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CHAPTER 17

Recent Advances in Large-Scale
Peer Grading

Ioannis Caragiannis

17.1 Introduction

Peer grading is the standard practice for evaluating research work and has re-
cently become a necessity in online education. Examples include a program
committee that has to decide on the papers that will be accepted for presentation
at a scientific conference, the members of a professional society that wish to sin-
gle out a member that should be given an award, or an instructor of an online
course who outsources the evaluation of an exam to the students themselves. In
all these cases, the individual inputs provided by each program committee mem-
ber, society member, or student have to be aggregated in order to get the final
result.

The challenge that needs to be addressed is to guarantee an as high as pos-
sible level of effectiveness in the evaluation outcome, given that the individual
inputs will be, in general, partial and inaccurate. Typically, the number of sub-
missions in a big scientific conference is a few thousand (e.g., more than 2,000
papers were submitted in the last AAAI and IJCAI conferences). Of course, there
is no single program committee member that has a complete view of all submit-
ted papers. Instead, each PC member is given very few papers for review. The
source of inaccuracy should be clear in the case of students who grade their
peers in an online course but it can be a severe problem even among experts.
In a recent experiment,1 the organizers of the NIPS 2014 conference formed two
independent program committees. Among the approximately 900 submitted pa-
pers, most were assigned to a single PC, but 166 submissions were reviewed by
both committees. This let them observe how consistent the two committees were
on which papers to accept. The results have revealed a surprisingly high degree
of randomness in the decision process: more than half of the papers accepted by
one committee were rejected by the other!

So, it should be clear that there is more than one reason why peer grading
can be challenging. In this chapter, we will focus on the extremely challenging
scenario that manifests itself when grading an exam in a massive open online

1See blog.mrtz.org/2014/12/15/the-nips-experiment.html for a detailed discussion on the NIPS
experiment.
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course (or, simply, MOOC or online course). We will follow the vision of the
MOOC enthusiasts and will assume that the number of students participating in
the exam is huge (our technical assumption will be that it approaches infinity). In
this way, we will have taken scale, partial view, and grading inaccuracy to their
extreme. Still, we will present an approach —heavily inspired by social choice
theory but also of a machine learning flavour— which has been proved recently
to be simultaneously simple and effective.

The rest of the chapter is structured as follows. In Section 17.2, we briefly
present the challenge of peer grading in massive open online courses, discuss
the current practice and introduce the concept of ordinal peer grading. Then,
in Section 17.3, we introduce useful notions and discuss the main tasks that
typically take place when ordinal peer grading is used. When particular techni-
cal characteristics have to be defined, we follow the recent papers by the author
(Caragiannis et al., 2015, 2016b). We identify the important parameters and dis-
cuss criteria for selecting their values in Section 17.4. In that section, we also
define a natural performance objective for ordinal peer grading. In Section 17.5,
we present the approach from (Caragiannis et al., 2016b) for assessing the perfor-
mance of ordinal peer grading methods in a particular class and for selecting the
best such method when statistical information about grading behavior is avail-
able. Experimental results follow in Section 17.6. We conclude with directions
for future research in Section 17.7.

17.2 Massive Open Online Courses

Platforms supporting online courses like Coursera2 and EdX3 have emerged as an
education trend and have attracted significant funding from venture capitals and
support from leading academics. Based on the data for 2015,4 the total number
of students that enrolled in at least one online course exceeded 35 million, a
100% increase compared to 2014. More than 500 Universities worldwide were
involved in more than 4200 online courses in 2016, offering courses not only
in popular technology-related subjects such as Computer Science, Business and
Management, and Engineering, but also in the Social Sciences and Humanities.

Whether MOOCs will become successful depends on whether they will man-
age to find a suitable business model and secure revenue sources. It seems that
the verified certificate that a student participating in such course can get for a
few dozens of dollars can serve as such a revenue source. The verified certifi-
cate keeps information about the performance of the student in a course or in
a chain of courses and can be used to justify the student’s quality to potential
employers. So, it should contain reliable information and achieving this in a pop-
ular online course is far from trivial. Enrolment data for the 50 most popular
MOOC courses5 suggests that the vision of the MOOC enthusiasts for courses
with several millions of attending students is not very far.

2www.coursera.org
3www.edx.org
4www.class-central.com/report/moocs-2015-stats/
5www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
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How can an exam with over one million of students be graded? With the
emergence of MOOCs as a trend a few years ago, and as the number of stu-
dents started increasing at extremely high rates while the available resources
were apparently very limited (e.g., hiring professional graders would be unrea-
sonably costly), a simple first approach that was adopted was to use automatic
grading, i.e., exams organized around questions with multiple-choice answers
that could be graded automatically. Unfortunately, this approach is unsatisfac-
tory in an exam where the student is asked to prepare an essay or express her
critical thinking over some issue; exams of this flavour are typical in courses of
Social Sciences and Humanities subjects. It is also unsatisfactory in any exam
in a Science or Engineering subject where the students are asked to prepare a
mathematical proof. Grading in these exams is an inherently human computation
(Law and von Ahn, 2011) task.

