Trends in Computational

Social Choice

13

Cite as: Christian Geist and Dominik Peters. Computer-Aided
Methods for Social Choice Theory. In Ulle Endriss (editor), Trends
in Computational Social Choice, chapter 13, pages 249-267. Al Ac-
cess, 2017.

http://www.illc.uva.nl/COST-IC1205/Book/

http://www.illc.uva.nl/COST-IC1205/Book/

CHAPTER 13

Computer-Aided Methods for
Social Choice Theory

Christian Geist and Dominik Peters

13.1 Introduction

The Four Color Theorem is a famous early example of a mathematical result that
was proven with the help of computers. Recent advances in artificial intelligence,
particularly in constraint solving, promise the possibility of significantly extending
the range of theorems that could be provable with the help of computers. Examples
of results of this type are a special case of the Erdés Discrepancy Conjecture
(Konev and Lisitsa, 2014), and a solution to the Boolean Pythagorean Triples
Problem (Heule et al., 2016). The proofs obtained in these two cases are only
available in a computer-checkable format, and have sizes of 13 GB and 200 TB,
respectively. Proofs like these do not have any hope of being human-checkable,
and make the controversy about the proof of the Four Color Theorem pale in
comparison. The computer-found proofs of results we discuss in this chapter,
on the other hand, will have the striking property of being translatable to a
human-readable version.

Social choice theory studies group decision making, where the preferences of
several agents need to be aggregated into one joint decision. This field of study
has three characteristics that suggest applying computer-aided reasoning to it: it
uses the axiomatic method, it is concerned with combinatorial structures, and its
main concepts can be defined based on rather elementary mathematical notions.
Thus, Nipkow (2009) notes that “social choice theory turns out to be perfectly
suitable for mechanical theorem proving.” In this chapter, we will present a set of
tools and methods first employed in papers by Tang and Lin (2009) and Geist and
Endriss (2011) that, thanks to the aforementioned properties, will allow us to use
computers to prove one of social choice theory’s most celebrated type of result:
impossibility theorems.

An impossibility theorem posits that there does not exist a preference aggrega-
tion procedure that satisfies a given set of desirable axioms, and that these axioms
are therefore incompatible. For example, the Gibbard-Satterthwaite Theorem says
that no voting rule is simultaneously non-dictatorial, onto, and strategyproof. (A
voting rule takes as input a collection of preference rankings and selects a winning
alternative.) How to prove such a theorem? If we begin by limiting the number of

250 C. Geist and D. Peters

alternatives and voters involved to a finite number, this task reduces to iterating
through all possible voting rules and checking that none of them satisfies all
axioms. However, this task invites an amazing combinatorial explosion, and a
naive search would be hopeless.

The main piece in our toolkit is a SAT solver, which can use our axioms to
make logical inferences that make the search feasible. SAT solvers are computer
programs that apply powerful reasoning strategies to decide whether a given
propositional formula has a satisfying assignment or not. The last two decades
have seen dramatic speedups in solving times, with regular ‘SAT competitions’
producing faster and faster solvers, despite the intimidating NP-completeness of
the problem. Most solvers are freely available for use by researchers.

Here is the proof technique in a nutshell: Fix some finite number n of voters
and m of alternatives, say n = m = 3. Produce a formula of propositional logic
saying “there exists a voting rule for n voters and m alternatives satisfying such
and such axioms” and decide its satisfiability using any state-of-the-art SAT solver.
If, on the one hand, the formula is satisfiable, we can extract a voting rule that
satisfies the desired axioms. If, on the other hand, the formula is unsatisfiable,
we have the beginnings of an impossibility theorem. Usually, we now want two
more things: find a proof of the unsatisfiability (human-readable if possible),
and to extend the result to larger n and m. To achieve the first goal, we will
present an exciting method using minimal unsatisfiable sets. For the second goal,
we can often prove a relatively straightforward induction step, establishing an
impossibility for arbitrarily large » and m.

This technique has been successfully applied by Tang and Lin (2008, 2009) to
find new proofs of Arrow’s and of the Gibbard-Satterthwaite Theorem, by Geist
and Endriss (2011) to find new impossibilites in the space of set extensions, by
Brandt and Geist (2016) and Brandl et al. (2015) to study strategic properties of
tournament solutions, by Brandt et al. (2017) to study the no-show paradox, and
by Brandl et al. (2016) to study probabilistic social choice. Many other applications
of the technique are imaginable.

Related Work. Using logic solvers has proven to be useful for other problems in
economics, too. Examples are the work by Fréchette et al. (2016), in which SAT
solvers are used for the development and execution of the FCC’s reverse spectrum
auction, and recent results by Drummond et al. (2015), who solve stable matching
problems via SAT solving. Closely related to our approach is an article by Tang
and Lin (2011), who apply SAT solving to identify classes of two-player games with
unique pure Nash equilibrium payoffs. In another recent paper, Caminati et al.
(2015) verified combinatorial Vickrey auctions via higher-order theorem provers.

In some respects, our approach is similar to automated mechanism design
(see, e.g., Conitzer and Sandholm, 2002), where desirable properties are also
encoded as constraints, but mechanisms are computed to fit specific problem
instances (rather than being applicable generally). In a similar spirit, Mennle and
Seuken (2016) run linear programs in order to compute optimal (randomized)
choice mechanisms that satisfy approximate versions of strategyproofness and
efficiency.

A related line of work is directed towards formalizing and verifying existing

Computer-Aided Methods 251

results of social choice theory, such as Arrow’s Impossibility Theorem, through
logical formalizations (see, e.g., Nipkow, 2009; Grandi and Endriss, 2013; Cina
and Endriss, 2016).

The method we are going to survey in this chapter has also been discussed in
articles by Chatterjee and Sen (2014) and Kerber et al. (2016).

Chapter Outline. This chapter comes in two main parts. First, in Section 13.2
we go through an application of the method step-by-step using a simple toy
impossibility. Second, in Section 13.3, we give a detailed survey of several papers
that have applied the method, emphasising key extensions to the basic technique
as described in Section 13.2. We close by discussing the potential and the limits
of the method, and sketch some possibilities for future work.

