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In profile P, PZ

» 202 voters rank a over b

» 102 rank b over a 102 101 100
» Net,,(a > b) = 202 - 102 = 100 a b

We get a weighted tournament
induced by the profile P,

o]
S Q 6
Q T 6|

Tournament:

» A graph in which the vertices
are the candidates

» For each two vertices, either 100 102
a—bor a<bisanedge

Edge weights: q < 100 C
» Assign Net,,(a>b)toa—b
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rank x over y than y over x

* Equivalently, Net,(x>y) >0
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Exercise 2

a) Scoring vectors wy, ..., w, and

v, ..., V., are affinely equivalent if
there exist constants y, 6 withy >0
and v; = yw; + 6 for each i. Show that

» affinely equivalent vectors
induce same voting rule, and

» any two evenly spaced vectors
are affinely equivalent.

b) Show symmetric Borda weights
yield a total score = B(x).
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Each voter awards w,
points to top candidate in
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Goal: select one alternative
from a finite set A

1. Each voter (finitely many)
casts a ballot

2. Apply some voting rule

Alternatives=...7

e candidates for mayor of
small town

e € budgets for new firehouse

e Estimates for amount of oil
lying beneath a region

 (amend the constitution?)
yes or

» different versions of an
immigration reform bill

e committees
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Goal: select one alternative A ballot might be . ..

from a finite set A

1. Each voter (finitely many)
casts a ballot

2. Apply some voting rule

* an individual alternative
e astrict ranking of alternatives

Francine
d

a
C
b
e

linear ordering 2, of A ={a,b,c,d,e}

L(A) = the set of all possible linear
orderings of A. | L(A)| = m!
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Goal: select one alternative A ballot might be . ..

from a finite set A

1. Each voter (finitely many)
casts a ballot

2. Apply some voting rule

 anindividual alternative

e astrict ranking of alternatives
* a weak ranking of alternatives

Ahmed
d,e
C
a,b

d=,e and e2, d both hold, so
we say “Ahmed is indifferent to d
and e.” But maybenot...
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2) Social Choice Functions

Goal: select one alternative A ballot might be . ..
from a finite set A

1. Each voter (finitely many)
casts a ballot  a weak ranking of alternatives

2. Apply some voting rule * yesorno or abstain or ...

e aseparate score (1-10)
assigned to each alternative



There are many types of voting.

‘We focus on one type:
Social Choice Functions SCFs



2) Social Choice Functions

N={1,2,... n}setof nvoters < ASCF with no ties is resolute

A = finite set of m alternatives * A variable electorate SCF
C(A)={XCA| Xz} handles profiles for all finite n

2; = ballot cast by voter j, an LA =U{L(A)" | ne N}

element of L(A -

A f: LA = CA)
P=1(21,2, ... 2, LA)
specifies a ballot for each
voter je N. P is a profile.

A SCF is a function that
assigns, to each election, one
winner (or several, if a tie)

f: LA — C(A)
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e d a
c e b
a b c
d ¢ d

b a e
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Before the election, Ali
anticipates this bad outcome
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* By misrepresenting her P, p) 3 9)
preferences Ali does better

e d a

c e b

a b ¢

d c¢ d

b a e

Ali decides to misrepresent her
preferences by reversing her
ballot:e>d=>c=>b2>a. Now, P,*
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By misrepresenting her
preferences Ali does better —
she has manipulated the
election

How much better ?

We don’t know — cannot extract
cardinal utilities from ordinal
preferences.

In P,*, d beats each other
alternative in the pairwise
majority sense; d is a
Condorcet alternative
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d ¢ d
b a e

Ali decides to misrepresent her
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ballot:e>d=>c=>b2>a. Now, P,*

dis a Cond. Alt.
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A SCF honoring this principle is
called a Condorcet extension

Copeland Rule is a Cond. Extn.
(A Cond. Alt. uniquely gets the
max poss. Copeland score m-1)

Borda, not
Copeland, will be used for P,

Who wins in P,? Stille.  (6),,,
Who wins in P;*? Still e. (14)

Is Borda a Condorcet Ext’'n?

P, 2 3 2
e d a
c e b
a b ¢
d ¢ d
b a e

Ali decides to misrepresent her
preferences by reversing her
ballot:e>d=>c=>b2>a. Now, P,*

dis a Cond. Alt.
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* A SCF honoring this principleis  p 7 3 9
called a Condorcet extension }

 Copeland Rule is a Cond. Extn. e d a
(A Cond. Alt. uniquely gets the | '
max poss. Copeland score m-1) c e b

a b ¢

° Borda, not ; )
Copeland, will be used for P, a ¢

* Who winsin P;? Stille. (6)g,, b a e

* Who winsin P;*? Stille. (14)  Alji decides to misrepresent her
» |s Borda a Condorcet Ext'n? no! preferences by reversing her

ce>d>c>b> *
EXERCISE 3 Show Borda can never ballot:e>d 2c2b2>a. Now, P,
be manipulated via reversal

* In P;, can Ali manip’te Borda?

