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CHAPTER 1

Rolling the Dice: Recent Results in
Probabilistic Social Choice

Felix Brandt

Casting the lot puts an end to disputes and decides between powerful contenders.

— Solomon, c. 900 BC (Proverbs 18:18, RSV)

1.1 Introduction

When aggregating the preferences of multiple agents into one collective choice,
it is easily seen that certain cases call for randomization or other means of tie-
breaking. For example, if there are two alternatives, a and b, and two agents such
that one prefers a and the other one b, there is no deterministic way of selecting a
single alternative without violating one of two basic fairness conditions known as
anonymity and neutrality. Anonymity requires that the collective choice ought to
be independent of the agents’ identities whereas neutrality requires impartiality
towards the alternatives.1 Allowing lotteries as social outcomes hence seems like
a necessity for impartial collective choice. Indeed, most common “deterministic”
social choice functions such as plurality rule, Borda’s rule, or Copeland’s rule
are only deterministic as long as there is no tie, which is usually resolved by
drawing a lot. The use of lotteries for the selection of officials interestingly goes
back to the world’s first democracy in Athens, where it was widely regarded as a
principal characteristic of democracy (Headlam, 1933), and has recently gained
increasing attention in political science (see, e.g., Goodwin, 2005; Dowlen, 2009;
Stone, 2011; Guerrero, 2014).

It turns out that randomization—apart from guaranteeing impartiality—allows
the circumvention of well-known impossibility results such as the Gibbard-
Satterthwaite Theorem. Important questions in this context are how much “ran-
domness” is required to achieve positive results and which assumptions are made
about the agents’ preferences over lotteries. In this chapter, I will survey some
recent axiomatic results in the area of probabilistic social choice.

Probabilistic social choice functions (PSCFs) map collections of individual pref-
erence relations over alternatives to lotteries over alternatives and were first for-

1Moulin (1983, pp. 22–25) has provided a complete characterization that shows for which numbers
of alternatives and agents there are deterministic single-valued social choice functions that satisfy
anonymity and neutrality when individual preferences are strict.
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mally studied by Zeckhauser (1969), Fishburn (1972), and Intriligator (1973).
Perhaps one of the best known results in this context is Gibbard’s characteriza-
tion of strategyproof (i.e., non-manipulable) PSCFs (Gibbard, 1977). An impor-
tant corollary of Gibbard’s characterization, attributed to Hugo Sonnenschein,
concerns the most studied PSCFs: random dictatorships. In random dictator-
ships, one of the agents is picked at random and his most preferred alternative is
implemented as the social choice. Gibbard (1977) has shown that random dicta-
torships are the only strategyproof and ex post efficient PSCFs. While Gibbard’s
result might seem as an extension of classic negative results on strategyproof
non-probabilistic social choice functions (Gibbard, 1973; Satterthwaite, 1975), it
is in fact much more positive (see also Barberà, 1979b). In contrast to determin-
istic dictatorships, the uniform random dictatorship (henceforth, RD ), in which
every agent is picked with the same probability, enjoys a high degree of fair-
ness and is in fact used in many subdomains of social choice that are concerned
with the fair assignment of objects to agents (see, e.g., Abdulkadiroğlu and Sön-
mez, 1998; Bogomolnaia and Moulin, 2001; Che and Kojima, 2010; Budish et al.,
2013).

One may wonder how Gibbard defined strategyproofness for PSCFs since, in
his framework, agents submit their preferences over alternatives, but no prefer-
ences over lotteries. Preferences over lotteries are often defined by assuming the
existence of a von Neumann-Morgenstern (vNM) utility function which assigns car-
dinal utility values to alternatives. A lottery is preferred to another lottery if the
former yields more expected utility than the latter. The notion of strategyproof-
ness considered by Gibbard is a rather strong one. According to his definition,
a PSCF is strategyproof if, for all vNM utility functions that are compatible with
the ordinal preferences, submitting one’s true preferences yields at least as much
expected utility as submitting any other preference relation. This notion of strat-
egyproofness is sometimes also referred to as strong SD-strategyproofness (see
Section 1.3.2). According to strong SD-strategyproofness, a PSCF may be deemed
manipulable just because it can be manipulated for some contrived and highly
unlikely vNM utility representations. While it is good to know that RD satisfies
such a high degree of strategyproofness, an interesting question is whether there
are other—perhaps more attractive and “less randomized”—PSCFs that satisfy
weaker notions of strategyproofness.

Since there are various problems associated with asking agents to submit
their complete preference relations over all lotteries, a common approach to
defining axiomatic properties of PSCFs is to systematically extend the agents’
preferences over alternatives to (possibly incomplete) preferences over lotteries
via so-called lottery extensions.2 In Section 1.3, I will define a number of lot-
tery extensions, which will in turn lead to varying notions of strategyproofness,
efficiency, and participation. On top of that, I will discuss several consistency
conditions, which are not based on the individual preferences over lotteries. One
such condition is population-consistency which requires that whenever a PSCF

2Preference relations over lotteries may, for example, not allow for a concise representation. More-
over, and perhaps more importantly, agents are in many cases not even aware of their complete
preferences over lotteries. Even if they think they can competently assign vNM utilities to alterna-
tives, these assignments are prone to be based on arbitrary choices.
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returns the same lottery for two disjoint electorates, then this lottery should also
be returned for the union of both electorates. In Section 1.4, I will review positive
and negative axiomatic results for PSCFs. Particular attention will be paid to the
case of weak individual preferences, i.e., preferences that may contain ties. Al-
lowing weak preferences can lead to results that significantly differ from those for
strict preferences; positive results may turn into impossibilities and easy com-
putational problems may become intractable. In many important subdomains
of social choice such as assignment, matching, and coalition formation, ties are
unavoidable because agents are indifferent among all outcomes in which their
allocation, match, or coalition is the same.

