
С	е
d	f
е	b
f	С

After both switches, how should outcome change?

Assume the winner for this profile is **a**.

- Anna is a type **I** voter (among 1st group of 101);
 Stevo is type **II**
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I

<u>101</u>	<u>100</u>
b	a
a	d
С	е
d	f
е	b
f	С

After both switches, how should outcome change? It depends!

Assume the winner for this profile is **a**.

- Anna is a type **I** voter

 (among 1st group of 101);
 Stevo is type **II**
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I

<u>101</u>	<u>100</u>
b	a
a	d
С	е
d	f
е	b
f	С

After both switches, how should outcome change? It depends! In some contexts, *not at all*.

Axiom An SCF f is *anonymous*if each pair of voters play
interchangeable roles: $f(P) = f(P^*) \text{ whenever } P^* \text{ is}$ obtained from P by swapping
ballots of 2 voters.

<u>101</u>	100
b	a
a	d
С	е
d	f
е	b
f	С

After both switches, how should outcome change? It depends! In some contexts, *not at all*.

Axiom An SCF f is anonymous if each pair of voters play interchangeable roles: $f(P) = f(P^*)$ whenever P^* is obtained from P by swapping ballots of 2 voters.

Math This says $f(P) = f(\tau P)$ for each *transposition* τ of voters.

Transpositions generate the full symmetric group. So $f(P) = f(\sigma P)$ for each **permutation** σ of the set N of voters.

Axiom An SCF f is anonymous if each pair of voters play interchangeable roles: $f(P) = f(P^*)$ whenever P^* is obtained from P by swapping ballots of 2 voters.

Anonymity is a very *strong* form of equal influence by voters. Non-dictatoriality is a very *weak* form.

Math This says $f(P) = f(\tau P)$ for each *transposition* τ of voters.

Transpositions generate the full symmetric group. So $f(P) = f(\sigma P)$ for each **permutation** σ of the set N of voters.

Again, assume the winner	<u>101</u>	<u>100</u>
for this profile is a .	b	а
	а	d
	С	е
	d	f
		h

Again, assume the winner for this profile is **a**.

This time, switch
 candidate a with
 candidate f (in all ballots)

<u>101</u>	100
b	a
а	d
С	е
d	f
е	b
f	C

Again, assume the winner for this profile is **a**.

This time, switch
 candidate a with
 candidate f (in all ballots)

<u> 101</u>	<u>100</u>
b	a f
a f	d
С	е
d	f a
е	b
f a	С

Again, assume the winner for this profile is **a**.

This time, switch
 candidate a with
 candidate f (in all ballots)

<u>101</u>	100
b	f
f	d
С	e
d	a
е	b
a	С

Again, assume the winner for this profile is **a**.

- This time, switch
 candidate a with
 candidate f (in all ballots)
- After the switches, how should outcome change?

<u>101</u>	<u>100</u>
b	f
f	d
С	е
d	a
е	b
a	С

Again, assume the winner for this profile is **a**.

- This time, switch
 candidate a with
 candidate f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.

<u>101</u>	100
b	f
f	d
С	e
d	a
е	b
a	С

Again, assume the winner for this profile is **a**.

- This time, switch
 candidate a with
 candidate f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.
- f should win, post switch

<u>101</u>	<u>100</u>
b	f
f	d
С	е
d	a
е	b
a	С

Again, assume the winner for this profile is **a**.

- This time, switch
 candidate a with
 candidate f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.
- f should win, post switch

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles.

Again, assume the winner for this profile is **a**.

- This time, switch
 candidate a with
 candidate f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.
- f should win, post switch

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles: $f(P^{\tau}) = \tau[f(P)]$ whenever P^{τ} is obtained from P by swapping 2 alternatives in all ballots.

Axiom An SCF f is

anonymous if each pair of
voters play interchangeable
roles: f(P) = f(P*) whenever
P* is obtained from P by
swapping ballots of 2 voters.

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles: $f(P^{\tau}) = \tau[f(P)]$ whenever P^{τ} is obtained from P by swapping 2 alternatives in all ballots.

