Multi-agent Group Decision Making

Presentation by: Julian Zappala

Presented at: Doctoral School on Computational Social Choice, Estoril, April 10 2010

Overview

- Introduction
- Problem Statement
- Problem Formalisation
- Research Context
- Group Decision Making in Nature
- Quorum Sensing/Response
- Future Work

Introduction

- Realising effective multi-agent systems requires cooperation and coordination between agents
- We are interested in cooperation in open environments:
 - agents are neither centrally owned nor controlled
 - agents may enter/leave a system at will
 - E.g. the Internet
- We wish to determine what actions agents should perform:
 - "What should the agents do?"
- We have looked to nature for inspiration

Problem Statement

- For a group of individuals, each having a preference over their possible actions, attempt to determine an allocation of one action to each individual satisfying:
 - feasibility; individuals are allocated actions they are able to perform,
 - individual rationality; no individual would prefer to leave the group rather than perform their allocated action
 - consistency; no individual is allocated an action which is inconsistent with the actions of others

Problem Formalisation - 1

The tuple $\langle G, A, S_1, ..., S_n, \succ_1, ..., \succ_n, C \rangle$ where:

- -G is a set of agents, $\{1,...,n\}$, n ≥ 2
- -A is a set of possible actions, $\{a_1,...,a_m\}$
- $-S_i \subseteq A$ is a set of feasible actions for each agent
- Action a_j is feasible for $i \in G$ if $a_j \in S_i$
- Joint action $a = \langle a_k^g, ..., a_l^h \rangle$ is feasible for agents $\{g, ..., h\}$ if each action is feasible for each agent
- \succ_i is a total order over S_i

Problem Formalisation - 2

- $-C\subseteq \bigcup_{G'\in \wp(G)}\prod_{i\in G'}S_i \ \text{ is a set of consistency constraints}$
- Joint action $\langle a_k^g, ..., a_l^h \rangle \in C$ may be consistently performed by agents $\{g, ..., h\}$
- The joint action $a = \langle a_k^g, ..., a_l^h \rangle$ by the group of agents $G' = \{g, ..., h\}$ is a *consensus action* if there is no consistent and feasible joint action a' for some group $G'' \subset G'$ such that all agents in G'' prefer a' to a

Collective Action: Research Context

- Related work includes:
 - SharedPlans [Grosz & Sinder, 1990]
 - Joint Intentions [Cohen & Levesque, 1991]
 - STEAM [Tambe, 1997]
- These works have not considered:
 - open environments
 - the explicit preferences of agents
 - group decision mechanisms other than instantaneous unanimity

Group Decision Making in Nature

- Decisions faced by animal groups include:
 - Direction of travel
 - Timing of departure
 - Location of e.g. nesting sites
- Failure to reach consensus leads to group fission
 - an outcome which is often undesirable

Drawing Inspiration From Nature

- In nature decision makers are:
 - heterogeneous:
 - Abilities
 - 'Beliefs'
 - 'Desires'
 - 'Intentions'
 - non-omniscient
 - transient
- These properties are analogous to agents within open systems

Quorum Sensing & Response [QSR]

- Quorum sensing determining the number of conspecifics committed to some choice
 - Exhibited by bacteria, eusocial insects and fish
- Quorum response:
 - The probability of some individual making a given choice is increasing in the proportion of individuals already having made that choice
 - This probability increases sharply once some threshold is met

Useful Properties of QSR

- Information pooling
 - Greater accuracy in comparison to the decisions of individuals
- Speed/accuracy trade-off
 - High thresholds -> accurate outcomes
 - Low thresholds -> speedy decisions
- Group cohesion
 - The quorum response is thought to discourage group fission events

Future Work

- Natural models of QSR assume individuals follow identical responses
 - We are interested in circumstances where this assumption is relaxed – Individually Oriented QSR
- Characterisation of IO-QSR, for example:
 - Necessary/sufficient conditions for consensus
 - Adherence to Arrovian characteristics
 - Adherence to Condorcian characteristics

Summary

- Collective action selection can be represented as a social choice problem
- Natural systems share many properties with open multi-agent systems
- Many natural systems employ QSR as the group decision mechanism
- QSR seems a promising approach to multiagent group decision making

Thanks for listening

- For further information
 - Contact: jxz@cs.nott.ac.uk
- Perhaps there are some questions?