It is impossible to completely cover the topic of probabilistic social choice in
this chapter. The selection of results is certainly biased towards work that I was
involved in and I apologize in advance for any omissions. In particular, there
has been interesting computational work on establishing hardness of manipula-
tion via randomization (Conitzer and Sandholm, 2003; Elkind and Lipmaa, 2005;
Walsh and Xia, 2012), approximating deterministic voting rules (Procaccia, 2010;
Birrell and Pass, 2011; Service and Adams, 2012), and measuring the worst-case
utilitarian performance of randomized voting rules (Anshelevich et al., 2015; An-
shelevich and Postl, 2016; Gross et al., 2017).

1.2 Probabilistic Social Choice Functions

Let N = {1, . . . , n} be a set of agents and A a finite set of m alternatives. Every
agent i ∈ N is equipped with a complete and transitive preference relation %i ⊆
A × A, the strict (or asymmetric) part of which is denoted by �i. A preference
relation %i is called strict if it is antisymmetric, i.e., it is identical to its strict
part up to reflexivity. Otherwise, the preference relation is said to be weak. A
preference profile maps each agent i ∈ N to a preference relation.

The set of all lotteries (or probability distributions) over A is denoted by ∆(A),
i.e.,

∆(A) =

{
p ∈ Rm : p(x) ≥ 0 for all x ∈ A and

∑

x∈A
p(x) = 1

}
.

For convenience, I will also write lotteries as convex combinations of alternatives,
e.g., 1/2 a+ 1/2 b denotes the uniform distribution over {a, b}.3 A lottery p is degen-
erate if its support is of size 1, i.e., it puts all probability on a single alternative.

Our central object of study are PSCFs, i.e., functions that map a preference
profile to a non-empty convex subset of lotteries.4 A PSCF is anonymous if its
outcome is invariant under permutations of the agents. Similarly, a PSCF is
neutral if permuting alternatives in the preference profile leads to lotteries in
which alternatives are permuted accordingly.

3The lotteries returned by PSCFs do not necessarily have to be interpreted as probability distribu-
tions. They can, for instance, also be seen as fractional allocations of divisible objects such as time
shares or monetary budgets.

4We consider set-valued PSCFs because RSD and ML may return more than one lottery. If there
are sufficiently many agents, this is however almost never the case (see also Brandl et al., 2016c).
Single-valued PSCFs are called social decision schemes (Gibbard, 1977).
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In this chapter, we will consider four exemplary PSCFs, all of which are anony-
mous and neutral: random dictatorship, two probabilistic variants of Borda’s
rule, and maximal lotteries.5

Random Dictatorship (RD). Perhaps the most-studied PSCF is random dicta-
torship, where one of the agents is picked uniformly at random and this agent’s
most-preferred alternative is selected. Thus, the probabilities assigned by RD are
directly proportional to the number of agents who top-rank a given alternative (or,
in other words, the alternative’s plurality score). RD is only well-defined for strict
preferences. In order to be able to deal with ties in the preferences, RD is typi-
cally extended to random serial dictatorship (RSD ). RSD selects a permutation of
the agents uniformly at random and then sequentially allows agents in the order
of the permutation to narrow down the set of alternatives to their most preferred
of the remaining ones. This will always result in a single alternative unless there
are two alternatives among which all agents are indifferent.6 While implementing
RSD is straightforward, computing the resulting RSD probabilities is #P-complete
and therefore intractable (Aziz et al., 2013a). Also, checking whether the RSD
probability of a given alternative exceeds some fixed value from the interval (0, 1)
is NP-complete. Subsequent work has studied the parameterized complexity of
these problems (Aziz and Mestre, 2014).

The remaining three PSCFs considered in this chapter are based on pairwise
majority comparisons between alternatives. For a given profile of preferences, the
m×m matrix of majority margins M is defined by

Mxy = |{i ∈ N : x %i y}| − |{i ∈ N : y %i x}|.

If the output of a neutral PSCF f only depends on M , f is called pairwise. Pair-
wiseness is an informational requirement and is formally defined by demanding
that the output for two preference profiles, which give rise to the same majority
margin matrix, has to be identical. An advantage of pairwise PSCFs is that they
are applicable even when individual preferences are incomplete or intransitive.

Borda’s Rule. Traditionally, Borda’s rule is defined as a scoring rule in which
each agent assigns a score of m− 1 to his most-preferred alternative, m− 2 to his
second-most preferred alternative, etc. The alternatives with maximal accumu-
lated score win. Alternatively, Borda scores can be obtained from the majority
margin matrix.7 The Borda score of alternative x is

∑
y∈AMxy/2 + n. We will

discuss two probabilistic variants of Borda’s rule. The first one, Bordamax yields
all lotteries that randomize over alternatives with maximal Borda score. The sec-
ond one, Bordapro, involves much more randomness and assigns probabilities to

5Other PSCFs not covered in this chapter include the recently proposed maximal recursive rule
(Aziz, 2013), egalitarian simultaneous reservation rule (Aziz and Stursberg, 2014), and 2-Agree (Gross
et al., 2017).

6Simpler extensions of RD to weak preferences such as returning a uniform lottery over all first-
ranked alternatives of a randomly selected agent typically suffer from a lack of ex post efficiency.

