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Abstract

The objective of this study is to characterize the leximax and leximin extension rules
for ranking sets as final outcomes. To rank any two subsets, we introduce null alter-
natives. We assume that each null alternative indicates ‘choosing not to choose each
alternative.’ By adding null alternatives into each subset in which existing alterna-
tives are not included, the cardinality of each transformed subset becomes equal to
one of the set of all alternatives. Furthermore, all (null) alternatives in every trans-
formed subset are rearranged in descending order. From these operations, we can
rank all subsets lexicographically. The major result is axiomatization of the leximax
and leximin extension rules by dominance axioms. Additionally, we clarify that the
leximax and leximin extension rules satisfy monotonicity and extended independence.

1 Introduction

Three classes have been proposed in theories of ranking sets of alternatives (or objects)
(see [2]). The first class is complete uncertainty (see [1, 3, 7, 10, 15, 17, 22]). In this
class, probabilities are given for all alternatives in each subset, and each agent receives only
one alternative chosen at random from a subset. The second class is opportunity sets (see
[5, 6, 9, 11, 13, 14, 18, 19, 23]). In this class, each agent can choose only one alternative
from a subset. The third class is sets as final outcomes (see [4, 12, 16, 20]). In this study,
we analyse individual preference extension rules, not collective ones, for ranking sets as final
outcomes.

From decision making in daily lives to policy making, we often choose a set of several
alternatives based on a preference order of alternatives. Furthermore, we generally consider
‘compatibility’ of alternatives. For example, suppose that a soccer coach wants to hire two
players, and there are three candidates: two forwards (FWA and FWB), and one defender
(DF ). Additionally, for the coach, assume that a preference order is FWA, FWB , and
DF , and FWA and FWB are incompatible. In this case, the coach will hire FWA and
DF . However, in order to discuss how any two alternatives are (in)compatible, we need a
reference point. We thus argue the simplest case with no compatibility of alternatives as
the reference point. We then assume the following situation: an agent tries to plate some
fruits at a reception. Note that the agent is assumed not to use a blender for consuming the
fruits. Now, the goal is to lexicographically rank all subsets of the set of fruits. Particularly,
we characterize the leximax and leximin extension rules.1

The main reference for this study is Bossert [4]. He characterized a group of lexicographic
extension rules, including the leximax, leximin, median-based, and other lexicographical
rules. However, subsets can be ranked if and only if they have the same cardinality, because

1We do not characterize a median-based rule, such as the Nitzan and Pattanaik [16] rule, because it
belongs to a subgroup, including rules such as the maximax and maximin ones. Even if a leximedian rule
can be defined, it would differ from the leximax and leximin rules, because we need one additional rule to
rank pairs of both outsides of medians. Thus, it is excluded from this study.



Bossert [4] assumed a specific situation such as many-to-one matching with a given quota.
To remove the restriction, we can use empty slots, which were introduced in Roth and
Sotomayor [21]. Each empty slot is similar to an empty set or outside option, and assumed
to be added to each subset whose cardinality is smaller than a given quota. However, we
consider situations in which there is no fixed quota to apply extension rules to more general
choice theories.

We then introduce null alternatives, which are assumed to indicate ‘choosing not to
choose alternatives.’ If each alternative is not included in each subset, we add its null
alternative to the subset, and rearrange all (null) alternatives in descending order. Following
these operations, all subsets can be ranked lexicographically. Additionally, each alternative
is defined as (un)desirable if and only if it is strictly better (worse) than its null alternative,
and neutral if and only if it and its null alternative are indifferent. For example, suppose
that {a, b, c, d} is the set of all alternatives, and for an agent, a and b are indifferent, b is
desirable, all null alternatives are indifferent, c is undesirable, and c is strictly better than
d. Additionally, assume that na denotes a null alternative of a. If the agent forcibly ranks
{a, c, d} and {b, d} based on the leximax criteria, {a, c, d} is strictly better than {b, d}.
However, this is non-intuitive because the third and second alternatives of {a, c, d} and
{b, d} are the same, and c is undesirable. By adding null alternatives and rearranging them,
{a, c, d} and {b, d} are transformed into {a, nb, c, d} and {b, na, nc, d}, respectively. We thus
obtain that {b, d} is strictly better than {a, c, d}.