13.2 Case Study: Strategyproofness and the Major-
ity Criterion

In this section, we showcase the method by going through a toy example in detail.
We will use SAT solvers to find a human-readable proof of the following result:

Theorem 13.1. For n = 3 voters and m > 3 alternatives, no (resolute) voting rule
satisfies both strategyproofness and the majority criterion.

Let N = {1,2,3} be a set of 3 voters, let A = {a,b,c} be the set of alternatives,
let £(A) be the set of linear orders over A4, and let R = L£(A)" be the set of profiles
over A. Thus, a profile is a function assigning a preference ordering to each voter.

A resolute voting rule f : R — A is a function mapping every preference profile
of linear orders to a winning alternative.

The voting rule f satisfies the majority criterion if whenever R is a profile so
that a strict majority of voters ranks some alternative z € A in top position, then
f(R) = 2.} For convenience, for each » € A, we write M(z) C R for the set of
profiles where x is ranked top by a majority.

We say that f is manipulable if there is a voter i € N and two profiles R, R’ € R
such that R(j) = R/(j) for every voter j € N\ {i}, but f(R’) =; f(R), where »; = R(i)
is ©’s vote in R. Thus, voter ¢ can achieve a better outcome by misreporting her
preferences as -, = R'(i). Conversely, f is strategyproof if f is not manipulable.

Note that the Gibbard-Satterthwaite Theorem immediately implies our The-
orem 13.1: if a voting rule satisfies the majority criterion, then it is also onto
and non-dictatorial. Thus, proving Theorem 13.1 is not a breakthrough result;
however, we hope that this section illustrates the SAT approach.

Step 1: Encoding into SAT. We start by constructing a formula ¢ of proposi-
tional logic that is satisfiable if and only if there exists a resolute voting rule f
for n = 3 voters and m = 3 alternatives satisfying both strategyproofness and

IThus, the majority criterion is a much weaker axiom than Condorcet-consistency. The Borda
count is a notable example of a rule which fails the majority criterion.

252 C. Geist and D. Peters

the majority criterion. So that the formula can be processed by standard SAT
solvers, we will ensure that our encoding produces a formula in conjunctive normal
Jorm (CNF). Thus, ¢ will be a conjunction of clauses. Recall that a clause is a
disjunction of literals, and a literal is either a variable or its negation. In our
example, it will be very natural to phrase our problem as a CNF formula. For
some other settings or axioms, we might need to transform a non-CNF formula
into CNF first. This is best done using Tseitin transformations (Tseitin, 1983; see
Kroening and Strichman, 2016, p. 12-14, for examples).

The propositional variables used in ¢ will describe the voting rule f explicitly,
i.e., they will specify the output of f for every possible profile with n = m = 3.
Precisely, we will use one variable vp , for each such profile R € R and each z € A.
The intended interpretation is that

f(R) =2z < vpg, is true.

With this interpretation, any satisfying assignment of ¢ will give rise to a voting
rule satisfying our axioms. Thus, Theorem 13.1 will be true (for n = m = 3) if and
only if ¢ is unsatisfiable.

We now describe the formula ¢ as the conjunction of several subformulas. We
start out by formalising the requirement that f be a function, that is, f(R) needs
to correspond to exactly one alternative. This requirement can be broken down
into two statements: that there be at least one such alternative, and at most one
such alternative. The first of these is easy to encode:

Pat least one = /\ (UR,a Vugrp V UR,c) .
RER

The second part can be phrased in CNF by requiring that f(R) does not correspond
to two distinct alternatives:

Presolute = /\ /\ (ﬂ'UR@ v _‘URJJ)'
RER z,ycA
zFy

Next, we encode our axioms. The majority criterion is relatively easy to put into
logic; we just identify all profiles R for which the majority criterion implies a
restriction on f. Recall that M(z) is the set of profiles in which a majority of voters

puts z in top position.
Pmajority = /\ /\ (UR,I)'
T€A ReM(z)

Strategyproofness is an axiom relating the output of f at two different profiles.
The encoding below interprets strategyproofness as “if f(R) =y, and voter i can
change profile R into R’ by misrepresenting her preferences, then f(R’) cannot be
better for i than y”.

Pstrategyproof = /\ /\ /\ /\ (UR,y — _‘UR/,m)-

iEN RER ReR =z,ycA
R'(§)=R(j) *~i¥Y
Vi

Computer-Aided Methods 253

[] sat-solving — -bash — 68x15
reading input file majority-resolute.cnf
no embedded options
found 'p cnf 648 12048' header
read 648 variables, 12048 clauses, 24144 literals in 0.00 seconds
UNSATISFIABLE

0.000 36% simplifying
0.000 0% search

0.000 100% all

nnonnwaoonaoonly

@ conflicts, 0.0 conflicts/sec
241 propagations, 1.2 megaprops/sec

C
C
C
C
C
C

0.0 seconds, 0.1 MB

Figure 13.1: Command-line output of the lingeling SAT solver when run on the
formula produced for our example. The line s UNSATISFIABLE states the result.

(Implications “a — b” can be rewritten as the disjunction —a Vv b.) Putting all the
subformulas together, we finally obtain

¥ = @at least one /\ Presolute \ Pmajority /\ Pstrategyproof-

Step 2: SAT Solving. Now that we have an encoding of our problem into CNF,
we can pass it on to a SAT solver to decide whether ¢ is satisfiable. For this we
will need to choose a specific solver, and write ¢ in a file format that the solver
can understand. A common source for finding powerful solvers is the series of
“SAT competitions” (satcompetition.org), where solvers by different researchers
are compared on a benchmark set. Two good choices at the time of writing are
lingeling (developed by Biere, 2013) and glucose (developed by Audemard and
Simon, 2009).