7This also yields a natural generalization of Borda’s rule for preferences that fail to be antisymmet-
ric, complete, or even transitive. Borda’s rule is the only pairwise scoring rule.
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the alternatives that are proportional to their Borda scores. Examples are given
below.

One of the most influential notions in social choice theory is that of a Con-
dorcet winner, i.e., an alternative that is preferred to every other alternative by
some majority of agents. Formally, M admits a Condorcet winner if it contains a
row in which all entries but one are strictly positive. Example 2 below shows that
Borda’s rule may fail to select a Condorcet winner. It is well-known that Con-
dorcet winners do not exist in general (see Example 3 below). In fact, the absence
of Condorcet winners—the so-called Condorcet paradox—is the root cause for
central impossibility theorems in social choice theory such as Arrow’s Theorem
or the Gibbard-Satterthwaite Theorem. The essence of Condorcet’s paradox is
that there are voting situations in which no matter which alternative is selected,
there will always be another alternative that is preferred by a majority of the
agents. In other words, it is impossible to select an outcome that cannot be over-
turned by an organized majority of agents who all agree with which alternative it
should be replaced.

Maximal Lotteries (ML). Maximal lotteries were first considered by Krew-
eras (1965) and independently rediscovered and studied in detail by Fishburn
(1984a).8 A lottery p is maximal iff pTM ≥ 0. A maximal lottery p can thus be
seen as a “randomized weak Condorcet winner”, i.e., a lottery that is weakly pre-
ferred to every other lottery by an expected majority of agents: pTMq ≥ 0 for all
q ∈ ∆(A).9 See Example 3 below for a profile with no Condorcet winner, but a
unique maximal lottery. Maximal lotteries are equivalent to the mixed maximin
strategies (or Nash equilibria) of the symmetric zero-sum game given by M . In
contrast to Condorcet winners, maximal lotteries are thus guaranteed to exist by
von Neumann’s Minimax Theorem. Moreover, most profiles admit a unique maxi-
mal lottery. This is, for example, the case when there is an odd number of agents
with strict preferences (see Laffond et al., 1997; Le Breton, 2005). More gener-
ally, if the number of agents goes to infinity, the number of profiles with multiple
maximal lotteries goes to zero. Maximal lotteries can be found in polynomial time
by solving a linear feasibility problem.10

8Interestingly, maximal lotteries or variants thereof have been rediscovered again by economists
(Laffond et al., 1993), mathematicians (Fisher and Ryan, 1995), political scientists (Felsenthal and
Machover, 1992), and computer scientists (Rivest and Shen, 2010). In particular, the support of
maximal lotteries, called the bipartisan set or the essential set, has received considerable attention. A
number of scholars have recommended maximal lotteries for practical use (Felsenthal and Machover,
1992; Rivest and Shen, 2010; Brandl et al., 2016c; Hoang, 2017). Within the domain of random
assignment, maximal lotteries are known as popular mixed matchings (see Chapter 6 of this book).

9pTMq > 0 iff the expected number of agents who prefer the alternative returned by p to that
returned by q is at least as large as the expected number of agents who prefer the outcome returned
by q to that returned by p. This is reminiscent of the PC lottery extension (see Section 1.3.2).
However, when not taking the expectation over the number of agents and directly comparing lotteries
using lottery extensions such as SD or PC , all lotteries can be overturned by some majority of agents
in the absence of Condorcet winners (see, also Zeckhauser, 1969; Aziz, 2015).

10Brandt and Fischer (2008, Thm. 5) have shown that deciding whether an alternative receives pos-
itive probability in some maximal lottery is P-complete and therefore not amenable to parallelization.
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Example 1. In the case of only two alternatives, a and b, the four considered
PSCFs break down to two prototypical rules: the proportional lottery (left) and
the simple majority rule (right).

RD and Bordapro

−n 0 +n
0

1

Mab

p(a)

ML and Bordamax

−n 0 +n
0

1

Mab

p(a)

It is easily seen that the simple majority rule maximizes the agents’ average ex
ante satisfaction (Fishburn and Gehrlein, 1977). For example, consider three
agents, two of which prefer a to b and one of which prefers b to a. Then, under
the proportional rule, the former two will be satisfied with probability 2/3 and the
latter one with probability 1/3. Hence, the average probability of satisfaction is 5/9,
which is lower than that of the simple majority rule (2/3). This gap widens when
agents are risk-averse.

The proportional rule, on the other hand, steers clear of the “tyranny of the
majority” by giving agents with a minority opinion at least the chance of being
satisfied. Depending on the concrete setting, this can be very desirable. How-
ever, one should be aware that the proportional rule (and, in fact, any rule dif-
ferent from the simple majority rule) can return alternatives that are majority-
dominated and therefore subject to strong opposition or even resistance. In other
words, there is the possibility of ex post majority dissatisfaction.11

Example 2. Consider the following preference profile and its corresponding ma-
jority margin matrix.

3 2

a b
b c
c a

M =

a b c( )
a 0 1 1
b −1 0 5
c −1 −5 0

The RD lottery is 3/5 a + 2/5 b. The Borda score of a is (0 + 1 + 1)/2 + 5 = 6, that of
b is (−1 + 0 + 5)/2 + 5 = 7, and that of c is (−1− 5 + 0)/2 + 5 = 2. Hence, Bordamax

returns b and Bordapro returns 6/15 a+ 7/15 b+ 2/15 c. The profile admits a Condorcet

11Note that this is not possible when the outcomes of PSCFs are implemented as fractional alloca-
tions rather than actual lotteries (see Footnote 3).
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winner because the first row of M is positive, except for the first entry. ML thus
(uniquely) returns a because

(
1 0 0

)
·M =

(
0 1 1

)
≥ 0.