In this study, we do not assume a property called null-indifference. This requires that all
null alternatives are indifferent, such as empty slots. The following example illustrates an
advantage in relaxing null-indifference. Suppose that {a, b, c} is the set of all alternatives,
and an agent strictly prefers a to b, likes a and b intermediately, and hates c enormously. If
we assume null-indifference, {a, c} and {b} will be transformed into {a, nb, c} and {b, na, nc},
respectively, and the agent will strictly prefer {a, c} to {b} based on the leximax criteria.
However, this is non-intuitive because the agent hates c enormously. Now, if the agent is
allowed to strictly prefer nc to a, the two subsets will be transformed into {a, nb, c} and
{nc, b, na}, and the agent will strictly prefer {b} to {a, c}. Note that we need a weaker
property than null-indifference to make a preference order of alternatives equivalent to one
of their singleton sets. We thus assume asymmetry of desirability. This requires that a
preference order of any two alternatives and one of their null alternatives are opposite.

The major result is characterization of the leximax and leximin extension rules by domi-
nance axioms. Furthermore, we obtain that the leximax and leximin extension rules satisfy
monotonicity and extended independence.

The remainder of this paper is structured as follows. Section 2 reports our notations
and definitions. Section 3 discusses the necessity of asymmetry of desirability. Section 4
introduces dominance axioms for preference relations on the power set. Section 5 axiomatizes
the leximax and leximin extension rules. Additionally, the section introduces monotonicity
and independence axioms to clarify more necessary conditions for deriving the extension
rules. Finally, our conclusions are provided in Section 6.

2 Preliminary

Let X be the finite set of all alternatives with cardinality |X|(≥ 2). The power set of X is
denoted by X . Let N = ∪a∈X{na} be the finite set of null alternatives such that ‘choosing
not to choose a’ is equivalent to ‘choosing na’ for all a ∈ X. Furthermore, each subset
of N is denoted by NA = ∪a∈A{na}, corresponding to each subset A ∈ X . A preference
relation on X ∪N is assumed to be a complete preordering denoted by R ∈ R, where R is
the set of all preference relations on X ∪ N . The asymmetric and symmetric components



are denoted by P and I, respectively. We define (un)desirability of alternatives as follows:
a is (un)desirable if and only if aPna (naPa), and neutral if and only if aIna for each
a ∈ X. Additionally, let R̄ ∈ R̄ be a preference relation on X , where R̄ is the set of all
preference relations on X . The asymmetric and symmetric components are denoted by P̄
and Ī, respectively.

Next, we discuss a method for ranking all subsets lexicographically. In Bossert [4], subsets
might not be ranked if they have different cardinalities. For example, when X = {a, b, c},
{a, b} and {c} cannot be ranked if aIc for an agent. Several methods are used to solve
this problem. Roth and Sotomayor [21] assumed a situation similar to a college admissions
problem, and introduced the concept of empty slots.2 Empty slots are added to each subset
whose cardinality is smaller than a given quota. However, we also consider problems in
more general choice theories. Furthermore, empty slots are the same with null alternatives
assumed to satisfy null-indifference, that is, naInb for all a, b ∈ X. This restricts the scope
of considerable situations, because naInb might be non-intuitive if the agent hates a and
likes b. Thus, we do not assume null-indifference in this study.

We then introduce transformed subsets by adding null alternatives. For each A ∈ X ,
let fA: X → A ∪ (N \NA) be a bijection such that fA(a) = a when a ∈ A, and fA(a) = na

when a ̸∈ A for all a ∈ X. Let A∗ = ∪a∈X{fA(a)} be the transformed subset of A, and
X ∗ = ∪A∈X {A∗} be the transformed power set of X. Furthermore, all (null) alternatives
are assumed to be rearranged in descending order: for all A∗ = {a∗1, a∗2, ..., a∗|X|} ∈ X ∗,

a∗iRa∗i+1 for all i ∈ {1, 2, ..., |X| − 1}. Thus, all subsets can be ranked even if they have
different cardinalities by using the transformed subsets.

Finally, the leximax and leximin extension rules are defined in the following manner:

Definition 1. Leximax extension rule R̄lmax: ∀A,B ∈ X ,

AP̄lmaxB ⇔ ∃i ∈ {1, 2, ..., |X|} s.t. a∗iPb∗i ∧ a∗jIb
∗
j ∀j < i;

AĪlmaxB ⇔ a∗i Ib
∗
i ∀i ∈ {1, 2, ..., |X|}.