All common SAT solvers accept input formulas as text files in the DIMACS
format. To produce a CNF formula in this format, identify the propositional
variables using integers 1,2,...,v. Each clause of the formula is represented by a
line in the text file; for example, the clause 1V -2V 3 is represented by the line

1-230

Literals are separated by spaces and lines are terminated with a 0 and a newline
character. The first line of a DIMACS file is a header which contains the number of
variables and clauses used in the formula. For example, the formula we produced
to encode our problem here contains 648 variables and 12,048 clauses, and so
the associated file would start with the line

p cnf 648 12048

The DIMACS file should usually be produced using a script which keeps track
of the mapping from variables to integers, so that a possible satisfying assignment
can be translated back into an actual model.

254 C. Geist and D. Peters

When running our chosen SAT solver on the formula produced, we obtain a
report that ¢ is unsatisfiable in much less than 1 second? (as in the screenshot in
Figure 13.1).

Step 3: MUS Extraction. Still, we would like to know a reason for the unsatisfia-
bility, and preferably a human-readable proof. For these purposes it will be useful
to know where the unsatisfiability comes from, and which profiles and constraints
were responsible for it. The relevant tool for this goal is a minimal unsatisfiable set
(MUS), which is a subset of the clauses of ¢ that is already unsatisfiable, and is
minimally so, in the sense that removing any of the clauses results in a satisfiable
formula. Thus, each of the clauses in an MUS encodes a ‘proof step’ that cannot
be skipped. The fewer clauses an MUS contains, the easier it is to understand,
and so we are hoping to find an MUS of small cardinality.

The number of available tools for extracting an MUS is substantially smaller
than the number of SAT solvers. For our purposes the currently best tool available
is MUSer2 by Belov and Marques-Silva (2012), which internally uses the solver
glucose as a SAT oracle. MUSer2 takes an unsatisfiable DIMACS file as input
and returns an MUS. MUSer2 also supports the computation of group MUSes: in
this setting, the clauses of a CNF formula are partitioned into groups, and we
are looking for an inclusion-minimal set of groups that are unsatisfiable. In our
experience, it can be useful to group together the clauses referring to a single
profile, as this can lead to smaller MUSes that are easier to interpret. A group-CNF
formula is specified by a DIMACS file with clause lines like {6} 1 -2 3 0, where 6
is the number of the group that corresponds to this clause, and has header line p
genf 648 12048 100, where 100 is the number of groups used. Clauses in group 0
are never removed by MUSer2.

Another useful tool is MARCO (Liffiton et al., 2016), which enumerates all
MUSes of a given (group-)CNF formula. This can be helpful to find smaller MUSes,
or ones that have a simpler structure.

The MUS obtained in our example contains just 9 clauses, which refer to a
total of 5 profiles, which we label R,, Rg, R+, Rs, R. and show in Figure 13.2. In
particular, the MUS contains 2 clauses from @at ieast one for R, and R, 3 clauses
from pmajority for Rg, Rs, and R, and 4 clauses from @girategyproor for manipulations
from R, to R,, from R, to Rg, from R, to Rs, and from R, to R.. Interestingly, the
MUS does not contain any clauses from ¢resolute-

Step 4: Interpreting the MUS. Now we will translate the MUS obtained in the
previous step into a human-readable proof. The MUS we have obtained can
be displayed in a graphical fashion, as in the right-hand half of Figure 13.2.
Producing such “proof diagrams” can make it much easier to produce a human-
readable proof. To see how this diagram can be obtained, it is useful to distinguish
between intra-profile and inter-profile axioms (cf. Fishburn, 1973). An intra-profile
axiom refers to the allowed voting outcomes at a single profile; examples are
Pareto optimality, the majority criterion, and Condorcet-consistency. Any clauses

2For our example problem, the strategy of unit propagation turns out to be enough to solve the
formula, but this is not the case for all problems of this type.

Computer-Aided Methods 255

Rq
at least one
voter 1 voter 2 voter 3
3 manip. 2 manip.

R, a=b-c b=a+=c c=arb e .
R a=b>c b=a=c axb>c It Iy
R’y a-bs=c b-c-=a c=a=b majority for a at least one
Rs a>=b-c c=a-b c=a-b 2 manip. 1 manip.
R b=a=c b=c-a c=a=b pd N

Ré Re

majority for ¢ majority for b

Figure 13.2: The 5 profiles used in the MUS, and a graphical representation of
the clauses in the MUS.

in the MUS referring to an intra-profile axiom can be written next to the node of
the diagram representing the profile under consideration. An inter-profile axiom
connects the voting outcomes at multiple profiles; examples are strategyproofness,
participation, anonymity and neutrality. Note that these four examples can be
phrased so as to refer to exactly two profiles. As such, they can be displayed
as a (possibly directed) edge connecting two profile-nodes in the diagram. In
our example, directed edges correspond to clauses specifying that a certain
manipulation is not successful. Proof diagrams of this sort, first used by Brandt
et al. (2017), can serve as a unifying ‘language’ of impossibility proofs.®

We will now translate the ‘proof shown in Figure 13.2 into English. In reading
the following proof, it is useful to refer to the diagram to see how the two objects
correspond to each other.

Theorem 13.2 (Base Case). For m = n = 3, there is no voting rule that satisfies
strategyproofness and the majority criterion.

Proof. Suppose f is a voting rule satisfying both axioms. We proceed in a bottom-
up fashion, establishing which value f must take for each profile, and find that
there is no possible value f(R,) for the root node, contradiction.

Consider the profile R, where f(R,) needs to take some value. If f(R,) = a,
then voter 2 can manipulate to obtain profile Rs. By the majority criterion,
f(Rs) = ¢, and so we have f(R;) -2 f(R,), and this was a successful manipulation,
contradicting strategyproofness of f. Hence f(R,) # a.

If f(R,) = ¢, then voter 1 can manipulate to obtain profile R.. By the majority
criterion, f(R.) = 0. Thus f(R.) =1 f(R,), and this was a successful manipulation,
contradicting strategyproofness of f. Hence f(R,) # c. Hence f(R,) = 0.