Self-assessment was a next step; each student was asked by the instructor
to assess her progress in the course and was also given guidelines on how to do
so. Self-assessment may give the student a way to get feedback from her studies
but it cannot result to reliable grading information that can be used to compare
students in terms of their performance in “class”.

Soon, it became apparent that the students should be involved in the grad-
ing task. This led to peer grading (Kulkarni et al., 2013; Piech et al., 2013;
Walsh, 2014), which is widely used in most MOOC platforms today. In addi-
tion, several standalone experimental tools such as crowdgrader.org (de Alfaro
and Shavlovsky, 2014), peergrading.org (Raman and Joachims, 2014), and the
author’s co-rank6 (Caragiannis et al., 2016a), as well as startup services such as
peergrade.io are available. The current practice is to use the students as graders,
with the traditional meaning of the term. So, each student gets some exam pa-
pers by fellow students and grades them by assigning them cardinal scores (and,
possibly, giving feedback), in a similar way a professional grader would do this.
This results in much noise in the grades. The students are not experienced in
assessing the performance of their fellow students in absolute terms and, if they
eventually learn how to do so, they will have obvious incentives to use low cardi-
nal grades (hoping that their own grade will look better compared to the student
majority). Much of the recent literature in data mining and machine learning
studies methods for calibrating cardinal grades; e.g., see the work of Piech et al.
(2013), Sajjadi et al. (2016), and Wright et al. (2015).

An approach, that has received much attention recently in the AI and machine
learning community (Caragiannis et al., 2015, 2016b; Raman and Joachims,
2014; Shah et al., 2013), does not use cardinal scores and is very close in spirit
to voting rules from social choice theory. In a nutshell (the whole process is de-
scribed in detail in the next section), each student is given a small number of
exam papers and is asked to rank them in terms of quality. Then, the partial
rankings are combined in an aggregate global ranking that is used as the final
grading information that can be stored in the verified certificate of each student.
In particular, information of the form “student X was ranked in the top 11%
among the 35,000 students that participated in the course Y” can be stored in

6co-rank.ceid.upatras.gr
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the student’s verified certificate and already carries much information that can
be used by potential employers. If the instructor desires so, the ranking infor-
mation can be translated to a cardinal score (like 8/10 or A+) using a predefined
distribution.

17.3 Organizing Ordinal Peer Grading

We now describe the tasks that are necessary for supporting ordinal peer grad-
ing. We will keep the presentation simple by making the simplifying assumptions
that all students will participate in grading and no experts will be used. We do
expect however that experts (professional graders or teaching assistants) may be
used in practice to calibrate the peer grading outcome; we also expect that some
of the students may decide to refrain from grading. These two characteristics will
complicate the general structure described below and pose important implemen-
tation issues that should be solved when deploying ordinal peer grading in real
environments. Since such issues seem to be addressed in ad hoc ways until now,
we will not incorporate them into the general structure presented below.

So, ordinal peer grading involves three main tasks: First, after the end of
an exam, copies of exam papers are distributed to the students. Then, each
student acts as grader and ranks the exam papers she received. Finally, the
partial rankings are aggregated into a global ranking. Let us denote by n the
total number of students participating in an exam (and in its grading).

1. Distributing the exam papers. The goal of the first task is to balance the
grading load. This can be done by making copies of each exam paper and
distributing them back to the students so that each student receives the
same number k of exam papers by other students and each paper is given
to exactly k students for grading. Following the terminology of Caragiannis
et al. (2015), we use the term bundle to refer to the set of k exam papers
assigned to a student for grading. A bundle graph can be used for repre-
senting this assignment. In particular, an (n, k)-bundle graph is a bipartite
graph7 G = ([n], [n], E). Both its left and right node sides correspond to the
n students; the students are assigned to the integers in [n] randomly. An
edge (i, j) indicates that student i’s exam paper is in the bundle of student
j. Clearly, an (n, k)-bundle graph has all its nodes with degree k while no
edge is of the form (i, i).

2. Grading. Once the copies of the exam papers have been distributed to the
students, each student has simply to rank the k exam papers in her bundle
in decreasing order of quality. The instructor may affect the grading process
by announcing indicative solutions of the exam and providing detailed grad-
ing instructions to the students; in this case, we typically assume that each
student acts as a perfect grader8 and ranks the exam papers in her bundle

7The notation [n] is an abbreviation for the set of integers {1, 2, ..., n}.
8Admittedly, this assumption is very optimistic as, most probably, in practice some students will

make grading mistakes in this case as well. It is useful though as it can be used to obtain upper
bounds on grading performance.
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correctly. If no such information becomes available from the instructor to
the students, it is natural to assume that the grading performance of a stu-
dent is correlated to her performance in the exam. These assumptions will
be made concrete in the next section.