Definition 2. Leximin extension rule R̄lmin: ∀A,B ∈ X ,

AP̄lminB ⇔ ∃i ∈ {1, 2, ..., |X|} s.t. a∗iPb∗i ∧ a∗jIb
∗
j ∀j > i;

AĪlminB ⇔ a∗i Ib
∗
i ∀i ∈ {1, 2, ..., |X|}.

By using R̄lmax and R̄lmin, we can avoid some non-intuitive preference orders, as stated
earlier in Section 1. Suppose that X = {a, b, c, d}, aIbPnaInbIncIndPcPd, A = {a, c, d},
and B = {b, d}. Without the transformed subsets, they are forcibly ranked according to the
leximax criteria as follows: AR̄B. However, the third and second alternatives of A and B are
d, and ncPc. Thus, by transforming A and B into A∗ = {a, nb, c, d} and B∗ = {b, na, nc, d},
respectively, we can obtain that BP̄lmaxA.

However, R̄lmax and R̄lmin have a serious problem. R̄lmax and R̄lmin should satisfy
a condition in order to provide consistent preference orders of singleton sets based on R,
namely, extensibility.3 This requires that a preference order of any two alternatives and one
of their singleton sets are the same.

2There are two similar concepts: an outside option and a threshold in the preference approval voting rule
(see [8]). Suppose that X = {a, b, c}. The outside option is often denoted by ∅, and aP ′bP ′∅P ′c indicates
that a and b are desirable and c is undesirable, where P ′ is the asymmetric component of R′, that is, a
complete preordering on X∪∅. Similarly, the threshold is denoted by |, and ab|c is equivalent to aP ′bP ′∅P ′c.
However, both of them are not appropriate to rank all subsets because we cannot frame the cardinalities of
any two subsets using them.

3Extensibility was called an extension rule in related fields, such as complete uncertainty and opportunity
sets (see [2]).



Extensibility : ∀a, b ∈ X, aRb ⇔ {a}R̄{b}.

In the following example, R̄lmax and R̄lmin violate extensibility : X = {a, b} and
naPaPbPnb. Even if aPb, {b}P̄lmax{a} and {b}P̄lmin{a} because {a}∗ = {a, nb} and
{b}∗ = {na, b}. However, naPaPbPnb is non-intuitive because b is desirable and a is unde-
sirable.

3 Requirements for null alternatives

To solve the above problem, we introduce properties for R and check whether they make
R̄lmax and R̄lmin satisfy extensibility.

First, consistency of desirability requires that every desirable alternative is strictly better
than every neutral or undesirable alternative, every neutral alternative is strictly better than
every undesirable alternative, and any two neutral alternatives are indifferent.

Consistency of desirability : ∀a, b ∈ X, [[aPna ∧ nbRb] ∨ [aIna ∧ nbPb]] ⇒ aPb; [aIna ∧
bInb] ⇒ aIb.

Consistency of desirability is suitable to the meaning of null alternatives, but not enough
to imply extensibility. Suppose that X = {a, b} and naPnbPaIb. This preference order does
not violate consistency of desirability. However, {b}P̄lmax{a} and {b}P̄lmin{a} even if aIb.
We thus need to introduce a stronger property than consistency of desirability.

Now, we introduce asymmetry of desirability. This requires that a preference order of
any two alternatives and one of their null alternatives are opposite.

Asymmetry of desirability : ∀a, b ∈ X, aRb ⇒ nbRna.

From Proposition 1, asymmetry of desirability implies consistency of desirability.

Proposition 1. R satisfies consistency of desirability if R satisfies asymmetry of desirability.

Proof. Let R satisfy asymmetry of desirability. By way of contradiction, take any two
alternatives a, b ∈ X and assume that bRa when (i) aPna and nbRb, or (ii) aIna and nbPb.
By asymmetry of desirability, bRa implies that naRnb. We thus obtain aPb by transitivity
in both cases (i) and (ii), but that is a contradiction.

Next, assume that (iii) aPb or (iv) bPa when aIna and bInb. By asymmetry of desir-
ability, aPb and bPa implies nbRna and naRnb, respectively. Thus, we obtain bRa in case
(iii) and aRb in case (iv) by transitivity. These results are contradictions.

Thus, R satisfies consistency of desirability if R satisfies asymmetry of desirability.

From Lemma 1, asymmetry of desirability is one of the sufficient conditions for R̄lmax

and R̄lmin to satisfy extensibility.

Lemma 1. R̄lmax and R̄lmin satisfy extensibility if R satisfies asymmetry of desirability.