Axiom An SCF f is

anonymous if each pair of
voters play interchangeable
roles: f(P) = f(P*) whenever
P* is obtained from P by
swapping ballots of 2 voters.

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles: $f(P^{\tau}) = \tau[f(P)]$ whenever P^{τ} is obtained from P by swapping 2 alternatives in all ballots.

Again, we can replace τ with σ : $f(P^{\sigma}) = \sigma^{-1}[f(P)]$

Why use *inverse* of σ ?

 These three axioms are easy to satisfy: many rules satisfy all of them

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want

And certainly, the GST and Arrow's Theorem show this

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want
- Together, they have negative implications for resoluteness

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want
- Together, they have negative implications for resoluteness
- A profile for 3k voters, m alternatives

k	k	k
а	С	b
b	а	С
С	b	а

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want
- Together, they have negative implications for resoluteness
- A profile for 3k voters, m alternatives

k	k	k
a	С	b
b	а	С
С	b	а
X_1	x_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show you can't always get what you want
- Together, they have negative implications for resoluteness
- A profile for 3k voters, m alternatives

k	k	k
а	С	b
b	а	С
С	b	а
x_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

We'll show a 3-way tie is forced

• Pareto \Rightarrow f(P) \subseteq {a,b,c}

<u>k</u>	k	k
а	С	b
b	а	С
С	b	а
X_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

We'll show a 3-way tie is forced

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$

k	k	k
а	С	b
b	а	С
С	b	а
X_1	X ₁	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

We'll show a 3-way tie is forced

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters

k	k	k
a	С	b
b	а	С
С	b	а
X_1	X_1	X_1
•	• •	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to \mathbf{mid} \mathbf{k}$

<u>k</u>	k	k
a	С	b
b	а	С
С	b	а
X_1	X_1	X_1
:	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to \mathbf{mid} \mathbf{k}$

k	k	k
С	b	a
а	С	b
b	а	С
X ₁	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$

k	k	k
С	b	a
а	С	b
b	а	С
X ₁	x_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$
- Next, permute alt's

k	k	k
С	b	a
а	С	b
b	а	С
X ₁	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with σ : $c \rightarrow a \rightarrow b \rightarrow c$

<u>k</u>	k	k
С	b	а
а	С	b
b	а	С
X_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with $\sigma: c \rightarrow a \rightarrow b \rightarrow c$

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with $\sigma: c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\circ})$

<u>k</u>	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X ₁	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: \mathbf{1}^{st} \mathbf{k} \to last \mathbf{k} \to mid \mathbf{k}$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with $\sigma: c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\sigma})$ = $\sigma^{-1}[f(\rho P)]$

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
x_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: 1^{st} k \rightarrow last k \rightarrow mid k$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with $\sigma: c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\circ})$ = $\sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)] \dots$ We'll show a 3-way tie is

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X ₁	X_1	X_1
• •	•	:
X _{m-2}	X _{m-2}	X _{m-2}

forced

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: 1^{st} k \rightarrow last k \rightarrow mid k$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with σ : $c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\circ})$ = $\sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)] \dots$ We'll show a 3-way tie is
- So f(P) is closed under σ^{-1}

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X ₁	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

forced

X_{m-2}

- Pareto \Rightarrow f(P) \subseteq {a,b,c}
- WLOG assume $a \in f(P)$
- First, permute voters
- $\rho: 1^{st} k \rightarrow last k \rightarrow mid k$
- $f(\rho P) = f(P)$
- Next, permute alt's
- with σ : $c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\circ})$ = $\sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)] \dots$ We'll show a 3-way tie is
- So f(P) is closed under σ^{-1} , so $\{a,b,c\}\subseteq f(P)$

k	k	k
c a	b c	a h

a b b c c a

b c a b c a

 X_1 X_1 X_1

 X_{m-2} X_{m-2}

forced

Assume 5k voters and 5 ≤ m = # alt's.