3. Rank aggregation. The last task is to take the partial rankings provided
by all students as input and compute a global ranking of all exam papers.
A very simple way to do this rank aggregation is to use a method inspired
by the well-known Borda count. Each exam paper gets k points for each
appearance in the top position of a partial ranking, k − 1 points when ap-
pearing in the second position, and so on. Its Borda score is simply the total
number of points it receives in this way. The final ranking is obtained by
ordering the exam papers in terms of their Borda score in non-increasing
order, breaking ties randomly. Many other methods can be used as well; a
broad class of rank aggregation methods that contain Borda are discussed
in the next section.

Despite its apparent similarities to social choice, the ordinal peer grading set-
ting that we just defined has important differences from classical voting rules.
First, the rank aggregation task is applied on partial votes only. With the excep-
tion of the papers by de Weerdt et al. (2016), Dwork et al. (2001), Sculley (2007),
and Caragiannis et al. (2017), this seems to be non-standard in the literature.
Second, the decision on the contents of each bundle (and, hence, the exam pa-
pers in each partial ranking) is taken by the ordinal peer grading algorithm (and
not by each individual providing input as in the four papers above). A third char-
acteristic, which has been used only sporadically in social choice (e.g., see Alon
et al., 2011; Holzman and Moulin, 2013), is that the candidates and the voters
coincide.

17.4 Problem Parameters and Objectives

From the description of the previous section, the main parameters that have to be
decided in order to use ordinal peer grading are the bundle size k, the structure
of the bundle graph, and the rank aggregation method.

First, there is a trade-off in deciding the optimal bundle size. On one hand, it
should be small so that grading is possible with reasonable effort by each student.
As the final grading outcome depends on the quality of the input provided by the
students, the number of students that will get frustrated and give grading up
or grade at random should be minimized. A small bundle size is an incentive
in this direction; additional incentives by the course instructor — such as extra
grades depending on the distance between the student’s ranking of the exam
papers in her bundle and the relative position of them in the final ranking — may
guarantee the highest student participation in grading. On the other hand, large
bundles imply more grading information that will be given as input to the rank
aggregation algorithm. Hence, the larger the bundle size, the more accurate the
final grading outcome could be.
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Typically, the bundle size will be much smaller than the total number of exam
papers. As a result, deciding the structure of the bundle graph is important as
well. Note that a global ranking among n exam papers defines the relation be-
tween

(
n
2

)
∈ Θ(n2) pairs. In contrast, each grader provides information for

(
k
2

)

pairs only; this gives a total number of Θ(nk2) pairwise relations that can be
correctly recovered (with the optimistic assumption that graders provide correct
information), plus some additional pairwise relations that can be indirectly in-
ferred by exploiting transitivity (e.g., for exam papers a, b, and c the pairwise
comparisons a � b and b � c by different graders could be combined to conclude
that a � c as well). However, it should be clear that, as we would like to keep
the bundle size small, in order to maximize the amount of information we get
from the graders, we do not have the luxury to assign the same pair of exam
papers to more than one grader. In graph-theoretic terms, this means that the
bundle graph should not contain 4-cycles (as a 4-cycle in a bundle graph would
indicate that two different graders have the same pair of exam papers in their
bundles). A slightly less restrictive structure is that of a random k-regular bipar-
tite graph as bundle graph (this is guaranteed to contain very few 4-cycles with
high probability).

The most important decision is related to the rank aggregation method to be
used. A property that sounds highly desirable is to come up with a global ranking
of the exam papers that agrees as much as possible with the input provided by
the graders. More technically, let us define the distance between the input pro-
vided by a grader and a candidate final ranking as the total number of pairwise
comparisons among exam papers in which the grader disagrees with the candi-
date ranking. Then, a global ranking that has minimum total distance from all
graders would better aggregate the individual inputs. This is a variation of the
well-known Kemeny voting rule, adapted to our setting. Unfortunately, resolving
Kemeny (i.e., computing the global ranking with the above property) is a well-
known computationally hard problem in voting theory (Bartholdi et al., 1989). In
practice, this hardness is magnified by the fact that the total number of exam
papers is huge. Hence, simple rank aggregation rules like Borda would be the
most desirable from the computational complexity point of view.