Proof. Assume that R satisfies asymmetry of desirability. First, we prove that {a}R̄lmax{b}
implies aRb for all a, b ∈ X. Take any two alternatives a, b ∈ X such that {a}R̄lmax{b}.
The difference between {a}∗ and {b}∗ is that a, nb ̸∈ {b}∗ and na, b ̸∈ {a}∗. By Definition
1 and asymmetry of desirability, {a}R̄lmax{b} if and only if

(i) [aRnb ∧ naRb] ⇒ [aPna ∨ [aIna ∧ nbRb]];
(ii) [aRnb ∧ bRna] ⇒ aRb;
(iii) [nbRa ∧ naRb] ⇒ [nbPna ∨ [nbIna ∧ aRb]]; and
(iv) [nbRa ∧ bRna] ⇒ [nbPb ∨ [nbIb ∧ aRna]].

In cases (i) and (ii), aRb holds true. In cases (iii) and (iv), by way of contradiction, sup-
pose that bPa, implying naRnb by asymmetry of desirability. However, the assumption



contradicts nbPna in both cases, and aRb in Case (iii). Thus, aRb holds true in all the four
cases.

Next, we prove that aRb implies {a}R̄lmax{b} for all a, b ∈ X. Take any two alternatives
a, b ∈ X such that aRb. By asymmetry of desirability, aRb implies nbRna. We then obtain
all the four results (i)-(iv), in other words, {a}R̄lmax{b}.

Thus, R̄lmax satisfies extensibility if R satisfies asymmetry of desirability. Similarly,
R̄lmin satisfies extensibility if R satisfies asymmetry of desirability.

However, extensibility does not imply asymmetry of desirability. For instance, suppose
that X = {a, b, c} and aPncPnaPnbPbPc for an agent. In this case, aPb, {a}P̄lmax{b},
and {a}P̄lmin{b}, but aPb does not imply nbRna. Thus, we should discuss the strength
of asymmetry of desirability. First, take any two alternatives a, b ∈ X. In total, there are
seventy-five preference orders of a, b, na, nb ∈ X ∪ N since R is a complete preordering on
X ∪N . In forty-five of the seventy-five orders, both R̄lmax and R̄lmin satisfy extensibility.
Furthermore, in thirty-nine of the forty-five orders, R satisfies asymmetry of desirability.
If the agent has one of the following six of the forty-five orders, R̄lmax and R̄lmin satisfy
extensibility, but violate asymmetry of desirability : aPnaPnbPb, aPnaPnbIb, aInaPnbPb,
bPnbPnaPa, bPnbPnaIa, and bInbPnaPa. Thus, asymmetry of desirability is not the
necessary condition to make only R̄lmax and R̄lmin satisfy extensibility. However, there are
more lexicographic extension rules, such as the median-based and leximedian ones. From the
discussion, asymmetry of desirability might not be strong enough to consider extensibility.
Additionally, only in thirteen of the forty-five orders, R satisfies null-indifference. Thus, we
can relax the strong restriction of null-indifference and obtain consistent preference orders
of singleton sets based on R by using asymmetry of desirability.

We then suppose that R† denotes R satisfying asymmetry of desirability. Thus, R̄lmax

and R̄lmin are redefined using R† instead of R as follows:

Definition 3. Leximax extension rule R̄†
lmax: ∀A,B ∈ X ,

AP̄ †
lmaxB ⇔ ∃i ∈ {1, 2, ..., |X|} s.t. a∗iP

†b∗i ∧ a∗jI
†b∗j ∀j < i;

AĪ†lmaxB ⇔ a∗i I
†b∗i ∀i ∈ {1, 2, ..., |X|}.

Definition 4. Leximin extension rule R̄†
lmin: ∀A,B ∈ X ,

AP̄ †
lminB ⇔ ∃i ∈ {1, 2, ..., |X|} s.t. a∗iP

†b∗i ∧ a∗jI
†b∗j ∀j > i;

AĪ†lminB ⇔ a∗i I
†b∗i ∀i ∈ {1, 2, ..., |X|}.

Finally, we discuss an advantage in employing R†. Suppose that {a, b, c} and aPbPc
for an agent. Furthermore, assume that the agent likes a and b intermediately, but hates
c enormously. We then consider {a, c} and {b}. If R satisfies null-indifference, {a, c}∗ =
{a, nb, c}, {b}∗ = {b, na, nc}, and {a, c}P̄lmax{b}. However, from the setting, aPnc is non-
intuitive. This is a serious disadvantage in using the leximax criteria. If we allow that
ncP

†a, then {a, c}∗ = {a, nb, c}, {b}∗ = {nc, b, na}, and we will obtain that {b}P̄ †
lmax{a, c}.