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

Assume 5k voters and 5 ≤ m _ = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some $j \le m$ (# alt's).

k	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt's). Get j-way tie.

<u>k</u>	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	•
X _{m-2}	X _{m-2}	X _{m-2}

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt's). Get j-way tie.

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇒ every SCF is irresolute.

<u>k</u>	k	k
c a	b c	a b
a b	c a	b c
b c	a b	c a
X_1	X_1	X_1
•	•	:
X _{m-2}	X _{m-2}	X _{m-2}

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt's). Get j-way tie.

Theorem (Moulin) Pareto +
anon + neutral + some j ≤ m
divides n ⇒
every SCF is irresolute

To avoid forced ties, n must be relatively prime to every j ≤ m

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt's). Get j-way tie.

Theorem (Moulin) Pareto +
anon + neutral + some j ≤ m
divides n ⇒
every SCF is irresolute

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔ every SCF is irresolute

Assume 5k voters and 5 ≤ m = # alt's. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt's). Get j-way tie.

Theorem (Moulin) Pareto +
anon + neutral + some j ≤ m
divides n ⇒
every SCF is irresolute

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔ every SCF is irresolute

In fact, most rules have more ties than are forced by symmetries.

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔ every SCF is irresolute

In fact, most rules have more ties than are forced by symmetries.

For which m, n does Borda have ties?

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔ every SCF is irresolute

In fact, most rules have more ties than are forced by symmetries.

To avoid forced ties, n must be relatively prime to every j ≤ m

For which m, n does Borda have ties?

Other rules have even more than that (Copeland)

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m

divides n 👄

every SCF is irresolute

In fact, most rules have more ties than are forced by symmetries.

For which m, n does Borda have ties?

Other rules have even more than that (Copeland)

Is it important that some rules have much more ties than others?

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔

every SCF is irresolute

In fact, most rules have more ties than are forced by symmetries.

For which m, n does Borda have ties?

Other rules have even more than that (Copeland)

Is it important that some rules have much more ties than others?

Opinions differ!

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n

every SCF is irresolute

I Scoring rules

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge \ldots \ge w_m$$
; $w_1 > w_m$

to award points.

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge ... \ge w_m; w_1 > w_m$$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc.

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge ... \ge w_m; w_1 > w_m$$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc.

Winner is the alternative with most points.

I Scoring rules

Like Borda, they use a vector of scoring weights

$$W_1 \ge W_2 \ge ... \ge W_m; W_1 > W_m$$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc.

Winner is the alternative with most points.

Examples include Borda,

Plurality: W = (1,0,0,...,0)

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge \ldots \ge w_m; \quad w_1 > w_m$$

to award points.

with most points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc. Winner is the alternative

Examples include Borda,

Plurality: W = (1,0,0,...,0)

Anti-PI: w = (1,1, ..., 1,0) OR

w = (0,0,...,0,-1)

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge \ldots \ge w_m; \quad w_1 > w_m$$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc. Winner is the alternative with most points.

Examples include Borda,

Plurality: W = (1,0,0,...,0)

Anti-PI: w = (1,1, ..., 1,0) OR

$$w = (0,0,...,0,-1)$$

Formula 1 racing champ:

w = (25,18,15,12,10,8,6,4,1,0,0,...,0) [since 2010]

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge \ldots \ge w_m; \quad w_1 > w_m$$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc. Winner is the alternative with most points.

Examples include Borda,

Plurality: W = (1,0,0,...,0)

Anti-PI: w = (1,1, ..., 1,0) OR

$$w = (0,0,...,0,-1)$$

Formula 1 racing champ:

w = (25,18,15,12,10,8,6,4, 1, 0, 0, ..., 0) [since 2010]

k-approval:

w = (1, ..., 1, 1, 0, ..., 0, 0) with k 1s

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies a > µ b

for each alternative b ≠ a

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies a >^µ b

for each alternative b ≠ a

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax,

Simpson-Kramer)