But once we have restrict ourselves to simple rank aggregation rule, what is
the appropriate objective for selecting the best possible one? There is no single
answer here; for simplicity of exposition, we will evaluate rank aggregation rules
using as performance objective the expected9 fraction of corrected recovered pair-
wise relations between exam papers. Essentially, we assume that there is a true
(strict) ranking of the exam papers (i.e., a ground truth ranking) and evaluate a
rank aggregation rule by measuring the similarity of the ranking produced by the
rule to the ground truth.

We are now ready to present a first theoretical statement.

Theorem 17.1 (Caragiannis et al., 2015). When Borda is used to aggregate the
partial rankings provided by perfect graders, the expected fraction of correctly re-
covered pairwise relations in the final ranking compared to the ground truth is at

9The term “expected” is used since the assignment of students to the nodes of the bundle graph is
random.
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least 1 − O(k) when the (n, k)-bundle graph that is used for distributing the exam
papers does not contain 4-cycles, and at least 1−O(

√
k) in general.

Theorem 17.1 says that performance approaches optimality as the bundle
size increases. This is important and suggests that ordinal peer grading can
be highly scalable. But, unfortunately, it seems that such a rigorous analysis
cannot be more informative than that. For example, fixing a value of k, is Borda
the best choice? In other words, is it optimal among simple rank aggregation
rules? Theorem 17.1 provides no answer. The constants hidden in the O notation
are rather huge (higher than 50) and, hence, the statement gives only a rough
estimation of Borda performance as a function of k. Furthermore, the proof is
several pages long and quite involved.10 It holds specifically for Borda and is
based on the particular properties this rule has. It is not at all clear how the
analysis could be adjusted to work for other rank aggregation rules and it is even
less obvious how imperfect graders could be included in it.

17.5 A Machine Learning Approach

In this section, we present a radically different approach that was originally pre-
sented in (Caragiannis et al., 2016b). This approach aims to bypass the limi-
tations of the rigorous theoretical analysis and even get performance estimates
of the highest possible accuracy. It can be applied not only to Borda but to the
broad class of type-ordering aggregation rules that we will define shortly. Also, it
is not restricted to perfect graders but exploits statistical information about grad-
ing behavior when computing the performance estimate for a rank aggregation
rule. More importantly, following a direction that is typical in modern machine
learning literature, the approach can be used to compute the most suitable —the
optimal— type-ordering aggregation rule for a given bundle size and statistical
information about grading behavior.

17.5.1 Type-Ordering Aggregation Rules

We will use the term type of an exam paper to refer to the grading result for
it. As each exam paper belongs to the bundles of k different graders, its type
is a vector of k integers that contain the position the exam paper has in the k
partial rankings provided by the graders that have it in their bundle. We follow
the convention that the k entries in a type vector are sorted in monotone non-
decreasing order. Then, the set of possible types (for bundle size k) is

Tk = {σ = (σ1, σ2, ..., σk)|1 6 σ1 6 ... 6 σk 6 k}.

It can be easily seen that the number of different types in Tk is
(
2k−1
k

)
. For exam-

ple, T6 contains 462 types.

10The proof uses martingale theory and Azuma’s tail inequality (see standard textbooks on random-
ized algorithms such as the one by Mitzenmacher and Upfal, 2005) in order to cope with dependencies
between the several random variables involved. These dependencies appear due to the restrictions
that both the bundle size and the number of students that grade a single paper are fixed.
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As another example with k = 6, an exam paper of type (1, 2, 2, 2, 2, 5) is ranked
first by one of its graders, second by four graders, and fifth by one grader. Now,
consider another exam paper of type (2, 2, 2, 2, 3, 3) and observe that both have the
same Borda score of 28. So, Borda does not distinguish any of the two papers as
best. Now, consider the two types (1, 1, 1, 2, 5, 6) and (2, 2, 2, 3, 3, 3) of Borda scores
26 and 27, respectively. Borda indicates that an exam paper with the second type
is better. But looking carefully at the ranks, we could come up with the following
interpretation. The first exam paper is very good (and most probably in one of
the two top positions in any bundle) and the two low ranks might be due to poor
judgement by some of the graders. In contrast, the second exam paper is just
above average and this is reflected in all grades. Of course, such interpretations
are valid only when they can be supported by information about the graders.
But, certainly, there are cases where such interpretations are indeed valid and,
in contrast to what Borda does, it might be a good idea to take them into account.

A type-ordering aggregation rule uses a strict ordering � of all types in Tk.
Then, the final ranking of the exam papers follows the ordering � of their types,
breaking ties uniformly at random. In general, rules of this class seem to be very
powerful. Compared to Borda, which partitions the set of exam papers into only
k2 − k+ 1 different groups (an exam paper can have a Borda score between k and
k2), a type-ordering aggregation rule can distinguish between exponentially many
(in terms of k) different types.