By the majority criterion, f(Rg) = a. Now consider profile R,. In case f(R,) = b,
then voter 3 can manipulate to obtain profile Rz. Since f(Rg) = a, this would be a
successful manipulation for voter 3. Hence f(R,) # b.

SInter-profile axioms that refer to more than two profiles, such as non-dictatorship or non-
imposition, cannot be represented as edges in a proof diagram. The MUS-based approach is less
suited for problems using these axioms, since any MUS will need to contain clauses referring to every
profile. In such situations, it can be useful to replace these axioms by related ones that refer to at
most two profiles. For example, non-imposition is often equivalent to unanimity in the presence of
strategyproofness.

256 C. Geist and D. Peters

Thus, f(Ra) € {a,c}. But voter 2 can manipulate at R, to obtain profile R,. We
have seen that f(R,) = b. Hence f(R,) =2 f(R,) according to voter 2’s preferences
in R,, contradicting strategyproofness of f. Hence such an f cannot exist. O

In this example, the MUS corresponds to a short and elegant proof. For more
complicated impossibilities, it is sometimes useful to hand-optimize the MUS
found. MUS extractors typically use essentially a greedy algorithm to find an MUS,
and the result may well only be a local optimum with respect to cardinality of the
MUS, or indeed with respect to simplicity of the resulting proof.

Step 5: Induction Step. We have found a proof of the finite fact that for n = m =
3, no voting rule can satisfy the axioms of strategyproofness and of the majority
criterion. This alone is perhaps not completely satisfying, since we would like
to say something about larger values of n and m. Often, it is possible to prove a
reduction argument which consists of statements of the form

o If there is a voting rule satisfying a given set of axioms for n + 1 voters and
m alternatives, then there is also a voting rule satisfying these axioms for n
voters and m alternatives.

¢ If there is a voting rule satisfying a given set of axioms for n voters and m + 1
alternatives, then there is also a voting rule satisfying these axioms for n
voters and m alternatives.

Viewed contrapositively, these statements are induction steps. If we can prove
these statements, given our proof of the base case above, it immediately follows
that the impossibility result also holds for all larger values of n and m. Sometimes
it can be difficult to establish this induction step; in such cases it may be possible
to manually extend the proof obtained for the base case to go through for larger n
or m. In some settings, the induction step may turn out to be false (for example,
an impossibility could only hold in profiles with an odd number of voters). For our
example, it is easy to prove an induction step for m, but we do not know of a way
to prove the induction step for n (except, of course, by cheating and appealing to
the Gibbard-Satterthwaite Theorem directly).

Lemma 13.3. Let m > 3 and n = 3. If f is a resolute voting rule satisfying strat-
egyproofness and the majority criterion for m + 1 alternatives, then there exists a
voting rule f’ for m alternatives with the same properties.

Proof. Let f be defined for the alternative set AU {z}, where |A| = m. For every
profile R with n voters and on alternative set A, define the profile R** derived from
R by putting alternative z at the bottom of each preference order. Thus, for each
voter i and all a,b € A, we have a 7/ b if and only if a ==; b, and we have a =" z
for each a € A. Then define the rule f’ on alternative set A by

fI(R) = f(RT™).

Clearly, [’ satisfies the majority criterion, for if x is the majority winner in R,
then z is also majority winner in R™*, so f'(R) = f(R™®) = x, since f satisfies the

Computer-Aided Methods 257

majority criterion. Also, f’ satisfies strategyproofness, because any successful
manipulation of f’ from R to R’ is a successful manipulation of f from R*? to
R'*™*, which would contradict strategyproofness of f. O

The technique of adding new alternatives to the bottom of the profile is a
standard tool for reducing the number of alternatives. Often-used moves for
reducing the number of voters, on the other hand, include cloning a specific voter,
adding an all-indifferent voter, or adding two voters with completely reversed
preferences.

Having established both base case and induction step, this concludes the proof
of our modest impossibility theorem.

13.3 Applications and Advanced Techniques

We will now survey several papers that have used this style of technique to prove
much more complex results, and discuss ways in which they deviate from the
recipe.

13.3.1 Arrow’s and the Gibbard-Satterthwaite Theorem

The two most famous impossibility theorems in social choice theory are Arrows’
Impossibility Theorem and the Gibbard-Satterthwaite Theorem. Tang and Lin
(2008, 2009) used these theorems to introduce the idea of proving impossibilities
in social choice by induction on n and m, and by verifying the base case using
a SAT or constraint-programming solver. It should be clear how to adapt the
method of Section 13.2 to prove the base case of the Gibbard-Satterthwaite
Theorem; to encode non-imposition one could use A ., \ ;vr2, and to encode
non-dictatorship one could use A,y \z "V top(r,i)» Where top(R,i) denotes the
most-preferred alternative of voter 7 in profile R. Note that both of these axioms
use very long clauses, which can be tough for solvers to use. Similar ideas can be
used to encode the base case of Arrow’s Impossibility Theorem; for this, one would
probably introduce a variable vy »- for each profile R and each possible output
relation ~. -

While establishing the base case for both of these theorems is straightforward,
establishing the induction steps is rather involved. This is in contrast to the results
we will see below, where establishing the base cases is the main technical difficulty.
This is because the number of variables in the encoding grows exponentially with
n and m, and the results below need base cases with m > 3.

13.3.2 Irresolute SCFs and Fishburn’'s Set Extension

In this section we will see two modifications to the technique we saw in Sec-
tion 13.2: here, we will consider voting rules that are majoritarian and set-valued.
Both of these changes have impacts on the encoding technique.