Thus, we can express a certain degree of desirability, and adapt a part of the leximin
(leximax) criteria in the leximax (leximin) extension rule by using R†. We thus discuss

characterizations of R̄†
lmax and R̄†

lmin hereafter.



4 Axioms

Bossert [4] introduced two axioms with a fixed cardinality of subsets to characterize the
group of lexicographic extension rules: responsiveness4 and neutrality.5 However, we char-
acterize only the leximax and leximin extension rules separately. Thus, we employ another
approach to characterize R̄†

lmax and R̄†
lmin by the following three axioms.

First, indifference dominance requires that AĪB for all A,B ∈ X if all elements in A∗

and B∗ are indifferent for every rank.

Indifference dominance: ∀A,B ∈ X , [a∗i Ib
∗
i ∀i ∈ {1, 2, ..., |X|}] ⇒ AĪB.

The second (third) axioms is prior (posterior) strict dominance. This requires that AP̄B
for all A,B ∈ X if each element of A∗ dominates one of B∗ for every rank, and there is at
least one strict preference order in certain prior (posterior) parts of them. Thus, it might
be said that they are partial conditions of strict dominance.6

Prior strict dominance: ∀A,B ∈ X , [∃k ∈ {1, 2, ..., |X|} s.t. [a∗iRb∗i ∀i ∈ {1, 2, ..., k}] ∧
[∃j ∈ {1, 2, ..., k} s.t. a∗jPb∗j ]] ⇒ AP̄B.

Posterior strict dominance: ∀A,B ∈ X , [∃l ∈ {1, 2, ..., |X|} s.t. [a∗iRb∗i ∀i ∈ {l, l +
1, ..., |X|}] ∧ [∃j ∈ {l, l + 1, ..., |X|} s.t. a∗jPb∗j ]] ⇒ AP̄B

5 Characterizations

First, from Lemma 2, R̄†
lmax and R̄†

lmin are complete preorderings on X .

Lemma 2. R̄†
lmax and R̄†

lmin satisfy reflexivity, completeness, and transitivity.

Proof. From Definitions 3 and 4, R̄†
lmax satisfies reflexivity and completeness. Thus, we

prove that R̄†
lmax satisfies transitivity.

For all A,B,C ∈ X , AP̄ †
lmaxB and BP̄ †

lmaxC if and only if there exist i, k ∈ {1, 2, ..., |X|}
such that a∗iP

†b∗i and a∗jI
†b∗j for all j < i, and b∗kP

†c∗k and b∗l I
†c∗l for all l < k. Then, k ≤ i

implies that a∗kP
†c∗k and a∗l I

†c∗l for all l < k, and k > i implies that a∗iP
†c∗i and a∗jI

†c∗j for

all j < i from transitivity of R†. Thus, if AP̄ †
lmaxB and BP̄ †

lmaxC, then AP̄ †
lmaxC for all

A,B,C ∈ X .
Next, AP̄ †

lmaxB and BĪ†lmaxC if and only if there exists i ∈ {1, 2, ..., |X|} such that
a∗iP

†b∗i and a∗jI
†b∗j for all j < i, and b∗kI

†c∗k for all k ∈ {1, 2, ..., |X|}. Then, a∗iP
†c∗i and

a∗jI
†c∗j for all j < i from transitivity of R†. Thus, if AP̄ †

lmaxB and BĪ†lmaxC, AP̄ †
lmaxC for

all A,B,C ∈ X . Similarly, if AĪ†lmaxB and BP̄ †
lmaxC, AP̄ †

lmaxC for all A,B,C ∈ X .

Finally, AĪ†lmaxB and BĪ†lmaxC if and only if a∗i I
†b∗i I

†c∗i for all i ∈ {1, 2, ..., |X|}. Thus,
if AĪ†lmaxB and BĪ†lmaxC, then AĪ†lmaxC for all A,B,C ∈ X .

From these results, R̄†
lmax satisfies transitivity. Similarly, R̄†

lmin satisfies reflexivity, com-
pleteness, and transitivity.

The major result is Theorem 1 that describes the necessary and sufficient conditions to
derive R̄†

lmax and R̄†
lmin.