17.5.2 Modelling Students’ Grading Behavior

The intuition discussed above suggests that the most suitable type-ordering ag-
gregation rule for a particular exam depends on the grading behavior of the stu-
dents. A simple way to express statistical information about grading behavior is
to use a noise model for the average grader. This is done through a k × k noise
matrix P = (pi,j)i,j∈[k], where pi,j denotes the probability that the exam paper with
correct rank j among the k exam papers in a bundle is ranked at position i by
the grader. Noise matrices are doubly stochastic: the sum of entries in any col-
umn and any row is equal to 1. The noise matrix of perfect graders is simply the
k×k identity matrix. Notice that this modelling of grading behavior is very rough;
a noise matrix may correspond to many different probability distributions over
rankings. As we discuss in the following, this rough representation of grading
behavior is enough in order to get accurate estimates of performance for type-
ordering aggregation rules and to decide the most suitable rule for exams with a
particular student population.

17.5.3 A Framework for Theoretical Analysis

We now present the main ideas in the theoretical analysis presented in (Cara-
giannis et al., 2016b). We will consider an exam and, taking the vision of the
MOOC enthusiasts to the extreme, we will assume that the number of students
participating in the exam is infinite. So, the positions of students in the ground
truth ranking can be thought of as occupying the continuum of the interval [0, 1].
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In the following, we will identify each exam paper by a real number x ∈ [0, 1] that
also indicates the position of the student/paper in the ground truth ranking.

Assume that we have fixed the bundle size to k, we have collected statistical
information for the grading behavior of our student population in a noise matrix
P , and we use a type-ordering aggregation rule that uses the ordering � of the
types in Tk. Then, the pairwise relations between two exam papers x and y with
ranks x < y (i.e., x is ranked higher than y in the ground truth) is correctly
recovered in the final ranking produced by the rank aggregation rule (compared
to the ground truth) if both exam papers get the exact same type σ and this tie is
randomly resolved in favour of exam paper x, or exam papers x and y get types
σ and σ′ (we use the notation x � σ and y � σ′ to represent these events) so that
σ � σ′. Denoting the expected fraction of correctly recovered pairwise relations
by C(k,�, P ) we obtain

C(k,�, P ) =

∫ 1

0

∫ 1

x


 ∑

σ,σ′:σ�σ′

Pr[x� σ ∧ y � σ′] +
1

2

∑

σ

Pr[x� σ ∧ y � σ]


 dy dx

=
∑

σ,σ′:σ�σ′

∫ 1

0

∫ 1

x

Pr[x� σ ∧ y � σ′] dy dx

+
1

2

∑

σ

∫ 1

0

∫ 1

x

Pr[x� σ ∧ y � σ] dy dx

The assumption of infinitely many students nullifies any dependency between
the rank vectors two exam papers x and y get after grading (i.e., Pr[x�σ∧y�σ′] =
Pr[x� σ] ·Pr[y� σ′]). This is due to the fact that the probability that the two exam
papers will appear in the bundle of the same grader is zero and different students
grade independently. So, by defining the weight

W (σ, σ′) =

∫ 1

0

∫ 1

x

Pr[x� σ] · Pr[y � σ′] dy dx (17.1)

for every pair of types σ, σ′ ∈ Tk, we obtain

C(k,�, P ) =
∑

σ,σ′:σ�σ′

W (σ, σ′) +
1

2

∑

σ

W (σ, σ). (17.2)

So, in order to compute C(k,�, P ), it suffices to compute the probability Pr[x�
σ] that an exam paper with position x in the ground truth ranking gets type
σ = (σ1, ..., σk) after grading. We will now devote some space11 to show that this
probability is nothing more than a polynomial of x and, hence, computing the
double integral in equation (17.1) is straightforward.

By considering all ways to distribute the entries of the type vector as ranks of
an exam paper by the graders that handle it (ignoring symmetries), there are

N(σ) =
k!

d1! · ... · dk!

11The material until the end of this subsection is technical and can be skipped at first reading.
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ways that the exam paper can get type σ, where di is the number of graders that
have the exam paper ranked i-th. Due to our assumption for infinitely many
students and the uniform inclusion of them into bundles, the quality of each
exam paper included in a bundle does not affect the quality of other exam papers
(in the same or different bundles). Clearly, the grading by different students is
performed without dependencies either. Denoting by E(x, σi) the event that exam
paper x is ranked σi-th in a bundle, the probability that x is of type σ is

Pr[x� σ] = N(σ)

k∏

i=1

Pr[E(x, σi)].

To compute Pr[E(x, σi)], it suffices to consider all possible true ranks that exam
paper x may have in a bundle and account for the probability of having such a
rank and being ranked σi-th by the grader handling the bundle. Let us denote by
E∗(x, j) the event that the true rank of x in a bundle is j. Then,

Pr[x� σ] = N(σ)

k∏

i=1

k∑

j=1

pσi,j Pr[E∗(x, j)].