258 C. Geist and D. Peters

A set-valued (or irresolute) voting rule assigns to every preference profile a
non-empty subset of A; the usual interpretation is that the alternatives returned
are tied for winner, and that some external tie-breaking mechanism will later
be applied. This approach raises some problems for defining axioms such as
strategyproofness; to extend the definition of the resolute case, we need to extend
a voter’s preference order to a preference order over sets of alternatives. Several
different ways to do this (so-called set extensions) have been proposed. In this
section, we will focus on Fishburn’s set extension.* Suppose i is a voter with
preference relation ~;, and suppose i expects the ties in the voting rule to be
broken according to some linear tie-breaking order; however, i does not know
which order will be used. Now, if X,Y C A are non-empty subsets of alternatives,
set X is weakly preferred to Y according to the Fishburn extension (written
X =FY) if the tie-broken outcome from X is guaranteed to be weakly better
(according to -;) than the outcome from Y, no matter the tie-breaking order used.
For a more explicit definition, see Brandt and Geist (2016). Note that the relation
=¥ is incomplete: not all pairs of sets can be compared using the criterion given.

In a similar way to the resolute case, we say that an irresolute rule f is
Fishburn-manipulable if for some voter : € N and for two profiles R and R’ that
differ only in i's vote, we have f(R') = f(R), where ~; is i’s vote in profile
R. Then f is Fishburn-strategyproof if it is not Fishburn-manipulable. Now let
R —i = R|n\{;} denote the profile obtained from R by removing voter i. We say
that an irresolute rule f (defined over profiles with variable electorates) satisfies
Fisburn-participation if there is no profile R and voter i such that f(R—i) = f(R).
Thus, voters never strictly regret having voted.

Further, f is said to be majoritarian if it is neutral and selects the same set of
alternatives for any two profiles with the same majority relation, and it is Pareto
optimal if whenever z is a Pareto dominated alternative in R, then = ¢ f(R).

Finally, we can state the two impossibilities of this section.

Theorem 13.4 (Brandt and Geist, 2016). There is no magjoritarian and Pareto
optimal set-valued voting rule that satisfies Fishburn-strategyproofness if m > 5
andn > 7.

Theorem 13.5 (Brandl et al., 2015). There is no majoritarian and Pareto optimal
set-valued voting rule that satisfies Fishburn-participation if m > 4 and n > 6.

Both of these results were proved using the method presented in Section 13.2.
Let us sketch how the encoding can be adapted to the new setting. In order to
encode the irresoluteness of the voting rules, it is useful to choose a variable vy x
for every profile R and every non-empty X C A indicating that f(R) = X. While
this might seem like a wasteful encoding, requiring 2™ — 1 variables for each
profile, it makes it much easier to encode Fishburn’s set extension, because we
can evaluate the relation =" at encoding time, rather than having to translate its
definition into propositional logic.® To encode that f should be majoritarian, one

4Some authors refer to this set extension as Gardenfors’ extension. We follow the terminology of
the survey by Gardenfors (1979), who uses his own name for a different set extension.

5If one uses the optimistic or pessimistic preference extension (like in Brandt et al., 2017, Sec-
tion 7), using variables vg , for z € X can often be made to work directly.

Computer-Aided Methods 259

could use clauses enforcing an if-and-only-if relation between the outputs of two
profiles with the same majority relation. However, a much more efficient possi-
bility exists: for each possible majority relation (represented by a tournament 7)),
introduce variables vr x. Since there are vastly fewer tournaments than there
are profiles, this uses many fewer variables, and clearly, this is enough to define
any majoritarian voting rule. However, with this choice of encoding, one needs to
take care to encode Fishburn-strategyproofness and neutrality only in terms of
tournaments; see Theorem 1 and Lemma 1 of Brandt and Geist (2016).

13.3.3 The No-Show Paradox and Incremental Proof Discovery

A stunning result of Moulin (1988) establishes that no Condorcet extension
satisfies participation, an axiom that requires that no voter can be worse off by
participating and voting honestly. Moulin’s proof requires 4 alternatives and 25
voters to go through. Since the maximin rule (with some fixed tie-breaking rule) is
a Condorcet extension satisfying participation if m = 3 (Moulin, 1988), we see that
4 alternatives are required for the result to hold. However, it seems unlikely that
exactly 25 voters are required. We will use SAT solvers to find an optimal bound.

Formally, in this section we consider voting rules that are defined for variable
electorates, i.e., that are defined for profiles that contain different numbers of
voters. Given a profile R of linear orders, an alternative a € A is called a Condorcet
winner if for every other alternative b € A\ {a}, there is a strict majority of voters
who prefer a to b. A voting rule is a Condorcet extension if it selects the Condorcet
winner for all profiles that have one. As in the previous section, we say that a
voting rule f satisfies participation if for all profiles R, and for all voters i who
participate in R, we have f(R) =; f(R —i). Thus every voter weakly prefers
submitting their truthful preference order to abstaining. Again, R —i = R|n\y; is
the profile obtained from R by removing voter 4.

Theorem 13.6 (Brandt et al., 2017). While there is no Condorcet extension that
satisfies participation for m > 4 and n > 12, there exists such a voting rule for m = 4
andn < 11.

In principle, it should be no mystery how to achieve such a result using the
technique of Section 13.2. Inconveniently, there are 4!'2 ~ 1016 profiles with m = 4
and n = 12, and it is impractical to enumerate them all in order to write down (let
alone solve) the SAT formula we would produce.

One could try something similar to the approach of Section 13.3.2 and only
consider majoritarian voting rules. In fact, if we restrict attention to pairwise
(C2) voting rules (those that depend only on the weighted majority relation),
then one gets a positive result for n = 11 and a negative one for n = 12. This
result for n = 11 is useful as it implies the second part of Theorem 13.6; the
result for n = 12, however, is weaker than desired because it uses the additional
“axiom” that the voting rule is pairwise. However, obtaining this proof with an
additional axiom could still be useful. Brandt et al. (2017) propose using what
they call incremental proof discovery: using proofs of weaker statements to make
educated guesses about a restricted domain over which to look for an impossibility
result. In particular, they noticed that the impossibility proof for n = 12 using

260 C. Geist and D. Peters

pairwiseness had some interesting structure. The profiles in the proof did contain
all 4! = 24 possible preference orders, instead using only 10 different orders. They
then produced a formula including only profiles that were built up using only
these 10 orders; a much smaller formula. This formula turned out to be already
unsatisfiable, establishing the first part of Theorem 13.6.