Example 3. Consider the following preference profile and its corresponding ma-
jority margin matrix.

2 2 1

a b c
b c a
c a b

M =

a b c( )a 0 1 −1
b −1 0 3
c 1 −3 0

In this example, RD yields 2/5 a+ 2/5 b+ 1/5 c. The Borda scores of a, b, and c are 5,
6, and 3, respectively. Hence, Bordamax returns b and Bordapro

5/14 a+ 6/14 b+ 3/14 c.
The pairwise majority relation is cyclic and there is no Condorcet winner. The
unique maximal lottery returned by ML is 3/5 a+ 1/5 b+ 1/5 c because

(
3/5 1/5 1/5

)
·M =

(
0 0 0

)
≥ 0.

1.3 Axioms

The axioms considered in this chapter can be roughly divided into two subgroups:
those that are independent of the agents’ preferences over lotteries and those that
do require preferences over lotteries.12

1.3.1 Consistency

We first discuss consistency axioms belonging to the first category. Non-
probabilistic versions of these axioms have been widely studied in the literature.

Condorcet-consistency. A PSCF is Condorcet-consistent if it uniquely returns
a lottery that puts probability 1 on the Condorcet winner whenever a Condorcet
winner exists. Condorcet-consistency, which goes back to the 18th century, is
one of the oldest formal axioms in social choice theory and considered by many to
be desirable (see, e.g., Black, 1958; Fishburn, 1977; Campbell and Kelly, 2003;
Dasgupta and Maskin, 2008).

Agenda-consistency. Part of the motivation of Condorcet-consistency is that
an alternative that emerges as the unequivocal winner in all pairwise compar-
isons should also be chosen from the entire set of alternatives. Rational choice
theory continues this train of thought by specifying a number of axioms that

12Apart from the axioms considered here, some authors have proposed “fairness” conditions for
PSCFs such as an axiom that prescribes that every agent should receive positive probability on at
least one alternative he does not rank last (Bogomolnaia et al., 2005; Duddy, 2015).
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deal with choices from variable subsets of alternatives and postulating whether
these choices are consistent with each other. These axioms can be transferred to
probabilistic social choice simply by restricting the preference profile in question
to a subset of alternatives and observing which lotteries a PSCF returns for the
reduced profile. Let p be a lottery and A,B two subsets of alternatives such that
p’s support is contained in both A and B. Then, what we call agenda-consistency
requires that p is returned for A and B iff it is returned for the union of A and B.
The implication from left to right is known as Sen’s γ or expansion, whereas the
implication from right to left is Sen’s α or contraction (see Sen, 1971, 1977, 1986;
Schwartz, 1976).

Population-consistency. A PSCF is population-consistent if, whenever it re-
turns the same lottery for two preference profiles (defined on disjoint sets of
agents), it also returns the same lottery for a profile that results by merging both
profiles.13 Population-consistency is merely a statement about abstract sets of
outcomes, which makes no reference to lotteries whatsoever. It was first con-
sidered independently by Smith (1973), Young (1974), and Fine and Fine (1974)
and features prominently in the characterization of scoring rules by Smith (1973)
and Young (1975) as well as the characterization of Kemeny’s rule by Young and
Levenglick (1978).

Cloning-consistency and Composition-consistency. Cloning-consistency re-
quires that the probability that an alternative receives is unaffected by introduc-
ing new variants of another alternative. Alternatives are variants of each other
if they form a component, i.e., they bear the same relationship to all other alter-
natives and therefore constitute a contiguous interval in each agent’s preference
ranking. This condition was first considered by Tideman (1987) (see also Zavist
and Tideman, 1989). Cloning-consistency imposes no restrictions on the rela-
tive probabilities of alternatives within a component. Composition-consistency is
stronger than cloning-consistency and additionally requires that the probability
of an alternative within a component should be directly proportional to the proba-
bility that the alternative receives when the component is considered in isolation.
It was first considered by Laffond et al. (1996) and has been analyzed from a
computational point of view by Brandt et al. (2011). Cloning-consistency implies
neutrality (Brandl et al., 2016c, Lem. 1).

Apart from their intuitive appeal, these axioms can be motivated by the desire
to prevent a central planner from strategically tampering with the set of feasible
alternatives (e.g., by removing irrelevant alternatives or by introducing variants
of alternatives) and the set of agents (e.g., by partitioning the electorate into
subelectorates). For formal definitions and examples, the reader is referred to
Brandl et al. (2016c).

13A slightly stronger variant of this axiom is also known as reinforcement.
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1.3.2 Efficiency, Strategyproofness, and Participation

Several important axioms require the specification of preferences over lotteries.
We will generate these preferences by systematically lifting a preference relation
over alternatives to possibly incomplete preferences over lotteries. Formally, for
any given preference relation % on A and any pair of lotteries p, q ∈ ∆(A), a lottery
extension E prescribes whether p %E q. The strict part �E of %E is defined by
letting p �E q iff p %E q and not q %E p. We will consider five different lottery exten-
sions in this section. For all examples we assume that the underlying preference
relation is a � b � c.