4∀A ∈ Xk = {A ⊆ X | |A| = k},∀b ∈ X, ∀c ∈ X \A, bRc ⇔ AR̄(A \ {b}) ∪ {c}.
5∀A,B ∈ Xk, ∀σ : X → X, [aRb ⇔ σ(a)Rσ(b) ∀a ∈ A, ∀b ∈ B] ⇒ [AR̄B ⇔ {σ(a)}a∈AR̄{σ(b)}b∈B ],

where σ is a one-to-one mapping.
6∀A,B ∈ X , [[a∗iRb∗i ∀i ∈ {1, 2, ..., |X|}] ∧ [∃j ∈ {1, 2, ..., |X|} s.t. a∗jPb∗j ]] ⇒ AP̄B.



Theorem 1. R̄ = R̄†
lmax (R̄ = R̄†

lmin) if and only if R = R† and R̄ satisfies reflexivity,
completeness, transitivity, indifference dominance, and prior (posterior) strict dominance.

Proof. From Lemma 2 and Definition 3, R = R†, R̄†
lmax is a complete preordering on X ,

and trivially satisfies indifference dominance and prior strict dominance.
We then prove that the following two propositions hold true if R = R† and R̄ satisfies

reflexivity, completeness, transitivity, indifference dominance, and prior strict dominance:

(i) AĪB ⇔ a∗i I
†b∗i ∀i ∈ {1, 2, ..., |X|};

(ii) AP̄B ⇔ ∃i ∈ {1, 2, ..., |X|} s.t. a∗iP
†b∗i ∧ a∗jI

†b∗j ∀j < i.

The ‘if ’ parts of (i) and (ii): They are trivial from R = R†, indifference dominance, and
prior strict dominance.

The ‘only if ’part of (i): By way of contradiction, let AĪB imply the existence of some
i ∈ {1, 2, ..., |X|} such that a∗iP

†b∗i or b∗iP
†a∗i . Suppose that i′ is the argument of the

minimum of i such that a∗iP
†b∗i or b∗iP

†a∗i . By prior strict dominance, AP̄B if a∗i′P
†b∗i′ , and

BP̄A if b∗i′P
†a∗i′ . They contradict AĪB because R̄ is a complete preordering on X .

The ‘only if ’ part of (ii): By way of contradiction, let AP̄B imply that a∗i I
†b∗i for all

i ∈ {1, 2, ..., |X|} or there exists i ∈ {1, 2, ..., |X|} such that b∗iP
†a∗i and a∗jI

†b∗j for all j < i.

Each case respectively implies that AĪB or BP̄A by the ‘if’ parts of (i) and (ii). They
contradict AP̄B since R̄ is a complete preordering on X .

Thus, R̄ = R̄†
lmax if and only if R = R† and R̄ is a complete preordering satisfying

indifference dominance and prior strict dominance. Similarly, R̄ = R̄†
lmin if and only if

R = R† and R̄ is a complete preordering satisfying indifference dominance and posterior
strict dominance.

Theorem 1 shows the axiomatization of R̄†
lmax and R̄†

lmin. However, they seem pre-
dictable following indifference dominance, prior strict dominance, and posterior strict dom-
inance. We need these critical axioms to characterize R̄†

lmax and R̄†
lmin because lexicograph-

ical comparison methods have restrictions such that we must begin to compare from the
best or worst (null) alternatives and stop comparing alternatives if we find a strict prefer-

ence order. Thus, it is crucial to discuss whether R̄†
lmax and R̄†

lmin satisfy other axioms.
Indeed, some axioms should be satisfied by them, because we assume no compatibility of
alternatives in this study. We then introduce additional axioms and show that R̄†

lmax and

R̄†
lmin satisfy them.
First, monotonicity requires that a rank of each subset increases (decreases) by adding

every (un)desirable alternative, but does not change by adding any neutral alternative.
Note that its definition is based on the relationship between alternatives and their null
alternatives.

Monotonicity : ∀A ∈ X , ∀a ∈ X \A, aRna ⇔ A ∪ {a}R̄A.

Next, extended independence requires that a preference order of any two subsets is not
affected by adding a disjoint subset to both subsets.

Extended independence: ∀A,B ∈ X , ∀C ⊆ X \ (A ∪B), AR̄B ⇔ A ∪ CR̄B ∪ C.