Now, the probability Pr[E∗(x, j)] is equal to the number of ways we can choose j−1
exam papers to be ahead of x times the probability that all of them will indeed
be ahead of x in the bundle times the probability that the rest k − j exam papers
in the bundle will have true ranks worse than j. The assumption for an infinite
population of students allows to safely infer that each of the remaining k−1 exam
papers in a bundle where exam paper x belongs is selected uniformly at random
from the whole student population. We apply this reasoning, using Lk to denote
the set of all k-entry vectors ` = (`1, ..., `k) with `i ∈ [k] and abbreviating

∑k
i=1 `i by

|`|1 for compactness of notation. We have

Pr[x� σ] = N(σ)

k∏

i=1

k∑

j=1

pσi,j

(
k − 1

j − 1

)
xj−1(1− x)k−j

= N(σ)
∑

`∈Lk

k∏

i=1

pσi,`i

(
k − 1

`i − 1

)
x`i−1(1− x)k−`i

= N(σ)
∑

`∈Lk

( k∏

i=1

pσi,`i

(
k − 1

`i − 1

))
x|`|1−k(1− x)k

2−|`|1 ,

where the second equality is obtained by exchanging the sum and product op-
erators. Hence, Pr[x � σ] is a univariate polynomial of degree k2 − k. Then, the
double integral in the definition of W (σ, σ′) in (17.1) and, hence, C(k,�, P ) (using
equation (17.2)) can be computed analytically with a tedious but straightforward
calculation.

The quantity C(k,�, P ) is the theoretically predicted performance of the type-
ordering aggregation rule in an exam with a bundle size of k and student pop-
ulation with grading behavior that is described by noise model P . Crucially, all
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the derivations above are equalities. Hence, the only reason that could make
this prediction inaccurate is the assumption for an infinite number of students
participating in the exam. As we discuss later in Section 17.6, no such inaccu-
racy has been observed in practice and the theoretical analysis presented above
is fully justified.

17.5.4 Computing the Optimal Rule

The analysis of the previous section can be used to compute the most suitable
type-ordering aggregation rule for grading exams with students from a specific
population. Note that, as defined in (17.1), the weights do not depend on the
aggregation rule at all. They depend only on the bundle size and on the grading
behavior. Instead, the aggregation rule determines the particular weights that
should be summed up in the definition of C(k,�, P ). This means that, once
we have information about the bundle size and the grading behavior, we can
calculate the weights for every ordered pair of types first and then compute the
ordering of types so that the leftmost sum in the equation (17.2) is maximized.

It is not hard to see that the problem is equivalent to solving the feedback arc
set (FAS) problem on an edge-weighted complete directed graph. In particular,
the input is a complete directed graph that has a node for each type σ ∈ Tk. A
directed edge from a node corresponding to type σ towards a node corresponding
to type σ′ has weight W (σ, σ′). Now, the objective is to find an ordering of the
nodes so that the total weight of “consistently directed” edges from a node to a
node of higher rank in the ordering is maximized.

Theorem 17.2 (Caragiannis et al., 2016b). Computing the most suitable type-
ordering aggregation rule for a scenario involving specific bundle size and grading
behavior is equivalent to solving feedback arc set on an edge-weighted complete
directed graph.

FAS is NP-hard even in its very simple variant on unweighted tournaments
(Alon, 2006). Even though the particular weighted version that has to be solved
in our case admits a PTAS (Kenyon-Mathieu and Schudy, 2007), the solutions
that such a PTAS can guarantee in reasonable time are far from optimality and
the resulting type-ordering aggregation rule will consequently have highly sub-
optimal performance. Fortunately, the instances that have to be solved in order
to compute optimal type-ordering aggregation rules have a very nice structure.12

This structure allows to compute the optimal FAS solution (almost) exactly by a
straightforward algorithm that is briefly described in Section 17.6.

Figure 17.1 summarizes the whole approach described above. Using on input
the bundle size and a noise model that describes the grading behavior of a stu-
dent population, the most suitable type-ordering aggregation rule is computed,
together with a prediction of the expected fraction of correctly recovered pairwise
relations.

12This is not a formal statement but this has indeed been the case for all the scenarios considered
by Caragiannis et al. (2016b). So, it is conjectured therein that it holds in any scenario that can
appear in practice.
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Figure 17.1: A graphical overview of the approach in (Caragiannis et al., 2016b).

Interestingly, the approach described above allows for a general statement
that involves Borda. In particular, when perfect grading is used, the noise ma-
trix has 1s only in the main diagonal (and 0s elsewhere). Then, Pr[x � σ] has a
nice simplified form that allows to conclude that the most suitable type-ordering
aggregation rule is Borda and, actually, the tie-breaking does not affect the ex-
pected fraction of correctly recovered pairwise relations at all.