Brandt et al. (2017) then used information gleaned from the proof for n = 12 to
search for impossibility results to look for impossibilities for set-valued voting rules
(with participation defined using the optimistic and pessimistic set extensions) and
found optimal bounds of n = 17 and n = 14 for impossibility results in this setting.
Later, Peters (2017) used similar techniques to find such results for Condorcet
extensions satisfying half~way monotonicity, which is a weaker condition than
participation.

13.3.4 Probabilistic Voting Rules

Let A(A) be the set of lotteries (probability distributions) over A. A probabilistic
voting rule (also known as a social decision scheme) assigns a lottery to each
preference profile; for example, the voting outcome might be a fair coin toss
between a and b. As usual, such a voting rule is anonymous and neutral if it is
invariant under renaming voters and alternatives, respectively. For defining other
axioms, it is useful to have a way of comparing different lotteries in terms of their
desirability to a given voter. Here, we will use the notion of stochastic dominance:
If a voter 7 has preferences ’-;, and p,q € A(A) are lotteries, we say that p =" ¢ if

Z p(y) > Z q(y) forall z € A.

YZiw YZiw

The main appeal of stochastic dominance stems from the following equivalence:
p =3P ¢ if and only if p yields at least as much von-Neumann-Morgenstern utility
as ¢ under any utility function that is consistent with the ordinal preferences 7.
We can now say that a probabilistic voting rule f is SD-strategyproof if we do
not have f(R') =77 f(R) for any profiles R and R’ that differ only in voter i € N,
where ~; is i’s preference according to R. Further, we say that f is SD-efficient if
there never exists a lottery p # f(R) such that p 7P f(R) for all voters i € N and
p =P f(R) for some voter i € N.

It turns out that these two axioms are incompatible in the presence of symmetry
axioms.

Theorem 13.7 (Brandl et al., 2016). If m > 4 and n > 4, and allowing wealk or-
ders with indifferences as individual preferences, there is no anonymous and neu-
tral probabilistic voting rule that satisfies SD-efficiency and SD-strategyproofness.

This result is notable because it implies several other previously found impos-
sibility results in probabilistic social choice (see Chapter 1 of this book). Since
this result appears in a chapter on computer-aided methods, it is unsurprising
that it, too, was obtained using solving techniques. However, this may seem
puzzling: even fixing n = m = 4, the search space of probabilistic voting rules is
infinite. This suggests that we will need a different solving technique, which can

Computer-Aided Methods 261

deal with real-valued (rather than Boolean) variables. Integer Programming comes
to mind, and indeed one can encode the axioms of Theorem 13.7 using Integer
Programming.

Another option in this context, though, are SMT solvers (“satisfiability modulo
theories”). These solvers are very flexible and are used mainly in software veri-
fication. When we use linear arithmetic as our underlying theory, we can think
of the input formula given to the SMT solver as a propositional formula whose
atoms are linear (in)Jequalities of real-valued variables. Encoding our axioms
into this language is relatively straightforward, though SD-efficiency requires
some further analysis (see Brandl et al. (2016) for details). We have found that
SMT solvers frequently solve problems like the ones discussed here faster than
commercial Integer Programming solvers. This may be because branch-and-cut is
less appropriate than conflict-driven approaches for our problems.

Unfortunately, the infinite search space involved seems to make this problem
significantly tougher, and Brandl et al. (2016) found it prohibitive to search over the
entire space of about 1 million profiles. Thus, they looked for a similar reduction
in the size of the search space as was successful for participation (Section 13.3.3).
They noticed that many impossibility results take the form of starting at some
initial profile R and then considering “nearby” profiles that can be obtained from
R through few manipulations (i.e., few voters changing their reported preferences).
They identified a promising profile R in which the popular probabilistic rule
Random Serial Dictatorship returned an SD-inefficient lottery, and then generated
a “ball” of about 10,000 profiles around R which could be reached by at most
4 successive manipulations. They also only considered “small” manipulations,
where the reported preference was close to the truthful one (according to the
Kendall-tau distance). Finally, they incorporated the anonymity and neutrality
axioms by only introducing variables for canonical profiles which represent all
profiles obtainable by renaming voters and alternatives. The resulting domain was
small enough for the solver to terminate, and to yield an unsatisfiability result.
Many SMT solvers allow for the extraction of minimal unsatisfiable sets, which
allow obtaining a human-readable proof, though this is much more involved in
this case (see Eberl, 2016).

13.3.5 Other Applications

Set Extensions. There is a well-developed literature about how to extend a
preference order over alternatives to a preference order over sets of alternatives;
see Barbera et al. (2004) for a survey. Much of the work in this area focuses on
axiomatic characterisations and impossibility results. Geist and Endriss (2011)
introduce a logic for capturing many of the axioms used in the field, and prove a
universal induction step for all (conjunctions of) axioms that can be represented
as an “existentially set-guarded” formula in this logic. They then considered 20 of
such axioms, and used a solver to check base cases for all combinations of these
axioms, finding a total of 84 (axiom-minimal) impossibilities, several of which were
not previously known.

262 C. Geist and D. Peters

Proof Verification. One way to gain more confidence in the correctness of com-
puter-generated (and also human-generated) proofs is to formally check them.
One tool to do so is ISABELLE/HOL (Nipkow et al., 2002), which is a generic
interactive theorem prover, where interactive indicates that the process of proof
discovery is guided by a human operator who indicates a sequence of steps to
follow, with most gaps filled automatically by the theorem prover. For examples of
this applied to social choice, see Nipkow (2009) and Eberl (2016). In particular,
the latter paper verifies the result from Section 13.3.4.