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, Maximin (Minimax, Simpson-Kramer): Simpson Score SS(a) = Min $\{Net_D(a>x) \mid x \in A\setminus\{a\}\}$

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer):

Simpson Score SS(a) = Min $\{Net_p(a>x) \mid x \in A\setminus\{a\}\}$

S-K rule chooses the $x \in A$ maximizing SS(x): it's a Condorcet Extension

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer):

Simpson Score SS(a) = Min $\{Net_p(a>x) \mid x \in A\setminus\{a\}\}$

S-K rule chooses the $x \in A$ maximizing SS(x): it's a Condorcet Extension

1. Can more than one alternative a have SS(a) > 0?

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer):

Simpson Score SS(a) = Min $\{Net_p(a>x) \mid x \in A\setminus\{a\}\}$

S-K rule chooses the $x \in A$ maximizing SS(x): it's a Condorcet Extension

- Can more than one alternative a have SS(a) > 0?
- 2. Suppose SS(a) > 0 . . . what can you say about alt. a?

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer)

Top Cycle

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax,

Simpson-Kramer)

Top Cycle: A subset $X \subseteq A$ is a **dominating set** if $x >^{\mu} y$ holds for each $x \in X$, $y \notin X$

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer)

Top Cycle: A subset $X \subseteq A$ is a **dominating set** if $x >^{\mu} y$ holds for each $x \in X$, $y \notin X$

TC(P) = the smallest dominating set (which is unique)

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer)

Top Cycle: A subset $X \subseteq A$ is a **dominating set** if $x >^{\mu} y$ holds for each $x \in X$, $y \notin X$

TC(P) = the smallest
dominating set (which is
unique)

Why is Top Cycle a Condorcet Extension?

- This section contains precise versions of problems mentioned on slides
- Only do the ones you find interesting (there are too many for you to do all right now)
- Most of the tutorial is based on Chapter 2 of the Handbook of Computational Social Choice, Cambridge University Press, 2016. You may find the chapter helpful for these problems.
- Free PDF of the book at <u>http://www.cambridge.org/download_file/898428</u>
- To open the PDF use password: cam1CSC

1) Copeland scoring

- Recall *symmetric Copeland score* is given by $Cop(x) = |\{y \mid x >^{\mu} y\}| |\{y \mid y >^{\mu} x\}|$
- Asymmetric Copeland score is given by $Cop^{Ass.}(x) = |\{y \mid x >^{\mu} y\}|$
- Asymmetric+ Copeland score is given by $Cop^{Ass.+}(x) = |\{y \mid x > \mu y\}| + (\frac{1}{2})|\{y \mid y = \mu x\}|^*$

Are these three rules all the same? All different? Answer as completely as possible.

*We write $y = \mu x$ when $Net_p(x>y) = 0$. You will need to consider profiles for an even number of voters, making $y = \mu x$ possible.

- 2) Scoring weights and affine equivalence
- Scoring vectors $w = w_1, ..., w_m$ and $v = v_1, ..., v_m$ are **affinely equivalent** if there exist constants γ , δ with $\gamma > 0$ such that $v_i = \gamma w_i + \delta$ for each i.
- Prove that two scoring vectors w, v induce the same scoring rule iff they are affinely equivalent.
- Prove that any two evenly spaced vectors are affinely equivalent.
- Prove that *symmetric* Borda weights m-1, m-3, . . .,
 -m+1 yield a total score of β(x) for each alternative x.

Recall that
$$\beta(x) = \Sigma_{y \in A} \operatorname{Net}_{P}(x > y)$$

- 3) Reversal Manipulation We saw Copeland can be *manipulated via reversal*: a profile P exists for which some voter i can, by completely reversing her ranking, switch the winning alternative from x to some alternative y whom she sincerely prefers (she ranked y over x before reversing)
- Prove that Borda cannot be manipulated via reversal (the same argument shows all scoring rules are similarly immune)
- Prove that Simpson-Kramer can be manipulated via reversal
- **Difficult:** Prove that every resolute Condorcet extension for 4 or more alternatives can be manipulated via reversal