* Yes: lift d to top, push others .
down. e:(6) d:(4)—(10) dis a Cond. Alt.
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Definition An SCF f is single-voter manipulable if 3 profiles P, P*
and voter v s.t. f(P*) > f(P), where P* is obtained from P by having

v alone switch ballots from > to 2 ¥,

Interpretation
* V’s ballot 2, in P = his sincere ranking
* V's ballot 2,* in P* = an insincere ranking (manip. attempt)

* f(P*) >, f(P)? the attempt succeeds

* Saya2, b2, c
* f(P) ={a,c}, f(P*) = {b}
* Does he prefer b alone to an a-c tie? It depends!
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then f must be a dictatorship — winner is dictator’s top-ranked
alternative
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4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function
(SWF) for three or more alternatives.

If fsatisfies:

» the weak Pareto property for SWFs
» and independence of irrelevant alternatives “ITA"”

then f must be a dictatorship.

A SWF F satisfiesITA if
* for each pair x, y of alternatives
* the relative ranking of x VS y in the outcome F(P)
 depends only on the relative ranking of x VS y in the ballots
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Mei-Ling

y

ncmx

Mei-Ling

y
a

b
C
X

P  P*: no individual voter changes relative ranking of X VS y.
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Example P Robert Sandra Dieter Pablo Mei-Ling

X X X y y
y y y X X
a a a a a
b b b b b
C C C C C

p* Robert Sandra Dieter Pablo Mei-Ling
X X X y y
y y y d d
a a a b b
b b b C C
C C C X X

P  P*: no individual voter changes relative ranking of X VS y.
So llA says “If F(P) =X >y >a > b >c then F(P*) must have X > y”
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4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function
(SWF) for three or more alternatives.

If fsatisfies:
» the weak Pareto property for SWFs
» and independence of irrelevant alternatives “ITA"”

then f must be a dictatorship.

Equivalently . .. N O SWE for 3 or more alternatives satisfies
weak Pareto + IIA + nondictatoriality
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e A profile of 201 voters 101 100

* For the moment, only b a
top choices visible

e Based on this limited
info, b wins

* Argument for b is i ‘
stronger than “b is the [REEREGE————
plurality winner” ... @ Sl AR
WHY?

Majoritarian Principle

i e
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* A profile of 201 voters 101 100
* Someone says itisc, not

a
a or b, who should win ) 4
* Counterargumentis...?
e
* Every voter prefers b to c
. U . 17, d f
e cis “Pareto dominated
by b e
An SCF f satisfies the f

Pareto Principle if f(P)
never includes a Pareto
dominated alternative
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Easy Theorem: Pareto 101 100
Principle is satisfied by )
e Plurality rul
y e a d
* Borda
* Copeland ’ fe
(And by most “reasonable”
SCFs) e
Pareto implies that winner f

for this 201-vote profile is
aorb
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An SCF f is anonymous
if each pair of voters play
interchangeable roles:

f(P) = f(P*) whenever P* is
obtained from P by swapping
ballots of 2 voters.

Anonymity is a very strong
form of equal influence by
voters. Non-dictatoriality is a
very weak form.

Math This says f(P) = f(tP)
for each transposition t of
voters.

Transpositions generate
the full symmetric group.
So f(P) = f(oP) for each
permutation o of the set N
of voters.
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Again, assume the winner An SCF f is neutral
for this profile is a. if each pair of candidates

e This time. switch play interchangeable
candidate a with roles: f(P*) = [f(P)]
T- .
candidate f (in all ballots) Whenever Pis obtained

+ After the switches, how  [TomP Ic?y SV\{apping 2
should outcome change? alternatives in all ballots.

* Assume the voting rule
treats candidates
equivalently.

* f should win, post switch
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An SCF fis An SCF f is neutral
anonymous if each pair of if each pair of candidates
voters play interchangeable play interchangeable
roles: f(P) = f(P*) whenever roles: f(PY) = t[f(P)]

P* is obtained from P by whenever P' is obtained

swapping ballots of 2 voters. from P by swapping 2
alternatives in all ballots.