The first, and most conservative, lottery extension we consider is called deter-
ministic dominance (DD ′) and postulates that p is preferable to q iff any alternative
possibly returned by p is strictly better than any alternative possibly returned by
q. In other words,

p %DD′
q iff ∀x, y : [p(x) · q(y) > 0⇒ x � y]. (DD ′)

A variant of this extension can be defined using the weak preference relation
rather than the strict one.

p %DD q iff ∀x, y : [p(x) · q(y) > 0⇒ x % y]. (DD )

Hence, p �DD q iff every alternative returned by p is at least as good as every alter-
native returned by q with at least one strict preference. An agent may thus strictly
prefer one lottery to another even though he is eventually indifferent between par-
ticular instantiations of the lotteries. Clearly, whether p �DD q or p �DD′

q only
depends on the supports of p and q.14 DD ′ only allows the comparison of lotteries
with disjoint supports whereas the supports may overlap for DD as long as the
agent is indifferent between all alternatives contained in the intersection of both
supports. For example, 2/3 a + 1/3 b �DD′

c and 2/3 a + 1/3 b �DD 1/2 b + 1/2 c. DD ′

and DD may seem rather crude, but very risk-averse agents who seek to avoid
uncertainty under any circumstances may subscribe to these preference exten-
sion. Furthermore, many PSCFs based on deterministic social choice functions
already violate DD ′-strategyproofness.

The second extension we consider is called bilinear dominance (BD ) and re-
quires that, for every pair of alternatives, the probability that p yields the more
preferred alternative and q the less preferred alternative is at least as large as the
other way round. Formally,

p %BD q iff ∀x, y ∈ A : [(x � y ⇒ p(x) · q(y) > p(y) · q(x)]. (BD )

Apart from its intuitive appeal, the main motivation for BD is that p bilinearly
dominates q iff p is preferable to q for every skew-symmetric bilinear (SSB) utility
function consistent with % (cf. Fishburn, 1984b; Aziz et al., 2015).15 For example,
1/2 a+ 1/2 b �BD 1/3 a+ 1/3 b+ 1/3 c.

14Within the context of set-valued social choice functions, DD is known as Kelly’s preference exten-
sion (see, e.g., Kelly, 1977; Brandt, 2015).

15SSB utility theory is a generalization of von Neumann and Morgenstern’s linear expected util-
ity theory, which does not require the controversial independence axiom and transitivity (see, e.g.,
Fishburn, 1988).
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Perhaps the best-known lottery extension is stochastic dominance (SD ), which
prescribes that, for each alternative x ∈ A, the probability that p selects an alter-
native that is at least as good as x is greater or equal than the probability that q
selects such an alternative. Formally,

p %SD q iff ∀x :
∑

y : y%x

p(y) >
∑

y : y%x

q(y). (SD )

For example, 1/2 a+ 1/2 c �SD 1/2 b+ 1/2 c. It is well-known that p %SD q iff, for every
vNM utility function compatible with %, the expected utility for p is at least as
large as that for q (see, e.g., Brandl et al., 2016a, Lem. 2).

The last lottery extension we consider is called pairwise comparison (PC) and
postulates that p should be preferred to q iff the probability that p yields a better
alternative than q is at least as large as the other way round (Aziz et al., 2015).
Formally,

p %PC q iff
∑

x,y : x�y
p(x) · q(y) >

∑

x,y : x�y
q(x) · p(y). (PC )

For example, 2/3 a + 1/3 c �PC b. The terms in the inequality above can be as-
sociated with the probability of ex ante regret. Then, a lottery is PC -preferred
to another lottery if its choice results in less ex ante regret. The PC extension
can alternatively be defined using canonical SSB utility functions. Blavatskyy
(2006) gave a characterization of the PC extension which relies on the axioms
that characterize SSB utility functions (cf. Fishburn, 1982, 1988) plus an addi-
tional axiom that singles out PC . In contrast to the previous three extensions,
PC yields complete preference relations over lotteries.

The five lottery extensions introduced here form a hierarchy, i.e., for any pref-
erence relation %,

%DD′ ⊆ %DD ⊆ %BD ⊆ %SD ⊆ %PC .

The examples mentioned also show that these inclusions are strict if m ≥ 3.
Other extensions that have been considered in the literature include the down-

ward lexicographic (DL), the upward lexicographic (UL) (Cho, 2016), and the sure-
thing (ST ) (Aziz et al., 2013b) extensions.

Standard axioms such as efficiency, strategyproofness, and participation can
now be defined in varying degrees depending on the underlying lottery extension.

Efficiency. Arguably one of the most fundamental axioms in microeconomic
theory, Pareto efficiency prescribes that social outcomes should be “optimal” in
a well-defined weak way. For a lottery extension E, p E-dominates q if p %Ei q for
all i ∈ N and p �Ei q for some i ∈ N . A PSCF is E-efficient if it never returns E-
dominated lotteries. A common efficiency notion that cannot be formalized using
lottery extensions is ex post efficiency. Ex post efficiency requires that whenever
x %i y for all i ∈ N and x �i y for some i ∈ N (i.e., y is Pareto dominated by x) then
y should receive probability 0. It can be shown that SD-efficiency implies ex post
efficiency and ex post efficiency implies BD-efficiency (Aziz et al., 2015).
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PC -efficiency

SD-efficiency

ex post efficiency

BD-efficiency

strong
SD-strategyproofness

PC -strategyproofness

SD-strategyproofness

BD-strategyproofness

DD-strategyproofness

DD ′-strategyproofness

very strong
SD-participation

strong
SD-participation

PC -participation

SD-participation

DD-participation

Figure 1.1: Logical relationships between varying degrees of efficiency, strate-
gyproofness, and participation. PC -efficiency, for example, implies SD-efficiency.
A PSCF is ex post efficient if it puts probability 0 on all Pareto dominated al-
ternatives. Strong SD-strategyproofness is equivalent to the strategyproofness
notion considered by Gibbard (1977). Very strong SD-participation requires that
a participating agent is always strictly better off (unless he already obtains a most
preferred outcome).