Solving-based Algorithms. There are a few examples of algorithms for compu-
tational problems in social choice theory that are powered by SAT solving. For
instance, mostly by computing counterexamples, Brandt et al. (2016) explore the
boundaries of the connection between the McKelvey uncovered set and the notion
of Pareto optimality, Bachmeier et al. (2017) improve our understanding of the
notions of k-majority digraphs, and Geist (2014) computes minimal preference
profiles with Condorcet dimension 3. Interestingly, using solvers outperforms
existing tailor-made algorithms in many applications.

13.4 Discussion and Future Work

New Insights. A perhaps surprising feature of computer-aided proofs is that
they may give new and unexpected insights into the problems considered. For
example, in studying the no-show paradox, Brandt et al. (2017) found proofs
that exploit symmetries that were not present in Moulin’s (1988) original proof.
A related feature of the computer-aided methods discussed in this chapter are
that they allow searching through various related conjectures. For example, it is
easy to replace axioms by weaker versions to see whether the impossibility still
holds. Brandt and Geist (2016) extensively used this technique to find several
weakenings of Fishburn-strategyproofness that sill produce an impossibility. Geist
and Endriss (2011) used this technique to find an exhaustive list of impossibility
results in their domain of set extensions.

Better Usability. In their current form, applying solving methodologies to social
choice theory remains a task for expert users with programming skills. While this
does not impact the overall power of the approach, it limits the degree to which it
can be broadly used by any researcher in social choice. Still, one may hope for the
development of user-friendly tools that help formalizing concepts of social choice
theory in the languages of solvers.

However, in our experience, the design of efficient encodings has to follow
the requirements of—and needs to be optimized for—the concrete problem. This
follows the observation that for general proof assistants with highly expressive
input languages, such as ISABELLE, many problems can be easily and intuitively
formalized, but the ability of these systems to discover new results is rather
limited due to the high complexity of the general problem.

Yet, some basic toolsets to assist expert users when formalizing concepts
from social choice are certainly desirable and should be achievable based on the

Computer-Aided Methods 263

similarities of existing approaches. It remains an interesting question to which
extent such tools can take the role of an automatic proof assistant which allows
researchers to quickly test hypotheses on small domains without giving up too
much generality and efficiency.

Limitations of the Approach. The vision that Tang (2010) had when he invented
the basis for the methods presented here was computer-aided theorem discovery,
which in his words includes two aspects: “to come up with reasonable conjectures
automatically” and “to prove or disprove the conjectures automatically”. While
these targets turned out to be achievable in the domain of set extensions (Geist
and Endriss, 2011), for more complex settings, we will usually need to come
up with reasonable conjectures manually, and often the proving process cannot
reasonably be described as “automatic”. Based on this experience, we believe
that the key for successful application of computer-aided methods will be a close
collaboration between subject matter experts (who formulate the questions and
provide theoretical tools) and experts on the method (who answer the questions
with the help of machine support). This enables faster testing of conjectures,
and also helps to explore similar statements as well as limits of the hypotheses.
When applied interactively, such collaboration might even guide the search for
new results in cases where the conjectures are not clearly formulated yet, for
instance by quickly providing counterexamples to some ideas.

Regarding the types of theorems that can be proven with the presented ap-
proach, there neither is an obvious classification nor are there strict limiting
factors that are easily recognizable. An intuitive limit is the question of whether a
given problem can be fruitfully reduced to a finite instance—but note that in the
probabilistic setting we were able to deal with an infinite domain.

New Application Domains. Most of the results we have surveyed in this chapter
focussed on voting rules. The method we presented is flexible enough to apply to
other types of objects. Let us briefly sketch some ideas for future applications.

In Chapter 2 of this book, we have seen several axiomatic results in the theory
of multiwinner elections; however impossibility theorems are notably missing. This
could be a promising opportunity. To keep formula sizes tractable, it would be
useful to consider only small committee sizes (such as k = 2,3). It may also be
fruitful to consider the approval setting, where voters submit dichotomous orders
(see Chapter 2). In particular, the approval-based rules AV, MAV, and PAV all have
different axiomatic strengths, and combining any two may lead to an interesting
impossibility.

Matching theory is another plausible domain. In standard two-sided match-
ing problems, there are known strategyproof mechanisms (such as one side of
Gale-Shapley), and one could aim for impossibilities of a combination of strate-
gyproofness with other axioms. Similarly, impossibility results could inform the
theory of popular matchings (see Chapter 6). Finally, there is a large literature on
the random assignment problem (see Chapter 1), which already contains several
impossibilities. Computer-aided approaches could help strengthen and extend
those results.

264 C. Geist and D. Peters

Judgement aggregation is about combining judgements about the truth-values
of multiple logical formulas. The field has a rich axiomatic theory (see Endriss,
2016). Logic-based solvers may be particularly useful in this domain. A plausibly
helpful tool would be the use of SMT solvers using a bitvector theory.

Argumentation theory is a further possible application domain. See, for exam-
ple, the work by Booth et al. (2014), in which three-valued logics are applied to
directed graphs, reminiscent of tournament solutions.

In addition to impossibility theorems, it may also be possible to use solvers
to help obtain axiomatic characterizations of aggregation rules, that is, results
that identify a unique rule f satisfying a certain collection of axioms. Such
characterization results can be turned into impossibility statements by adding an
axiom requiring that the rule be different from f.

13.5 Conclusions

In the papers surveyed in this chapter, the application of computer-aided methods
has lead to new insights for a range of questions in social choice theory that are
of independent interest to the social choice community and unlikely to have been
found without the help of computers.

Given the universality of the presented methods and their ease of adaptation
(such as to “testing” of similar conjectures with minimal effort by replacing or
altering some axioms), we anticipate these and similar techniques to yield further
insights and to solve other open problems in social choice theory and related
research areas in the future. The breadth of results obtained so far supports this
hypothesis.

Furthermore, we hope that the tutorial in this chapter will make the method
accessible to many more researchers. It will be exciting to see it applied to new
areas.

Acknowledgments

We thank Felix Brandt and Ulle Endriss for helpful comments.