Note that extended independence implies independence7, extended responsiveness8, and
other weaker related axioms. Extended monotonicity9 is also defined as one of weaker

7∀a, b ∈ X, ∀C ⊆ X \ {a, b}, aRb ⇔ {a} ∪ CR̄{b} ∪ C.
8∀A ∈ X , B ⊆ A, ∀C ⊆ X \A, BR̄C ⇔ AR̄(A \B) ∪ C.
9∀A ∈ X , ∀B ⊆ X \A, BR̄∅ ⇔ A ∪BR̄A.



axioms than extended independence. However, its definition is based on the relationship
between subsets and an empty set, not their null subsets. Additionally, we cannot consider
another monotonicity10 that is weaker than extended monotonicity because R is defined on
X ∪N , which does not include an empty set. Thus, we consider monotonicity and extended
independence separately.

Finally, Theorem 2 shows that R̄†
lmax and R̄†

lmin satisfy the above axioms.

Theorem 2. R̄†
lmax and R̄†

lmin satisfy monotonicity and extended independence.

Proof. First, we prove that R̄†
lmax satisfies monotonicity. Suppose that a∗i = na ∈ A∗ and

B = A ∪ {a}. Then, aR†na if and only if a = b∗j , where 1 ≤ j ≤ i. In this case, b∗k = a∗k
for all k ∈ {1, 2, ..., j − 1, i+1, ..., |X|} and b∗l+1 = a∗l for all l ∈ {j, 2, ..., i}. Thus, we obtain

that aR†na if and only if aR†a∗j , which implies BR̄†
lmaxA.

Second, we prove that R̄†
lmax satisfies extended independence. Take any three subsets:

A,B ∈ X , and C ⊆ X \ (A ∪ B). From Definition 3, AP̄ †
lmaxB if and only if a∗iP

†b∗i ,

i ∈ {1, 2, ..., |X|}, and a∗jI
†b∗j for all j < i. Suppose that there are k alternatives in C̃ =

{c̃1, c̃2, ..., c̃k} ⊆ C such that a∗iP
†c̃1R

†c̃2R
† · · ·R†c̃kP

†b∗i . Then, k = 0 implies that A ∪
CP̄ †

lmaxB ∪ C because a∗iP
†b∗i and transitivity of R†. Furthermore, k ≥ 1 also implies that

A∪CP̄ †
lmaxB∪C because a∗iP

†c̃1 and transitivity of R†. From these results, we obtain that

AP̄ †
lmaxB if and only if A ∪ CP̄ †

lmaxB ∪ C. Next, from Definition 3, AĪ†lmaxB if and only
if a∗i I

†b∗i for all i ∈ {1, 2, ..., |X|}. In this case, the positions of ck ∈ C in (A ∪ C)∗ and

(B ∪ C)∗ have to be the same for all k ∈ {1, 2, ..., |C|}. Finally, we obtain that AĪ†lmaxB if

and only if A ∪ CĪ†lmaxB ∪ C.

Similarly, R̄†
lmin satisfies monotonicity and extended independence.

6 Conclusion

In this paper, we introduce null alternatives to frame the cardinalities of all subsets and
rank them. Unlike empty slots, strict preference orders of null alternatives are allowed.
According to the above framework, we define the leximax and leximin extension rules on
X .

However, if there is no requirement for null alternatives, a complete preordering R and
the extension rules do not satisfy extensibility. Thus, we employ R† on X ∪ N , which is
a complete preordering satisfying asymmetry of desirability, to obtain consistent preference
orders of singleton sets based on ones of alternatives.

We then axiomatize the extension rules as follows: A preference relation R̄ on X is
the leximax extension rule if and only if R is equal to R† and R̄ is a complete preordering
satisfying indifference dominance and prior strict dominance. Furthermore, a preference
relation R̄ on X is the leximin extension rule if and only if R is equal to R† and R̄ is a
complete preordering satisfying indifference dominance and posterior strict dominance.

Additionally, we find that the leximax and leximin extension rules satisfy monotonicity
and extended independence, which should be satisfied when there is no compatibility of
alternatives.

Lastly, by using null alternatives, we can more generally apply the leximax and leximin
extension rules on the power set to various fields of choice theories when we must use ordinal
extension rules on the power set, and consider a certain degree of desirability.

10∀a ∈ X, ∀B ⊆ X \ {a}, aR′∅ ⇔ {a} ∪BR̄B, where R′ is a preference relation on X ∪N ∪ {∅}.
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