Strategyproofness. Strategyproofness demands that agents cannot benefit
from misrepresenting their preferences. Since most lottery extensions return in-
complete preference relations, there are two fundamentally different ways how to
define strategyproofness. Consider a preference profile, a resulting lottery p, and
a lottery extension E. The strong notion of strategyproofness, first advocated by
Gibbard (1977), requires that every misreported preference relation of an agent
will result in a lottery q such that p %E q. According to the weaker notion, first
used by Postlewaite and Schmeidler (1986) and then popularized by Bogomolnaia
and Moulin (2001), no agent can misreport his preferences to obtain a lottery q
such that q �E p. In other words, the strong version always interprets incompa-
rabilities in the worst possible manner (such that they violate strategyproofness)
while the weak version interprets them as actual incomparabilities that cannot
be resolved. In the following, strategyproofness (without qualifier) will refer to
weak strategyproofness. Note that due to the completeness of the PC exten-
sion, strong PC -strategyproofness and PC -strategyproofness coincide. Moreover,
strong SD-strategyproofness is stronger than PC -strategyproofness while (weak)
SD-strategyproofness is weaker. A PSCF is group-strategyproof for some lottery
extension if no group of agents can jointly misrepresent their preferences such
that all of them are strictly better off.
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Participation. Like population-consistency, participation is a variable-
electorate condition. It requires that no agent is ever better off by abstaining
from an election or—equivalently—that an agent can never be worse off by par-
ticipating in an election. Again each preference extension yields a corresponding
notion of weak and strong participation. On top of that, we define the notion
of very strong participation, which demands that a participating agent is always
strictly better off (unless he already obtains a most preferred lottery). While pro-
hibitive in non-probabilistic social choice, this condition is satisfiable by reason-
able PSCFs because incentives can be arbitrarily small. In analogy to group-
strategyproofness, a PSCF satisfies group-participation if no group of agents is
individually strictly better off by abstaining from an election.

In principle, every lottery extension leads to corresponding notions of effi-
ciency, weak and strong strategyproofness, and weak, strong, and very strong
participation. The relationships between the most relevant concepts are de-
picted in Figure 1.1. Some combinations such as DD-efficiency or strong BD-
strategyproofness are omitted because they are extremely weak or prohibitively
strong.

The sets of efficient lotteries for the various lottery extensions given above
already constitute an interesting research subject (see Aziz et al., 2015). For
example, it has been shown that whether a lottery is BD-efficient or whether it
is SD-efficient only depends on its support. Perhaps surprisingly, the set of SD-
efficient lotteries and the set of PC -efficient lotteries may fail to be convex. As
a consequence, the convex combination of two SD-efficient PSCFs may violate
SD-efficiency. Finding and verifying BD-, SD-, and PC -efficient lotteries can be
achieved in polynomial time.

1.4 Results

A complete overview of which properties are satisfied by which PSCF is given in
Table 1.1. Interestingly, some combinations of these axioms are prohibitive in
deterministic social choice while they can be satisfied by reasonable PSCFs. This
is, for example, the case for population-consistency and Condorcet-consistency
(Young and Levenglick, 1978), participation and Condorcet-consistency (Moulin,
1988), and population-consistency and cloning-consistency (Brandl et al.,
2016c). Each of agenda-consistency and very strong participation is prohibitive
on its own when paired with minimal further assumptions.

Gibbard (1977) provided a complete characterization of strongly SD-
strategyproof PSCFs for strict preferences in terms of convex combinations of so-
called unilaterals (where only one agent affects the outcome) and duples (where
only two alternatives may receive positive probability). The most well-known con-
sequence of this result is known as the Random Dictatorship Theorem.

Theorem 1.1 (Gibbard, 1977). RD is the only anonymous, strongly SD-
strategyproofness, and ex post efficient PSCF when preferences are strict.

Subsequent research has provided alternative proofs for this theorem (Dug-
gan, 1996; Nandeibam, 1997; Tanaka, 2003) as well as various extensions and
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RSD (RD ) Bordamax Bordapro ML

efficiency ex post (SD ) SD – PC
strategyproofness strong SD – strong SD DD ′ (DD )

group-strategyproofness DD (SD ) – DD (BD ) DD ′ (DD )
participation very strong SD strong SD strong SD PC

group-participation DD SD DD (BD ) PC

Condorcet-consistency – – – X
population-consistency – (X) X X X

agenda-consistency X – – X
composition-consistency – – – X

cloning-consistency X – – X
pairwiseness – X X X

computational complexity #P-complete (in P) in P in P in P
randomness a lot little a lot some

Table 1.1: Properties of PSCFs. In general, results hold for weak preferences.
A property that is only satisfied for strict preferences is given in parentheses.
All results are tight in the sense that each cell contains the strongest version
of a satisfied property. The cells of PSCFs that satisfy the strongest version of
the corresponding property are highlighted in gray. Non-trivial results are due
to Gibbard (1977); Barberà (1979b); Aziz et al. (2013a,b); Brandl et al. (2015b,
2016b,c); Brandt (2015).

variations (e.g., Gibbard, 1978; Barberà, 1979a; Hylland, 1980; Barberà et al.,
1998; Benoît, 2002; Dutta et al., 2002, 2007; Nandeibam, 2008; McLennan,
2011; Nandeibam, 2013; Picot and Sen, 2012; Chatterji et al., 2014).16