Theorem 17.3 (Caragiannis et al., 2016b). For perfect graders, Borda (with any
tie-breaking rule) is the optimal type-ordering aggregation rule.

Theorem 17.3 complements Theorem 17.1 nicely and is much more informa-
tive. Furthermore, its proof is short and elegant (see Caragiannis et al., 2016b).
The statement is rather surprising as Borda is among the simplest type-ordering
aggregation rules; essentially, the statement says that the extra power type-
ordering aggregation rules may have compared to Borda is not at all necessary
when perfect grading is used.

17.6 Experimental Results

We briefly present a very small set of experimental data from (Caragiannis et al.,
2016b) here. The data refer to ordinal peer grading using a bundle size k equal
to 6 and grading behavior that is correlated with student quality as follows. Each
student has a quality drawn uniformly at random from the interval [ 12 , 1] and
affects both her performance in the exam (i.e., her position in the ground truth
ranking) and her ability to grade. The ground truth is the ranking of the students
in decreasing order of quality. A student b of quality q performs the grading task
as follows: she considers every pair of exam papers x and y in her bundle, such
that x appears ahead of y in the ground truth, and temporarily determines x �b y
with probability q and y �b x with probability 1−q. If, after considering all pairs of
exam papers in the bundle, the pairwise relation �b is cyclic, the whole process is
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repeated from scratch. Otherwise, the ranking of the exam papers in the bundle
induced by �b is the grading outcome of student b. Due to its similarities with
the well-known Mallows model (Mallows, 1957) for generating random rankings,
we refer to this grading behavior as Mallows grading.

The noise matrix Pmallows that corresponds to the average Mallows grader is:

Pmallows =




0.6337 0.1753 0.0824 0.0494 0.0339 0.0253
0.1753 0.5112 0.1549 0.0768 0.0479 0.0339
0.0824 0.1549 0.4865 0.1500 0.0768 0.0494
0.0494 0.0768 0.1500 0.4865 0.1549 0.0824
0.0339 0.0479 0.0768 0.1549 0.5112 0.1753
0.0253 0.0339 0.0494 0.0824 0.1753 0.6337




The noise matrix has been computed by estimating the probability that a Mallows
grader ranks at position i an exam paper with correct rank j among the k exam
papers in her bundle; the estimate follows by simulating 109 Mallows graders.

Once the bundle size k and the noise model Pmallows are available, the approach
in Section 17.5.3 is used to compute the weights W (σ, σ′) for every pair of types
σ, σ′ ∈ Tk. For k = 6, T6 contains 462 types. Hence, the type-ordering aggregation
rule that is optimal for Mallows graders (as defined above) will follow by solving
the feedback arc set problem on a complete directed edge-weighted graph G with
462 nodes.

FAS is then solved as follows. First, notice that if we could compute an type-
ordering � so that σ � σ′ for every pair of types with W (σ, σ′) > W (σ′, σ), then this
would definitely maximize the sum of weights in the right hand side of equation
(17.2). Clearly, the relative order of a pair of types σ and σ′ with W (σ, σ′) = W (σ′, σ)
does not affect the sum of weights. So, the algorithm we use for FAS begins
with an optimistic pseudo-ordering that requires that σ � σ′ for every pair of
types σ and σ′ with W (σ, σ′) > W (σ′, σ) while it leaves any other pair of types
undecided. This pseudo-ordering is represented by a directed graph H that has
a node for each type in Tk and there is a directed edge from type σ to type σ′ if
W (σ, σ′) > W (σ′, σ). If this graph did not contain any cycles, then the pseudo-
ordering could be easily extended to a correct complete ordering. For example,
this is indeed the case for perfect graders (as the proof of Theorem 17.3 indicates).

In general, and this is the case with the scenario with Mallows graders we
consider here, the graph H will contain cycles, which we have to break in order
to compute the desired type-ordering aggregation rule. In order to do this, we first
decompose the graph into minimal strongly connected components C1, C2, ..., Ct
with the following properties. For i < j, every edge between a node σ of Ci and
a node σ′ of Cj has direction from σ to σ′. By definition, within each strongly
connected component Ci, there are two opposite directed paths connecting every
pair of nodes. So, it remains to “correct” the direction of some edges within each
connected component in order to break cycles. This has to be done carefully so
that the total weight of directed edges of G that appear in H at the end of this
process is maximum. And once this is done, we can complete the ordering of
types by adding edges with appropriate direction (so that no cycle is introduced)
between nodes that are not connected in H yet.
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Of course, if H contains huge strongly connected components, we have made
no progress at all in this way. But for the particular experiment, H contains
453 components that consist of a single type only, six components that have
size between 3 and 7, two more components of size up to 11, and one additional
component with 20 nodes. Clearly, there is nothing we have to do for singleton
components. For components of size up to 10, an exhaustive search will give the
best correction of the direction of edges so that the contribution of corresponding
weights to the sum at the right hand side of equation (17.2) is maximized. For
larger components, we order their types according to their Borda score (break-
ing ties randomly). This yields an almost exact solution to FAS with a predicted
expected fraction of correctly recovered pairwise relations equal to 85.15%. Com-
pared to the optimistic upper bound that includes all edges of H and edges be-
tween tied types, the loss in the predicted expected fraction of correctly recovered
pairwise relations is less than 0.001%.