Again, we can replacet
with o: f(P°) = o[f(P)]

Why use inverse of o?
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 These three axioms are K
easy to satisfy: many rules 3
satisfy all of them b

C

* But they already show
you can’t always get
what you want

K K
C b
a C
b a

X1 X1 X1

* Together, they have
negative implications for X
resoluteness

* A profile for 3k voters, We'll show a 3-way tie is
m alternatives forced

X X

m-2 m-2 m-2
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Pareto = f(P) C {a,b,c}
WLOG assume a € f(P)
First, permute voters
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f(pP) = f(P)
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* Pareto = f(P) C {a,b,c}

k
e WLOG assume a € f(P) C
* First, permute voters a
* p: Itk —=lastk — midk b
* f(pP) =1(P) X
* Next, permute alt’s

* witho:c—a—=b—c X

1

m-2

k
b
C
a

X1

X

m-2

K
a
b
C
X

X

1
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* Pareto = f(P) C {a,b,c} k k k

e WLOG assume a € f(P) ca b C ab
* First, permute voters ab ca bc
e p: 1"k —= lastk — mid k bc ab ca
* f(pP) = f(P) X1 X1 X1

* Next, permute alt’s
* witho:c—a—=b—c X
* f(P) = f((pP)°)

= o f(pP)] = o f(P)] ... We’ll show a 3-way tie is

* So f(P) is closed under o1, forced
so {a,b,c} & f(P)

X X

m-2 m-2 m-2
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I Scoring rules Examples include Borda,

Like Borda, they use a vector Plurality:w =(1,0,0, ..., 0)

of scoring weights Anti-Pl: w = (1,1, ..., 1,0) OR
w = (0,0, ..., 0,-1)

to award points. Formula 1 racing champ:

w = (25,18,15,12,10,8,6,4,
1,0,0, ..., 0) [since 2010]
k-approval-
w=(1,..110,..,0,0)
with k 1s

Each voter awards w, points
to top-ranked, w, to 2"9, etc.

Winner is the alternative
with most points.
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11 Condorcet Extensions Examples include Copeland,
Maximin (Minimax,
Simpson-Kramer)

Recall: A Condorcet

alternative a satisfiesa >* b

for each alternative b # a Top Cycle: A subset XC Ais
a dominating set if x >ty

ASCFTisa _ holds for each x € X, y & X
Condorcet Extension

if f(P) = the Cond. alt. (for TC(P) = the smallest

each P having a Cond. alt.)  dominating set (which is
unique)

Why is Top Cycle a
Condorcet Extension?



Exercises

This section contains precise versions of problems
mentioned on slides

Only do the ones you find interesting (there are too
many for you to do all right now)

Most of the tutorial is based on Chapter 2 of the
Handbook of Computational Social Choice,

Cambridge University Press, 2016. You may find the
chapter helpful for these problems.

Free PDF of the book at
http://www.cambridge.org/download file/898428

To open the PDF use password: cam1CSC




Exercises

1) Copeland scoring

* Recall symmetric Copeland score is given by
Cop(x) = Hy[x>*y} = [{yly >*x}]

 Asymmetric Copeland score is given by
Cop®=(x) = [{y[x >* y}|

 Asymmetric+ Copeland score is given by
Cop?s*(x) = [{yIx>*y}| + (%) {yly =* x}| *

Are these three rules all the same? All
different? Answer as completely as possible.

*We write y = x when Net,(x>y) = 0. You will need to consider
profiles for an even number of voters, making y =* x possible.



Exercises

2) Scoring weights and affine equivalence

* Scoring vectorsw =w,, ..., W andv=v, ..., v_are
affinely equivalent if there exist constants y, 6 with
y > 0 such that v, = yw; + 6 for each i.

* Prove that two scoring vectors w, v induce the same
scoring rule iff they are affinely equivalent.

* Prove that any two evenly spaced vectors are affinely
equivalent.

* Prove that symmetric Borda weights m-1, m-3, . . .,
—-m+1 yield a total score of B(x) for each alternative x.

Recall that B(x) = 2, Net,(x>y)



Exercises

3) Reversal Manipulation We saw Copeland can be
manipulated via reversal: a profile P exists for which some
voter i can, by completely reversing her ranking, switch the
winning alternative from x to some alternative y whom she
sincerely prefers (she ranked y over x before reversing)

* Prove that Borda cannot be manipulated via reversal
(the same argument shows all scoring rules are similarly immune)

* Prove that Simpson-Kramer can be manipulated via
reversal

* Difficult: Prove that every resolute Condorcet
extension for 4 or more alternatives can be
manipulated via reversal