Since Bordamax and ML are ex post efficient, Theorem 1.1 entails that these
PSCFs violate strong SD-strategyproofness (in fact, ML fails to satisfy BD-
strategyproofness while Bordamax does not even satisfy DD ′-strategyproofness).
Another, less obvious, consequence of Gibbard’s characterization is that Bordapro

satisfies strong SD-strategyproofness (Barberà, 1979b).17 While the results on
strongly SD-strategyproof PSCFs are encouraging, these PSCFs involve an enor-
mous amount of randomization (it follows from Theorem 1.1 that Bordapro even
fails to put probability 0 on Pareto dominated alternatives). In general, there
appears to be a pervasive tradeoff between efficiency and strategyproofness. For
example, it quickly follows from Theorem 1.1 that PC -efficiency and strong SD-
strategyproofness are incompatible, even when preferences are strict: since PC -
efficiency is stronger than ex post efficiency, the only candidate for such a PSCF
would be RD, which is easily seen to violate PC -efficiency. A number of im-
possibilities illustrating this tradeoff (and other incompatibilities) are given in
Table 1.2. Among these, the following result deserves special mention.

16See also Barberà (2010, Section 7).
17This result has been rediscovered several times (see Heckelman, 2003; Procaccia, 2010; Heckel-

man and Chen, 2013).
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axioms prefs m ≥ n ≥ source

SD-eff. SD-strategypr. anon. & neutr. weak 4 4 c
PC -eff. PC -strategypr. anon. & neutr. weak 3 3 a
ex post-eff. BD-group-strategypr. anon. & neutr. weak 3 3 a
ex post-eff. DD-strategypr. pairwise weak 3 3 f
Cond.-cons. DD-strategypr. — weak 3 3m d

Cond.-cons. strong SD-part. — strict 4 12 e
ex post-eff. very strong SD-part. pairwise strict 2 3 b

a: Aziz et al., 2014, b: Brandl et al., 2015b, c: Brandl et al., 2016a, d: Brandt, 2015, e: Brandt et al.,

2017a, f : Unpublished work with C. Saile and C. Stricker

Table 1.2: Impossibility theorems. The first row corresponds to Theorem 1.2.

Theorem 1.2 (Brandl et al., 2016a). There is no anonymous, neutral, SD-
efficient, and SD-strategyproof PSCF when m,n ≥ 4.

Alternatively, the theorem can be phrased as follows: let f be an anonymous
and neutral PSCF which does not return lotteries that are Pareto dominated for
all vNM utility representations compatible with the agents’ preferences. Then f
can be manipulated for all vNM utility representations compatible with the ma-
nipulator’s preferences. This sweeping impossibility was obtained with the help
of a computer and the proof is long and tedious to verify for humans. It has been
verified by the interactive theorem prover Isabelle/HOL (see also Chapter 13 of this
book). When preferences are strict, the axioms are compatible (and satisfied by
RD ). Theorem 1.2 implies that RD cannot be extended to weak preferences with-
out giving up SD-efficiency or SD-strategyproofness (Brandl et al., 2016d). When
restricting attention to pairwise PSCFs, SD-efficiency and SD-strategyproofness
can be weakened to ex post efficiency and BD-strategyproofness (see Table 1.2).

Perhaps surprisingly, even the lowest degree of strategyproofness (DD ′-
strategyproofness) is violated by many PSCFs. In particular, Bordamax (and
PSCFs that randomize over plurality winners, Copeland winners, Nanson win-
ners, etc.) violate DD ′-strategyproofness. However, a handful of interesting PSCFs
are DD ′-strategyproof. A sufficient condition for DD ′-strategyproofness is set-
monotonicity, which requires that weakening alternatives that receive probabil-
ity 0 does not affect the support of the resulting lottery.

Theorem 1.3 (Brandt, 2015, Brandl et al., 2015a). Every set-monotonic PSCF
satisfies DD ′-group-strategyproofness and DD-group-participation (if completely
indifferent agents do not affect the outcome). When preferences are strict, set-
monotonicity implies DD-group-strategyproofness.

As a consequence, PSCFs that randomize arbitrarily over the choice sets of
some well-known set-valued social choice functions such as the top cycle, the
minimal covering set, or the bipartisan set (see, e.g., Brandt et al., 2016) are
DD ′-group-strategyproof and satisfy DD-group-participation. It is easily seen
that a PSCF is DD ′-group-strategyproof if, for every preference profile, it re-
turns a lottery whose support contains the support of the lottery returned by
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another DD ′-group-strategyproof PSCF. This implies that, apart from the PSCFs
mentioned above, randomizing over elements of the uncovered set is DD ′-group-
strategyproof (even though the corresponding PSCF violates set-monotonicity).
ML was shown to satisfy ST -strategyproofness, a minor strengthening of DD ′-
strategyproofness (Aziz et al., 2013b).

DD-strategyproofness, on the other hand, is already prohibitive when paired
with further assumptions such as Condorcet-consistency or pairwiseness and
ex post efficiency (see Table 1.2). Other impossibility theorems involving DD-
strategyproofness were given by Kelly (1977) and Barberà (1977).

Let us now turn to consistency conditions. As mentioned above, population-
consistency and composition-consistency are incompatible in deterministic social
choice. When allowing lotteries as outcomes, these axioms uniquely characterize
ML.18

Theorem 1.4 (Brandl et al., 2016c). ML is the only anonymous PSCF satisfying
population-consistency and composition-consistency when preferences are strict.