Interestingly, in spite of the assumption for an infinite population of students
in our theoretical analysis, simulations with 10,000 students yield essentially
identical results. Figure 17.2 contains data from 1,000 simulated exams with
Mallows graders. The coordinates of each point are the fractions of corrected
recovered pairwise relations when Borda and the optimal type-ordering aggrega-
tion rule (for Mallows graders and bundle size equal to 6) is used, respectively.
The average values for both rules are 85.16% and 84.39% (these differ by less
than 0.01% from the values predicted using the theoretical framework in Sec-
tion 17.5.3) while all values are sharply concentrated around their expectation.
Furthermore, observe that Borda is always suboptimal (by approximately 0.8%)
and hence the whole cloud of points in Figure 17.2 is below the main diagonal.
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Figure 17.2: Performance of Borda compared to the optimal type-ordering ag-
gregation rule for Mallows graders. Each of the 1,000 points corresponds to a
simulated exam with the participation of 10,000 students, whose grading behav-
ior follows the Mallows model.
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17.7 Directions for Future Research

We have given a partial view of ordinal peer grading, mostly focusing on recent
work by the author. More details about the approach presented in Section 17.5
can be found in (Caragiannis et al., 2016b). Therein, the reader can find a larger
set of experiments compared to those presented in Section 17.6. Among other ex-
periments, Caragiannis et al. (2016b) describe an experiment that aims to build
a realistic noise model for the grading behavior of real students. This experiment
has involved students attending the author’s course on Computational Complex-
ity at the University of Patras. A second interesting experiment aims to assess
the impact of inaccuracies in the noise matrix to the performance of type-ordering
aggregation rules and the selection of the optimal such rule. It turns out that the
effect of such inaccuracies is negligible.

There are many interesting open problems regarding theoretical research on
ordinal peer grading, experiments, and the deployment of our methods to real
MOOCs. Regarding rank aggregation rules, we would like to see efficient imple-
mentations of approximations of Kemeny rank aggregation. An implementation
in this direction is the random serial dictatorship rule described in (Caragiannis
et al., 2015). This rule seems to have amazing performance with perfect graders
(clearly outperforming Borda) but is rather poor in the Mallows scenario. Is there
a variation of Kemeny that yields good results for imperfect graders?

We have claimed that it is easier for students to come up with a ranking of
the exam papers in their bundle compared to assessing their quality in absolute
terms. Interestingly, there is an even simpler grading format according to which
each student is simply asked to approve a specific number of exam papers from
her bundle. Then, a natural rank aggregation rule ranks the exam papers in
terms of their approvals, breaking ties randomly. This functionality has already
been implemented in our co-rank application. It would be very interesting to have
a supporting theoretical analysis of it. The forthcoming paper (Caragiannis and
Micha, 2017) is in this direction (but in a slightly different context).

Another thread of interesting research questions is related to incentives. Of
course, classical impossibilities in social choice theory imply that students may
grade strategically in order to improve their own position in the final outcome.
Can this strategic behavior be taken into account when deciding the optimal
rank aggregation rule? What about malicious behavior (of students that just
want to fool the rank aggregation rule)? We believe that the approach presented
in Section 17.5 could be adapted to strategic and malicious graders but this
requires challenging technical work.

Of course, during the deployment of ordinal peer grading in real systems,
there are several issues that need to be addressed. First, a few professional
graders may be available. In the language we have used here, this implies a
partial knowledge of the ground truth. How should this partial knowledge be
combined with rank aggregation of students’ grading in order to get an even better
final ranking? Another issue that we have completely neglected here is related
to student drop out after their participation in an exam but before its grading.
Even though we do not believe that such situations invalidate our theory, there
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are implementation issues that have to be taken seriously into account in real
MOOCs.

Another interesting setting is when grading takes place in steps with all stu-
dents involved in the first step and only the students that had good performance
in the exam involved in the later ones. Besides the obvious implementation is-
sues related to this setting, there are probably nice theoretical questions here.
These are open problems that certainly deserve investigation.
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