Bibliography

G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pages 399-404, 2009.

G. Bachmeier, F. Brandt, C. Geist, P. Harrenstein, K. Kardel, D. Peters, and H. G.
Seedig. k-majority digraphs and the hardness of voting with a constant number
of voters. arXiv preprint arXiv:1704.06304, 2017.

S. Barbera, W. Bossert, and P. K. Pattanaik. Ranking sets of objects. In S. Barbera,
P. J. Hammond, and C. Seidl, editors, Handbook of Utility Theory, volume II,
chapter 17, pages 893-977. Kluwer Academic Publishers, 2004.

Computer-Aided Methods 265

A. Belov and J. Marques-Silva. MUSer2: An efficient MUS extractor. Journal on
Satisfiability, Boolean Modeling and Computation, 8:123-128, 2012.

A. Biere. Lingeling, Plingeling and Treengeling entering the SAT competition 2013.
In Proceedings of the SAT Competition 2013, pages 51-52, 2013.

R. Booth, E. Awad, and I. Rahwan. Interval methods for judgment aggregation in
argumentation. In Proceedings of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR), pages 594-597. AAAI Press,
2014.

F. Brand], F. Brandt, C. Geist, and J. Hofbauer. Strategic abstention based on
preference extensions: Positive results and computer-generated impossibilities.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI), pages 18-24. AAAI Press, 2015.

F. Brandl, F. Brandt, and C. Geist. Proving the incompatibility of efficiency and
strategyproofness via SMT solving. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), pages 116-122. AAAI Press, 2016.

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT
solving. Journal of Artificial Intelligence Research, 55:565-602, 2016.

F. Brandt, C. Geist, and P. Harrenstein. A note on the McKelvey uncovered set
and Pareto optimality. Social Choice and Welfare, 46(1):81-91, 2016.

F. Brandt, C. Geist, and D. Peters. Optimal bounds for the no-show paradox
via SAT solving. Mathematical Social Sciences, 2017. Special Issue in Honor of
Hervé Moulin. Forthcoming.

M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound auction specification
and implementation. In Proceedings of the 16th ACM Conference on Economics
and Computation (ACM-EC), pages 547-564. ACM Press, 2015.

S. Chatterjee and A. Sen. Automated reasoning in social choice theory — some
remarks. Mathematics in Computer Science, 8(1):5-10, 2014.

G. Cina and U. Endriss. Proving classical theorems of social choice theory in modal
logic. Journal of Autonomous Agents and Multiagent Systems, 30(5):963-989,
2016.

V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proceedings of
the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages
103-110, 2002.

J. Drummond, A. Perrault, and F. Bacchus. SAT is an effective and complete
method for solving stable matching problems with couples. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence (IJCAI), pages
518-525. AAAI Press, 2015.

M. Eberl. A formal proof of the incompatibility of SD-efficiency and SD-strategy-
proofness. Bachelor’s thesis, Technische Universitat Minchen, 2016.

266 C. Geist and D. Peters

U. Endriss. Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
and A. D. Procaccia, editors, Handbook of Computational Social Choice, chap-
ter 17. Cambridge University Press, 2016.

P. C. Fishburn. The Theory of Social Choice. Princeton University Press, 1973.

A. Fréchette, N. Newman, and K. Leyton-Brown. Solving the station repacking
problem. In Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press, 2016.

P. Gardenfors. On definitions of manipulation of social choice functions. In J. J.
Laffont, editor, Aggregation and Revelation of Preferences. North-Holland, 1979.

C. Geist. Finding preference profiles of Condorcet dimension k via SAT. Technical
report, http://arxiv.org/abs/1402.4303, 2014.

C. Geist and U. Endriss. Automated search for impossibility theorems in social
choice theory: Ranking sets of objects. Journal of Artificial Intelligence Research,
40:143-174, 2011.

U. Grandi and U. Endriss. First-order logic formalisation of impossibility theorems
in preference aggregation. Journal of Philosophical Logic, 42(4):595-618, 2013.

M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In Proceedings of the 19th
International Conference on Theory and Applications of Satisfiability Testing, vol-
ume 9710 of Lecture Notes in Computer Science (LNCS), pages 228-245. Springer,
2016.

M. Kerber, C. Lange, and C. Rowat. An introduction to mechanized reasoning.
Journal of Mathematical Economics, 66:26-39, 2016.

B. Konev and A. Lisitsa. A SAT attack on the Erdés discrepancy conjecture. In
Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 219-226. Springer, 2014.

D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
Texts in Theoretical Computer Science. Springer, 2016.

M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS
enumeration. Constraints, 21(2):223-250, 2016.

T. Mennle and S. Seuken. The Pareto frontier for random mechanisms. In
Proceedings of the 17th ACM Conference on Economics and Computation (ACM-
EC), pages 769-769. ACM Press, 2016.

H. Moulin. Condorcet’s principle implies the no show paradox. Journal of Economic
Theory, 45:53-64, 1988.

T. Nipkow. Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. Journal
of Automated Reasoning, 43:289-304, 2009.

Computer-Aided Methods 267

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science (LNCS).
Springer, 2002.

D. Peters. Condorcet’s principle and the preference reversal paradox. In Proceed-
ings of the 16th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK), pages 455-469, 2017.

P. Tang. Computer-aided Theorem Discovery - A New Adventure and its Application
to Economic Theory. PhD thesis, The Hong Kong University of Science and
Technology (HKUST), 2010.

P. Tang and F. Lin. A computer-aided proof to Gibbard-Satterthwaite theorem.
Technical report, mimeo, 2008. URL http://iiis.tsinghua.edu.cn/~kenshin/
GS_proof .pdf.

P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041-1053, 2009.

P. Tang and F. Lin. Discovering theorems in game theory: Two-person games
with unique pure nash equilibrium payoffs. Artificial Intelligence, 175(14-15):
2010-2020, 2011.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In J. H.
Siekmann and G. Wrightson, editors, Automation of Reasoning, pages 466-483.
Springer, 1983.