RD satisfies population-consistency, but violates composition-consistency.
When replacing composition-consistency with the weaker property of cloning-
consistency (which is satisfied by RD ) and adding Condorcet-consistency (which
is violated by RD ), the previous characterization remains intact.

Theorem 1.5 (Brandl et al., 2016c). ML is the only anonymous PSCF satisfy-
ing population-consistency, cloning-consistency, and Condorcet-consistency when
preferences are strict.

Since population-consistency has been identified as the defining property of
Borda’s scoring rule (Young, 1974; Nitzan and Rubinstein, 1981; Saari, 1990),
this theorem can be seen as one possible resolution of the well-documented dis-
pute between the founding fathers of social choice theory, the Chevalier de Borda
and the Marquis de Condorcet, which dates back to the 18th century (see, e.g.,
Black, 1958; Young, 1988, 1995; McLean and Hewitt, 1994). In this sense, Theo-
rem 1.5 resembles the characterization of Kemeny’s rule by Young and Levenglick
(1978).19

On top of population-consistency and composition-consistency, ML also sat-
isfies agenda-consistency. Agenda-consistency, the contraction part of which
is at the heart of virtually all choice-theoretic Arrovian impossibility theorems
(see, e.g., Sen, 1977, 1986), is also satisfied by RD. Pattanaik and Peleg (1986)
considered a significantly stronger version of contraction-consistency, which de-
mands that probabilities cannot decrease when removing arbitrary alternatives
(by contrast, we require lotteries to be unaffected when removing alternatives
that receive probability 0). Together with ex post efficiency and an independence

18The formal statement was shown for a framework using fractional profiles which requires PSCFs
to be continuous, decisive, and unanimous (see Brandl et al., 2016c). These are mild technical
assumptions that are satisfied by every reasonable PSCF.

19Interestingly, all three rules—Borda’s rule, Kemeny’s rule, and maximal lotteries—maximize ag-
gregate score in a well-defined sense. For maximal lotteries, this is the case because they maximize
social welfare according to the PC SSB utility functions representing the agents’ ordinal preferences
(Brandl et al., 2016b).
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condition, this stronger contraction-consistency condition characterizes RD in a
variable-agenda framework. It is violated by Bordamax , Bordapro, and ML.

Recently, ML has also been characterized using a strengthening of PC -group-
participation and additional technical properties (Brandl et al., 2016b).

1.5 Discussion and Future Work

Whether randomization is inadmissible, acceptable, or even desirable strongly
depends on the application. While electing a political leader via lottery would
probably be controversial, randomly selecting an employee of the day, a restau-
rant to go to, or background music for a party seems quite natural. Important
factors in this context are how frequently elections are repeated and how much
randomization is entailed by the voting procedure. The degree of randomiza-
tion of the PSCFs considered in this chapter greatly differs (see Table 1.1). This
can, for example, be illustrated by considering the precise circumstances under
which these PSCFs return a degenerate lottery. While Bordapro never returns a
degenerate lottery (if m > 2), RD and RSD do so only if all agents favor the same
alternative, and ML only if there is a weak Condorcet winner. Interestingly, there
is strong empirical evidence that most real-world preference profiles for political
elections do admit a Condorcet winner (see, e.g., Feld and Grofman, 1992; Re-
genwetter et al., 2006; Laslier, 2010; Gehrlein and Lepelley, 2011). Hence, the
actual degree of randomization of ML might be relatively low. For a more com-
prehensive discussion of the acceptability of randomization in social choice, the
reader is referred to Brandl et al. (2016c, pp. 1841–1843).

Many topics in probabilistic social choice deserve further study. For example,
to the best of my knowledge, there is no formal analysis of the degree of ran-
domization of specific PSCFs. Furthermore, while strong SD-strategyproofness
and weak notions of efficiency such as ex post efficiency are well understood,
this is not the case for the other two extremes. Only little is known about the
structure of the set of PC -efficient lotteries (Aziz et al., 2015) and there is no
coherent picture of which PSCFs are DD-strategyproof and which ones are not
(see, e.g., Brandt, 2015). There are a number of concrete open problems for strict
preferences:

• Are there PC -efficient and BD-strategyproof (or even SD-strategyproof or
PC -strategyproof) PSCFs?

• Are there Condorcet-consistent and PC -strategyproof PSCFs?

• Are there PC -efficient PSCFs that satisfy very strong PC -participation?

Similarly, there are challenging questions for weak preferences:

• Are there SD-efficient PSCFs that satisfy very strong SD-participation?

• Are there SD-efficient and DD-strategyproof (or even BD-strategyproof)
PSCFs?

• Is neutrality required for the first three impossibilities in Table 1.2?
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Just like in non-probabilistic social choice, considering restricted domains of
preferences such as dichotomous or single-peaked preferences opens up new av-
enues for intriguing results (see Ehlers et al., 2002; Bogomolnaia et al., 2005).
Also, economic domains such as random assignment, random matching, or ran-
dom coalition formation may allow for positive results as well as strengthened
impossibilities (e.g., Bogomolnaia and Moulin, 2001, 2004; Aziz et al., 2013a,c,
2017; Brandt et al., 2017b; Brandl et al., 2017)

Finally, one of the main appeals of RD is its association with a natural vot-
ing procedure that implements the RD outcome. Apart from its simplicity, this
procedure has the advantage of minimal preference elicitation. It would be in-
teresting to study similarly natural procedures or cryptographic protocols that
implement other PSCFs. Such procedures and protocols are particularly impor-
tant in probabilistic social choice because agents not only need to be convinced
that the outcome was computed correctly, but also that the randomization was
performed faithfully.
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