False-name-proofness in Online Mechanisms

Taiki Todo, Takayuki Mouri, Atsushi Iwasaki, and Makoto Yokoo

Kyushu University, JAPAN

April 13, 2010 COST-ADT Doctoral School on Computational Social Choice

False-name manipulations

- In highly anonymous environments such as the Internet, an agent can pretend to be multiple agents.
- A mechanism is false-name-proof (FNP) if for each agent, truthful telling by using a single identifier (although he can use multiple identifiers) is a dominant strategy.
 - In combinatorial auctions, even theoretically wellfounded Vickrey-Clarke-Groves mechanism is not FNP (i.e., vulnerable against false-name manipulations).

Online Mechanism Design

- Mechanism Design has focused on static (offline) environments.
 - All agents arrive and depart simultaneously.
- In real electronic markets, each agent arrives and departs over time.
- Mechanism must make decisions dynamically without knowledge of the future.

Summary

- This is the first work that deals with false-name manipulations in online mechanisms.
- We identified a simple condition called (value, time, identifier)-monotonicity, which fully characterizes FNP online auction mechanisms.
- Based on the characterization, we developed a new FNP online auction mechanism.
 - An application of Bruss's optimal stopping strategy to online auctions

Outline

- Preliminaries
 - Mechanism Design
 - Online Auctions
 - HKP Mechanism
- Characterizing False-name-proof Online Mechanisms
- New False-name-proof Online Mechanism
- Conclusions / Future Work

Mechanism Design

- The study of designing a rule/protocol
 - Assumption: each agent hopes to maximize his utility
 - Goal: achieving several desirable properties (e.g., strategy-proofness)
- A mechanism consists of an allocation rule and a payment rule.
- SP mechanisms can be characterized only by allocation rules.
 - Online Auctions: Hajiaghayi, Kleinberg, and Parkes,
 2004
 - Combinatorial Auctions: Bikhchandani et al., 2007

Online Auctions with Single-item, Limited-supply

- Sell an indivisible item to multiple agents who arrive and depart over time.
 - Agent i has a type (private information) $\theta_i = (a_i, d_i, r_i)$.
 - a_i, d_i: arrival and departure times of i
 - r_i: a valuation of i for the auctioned item
- We assume no early-arrival and no late-departure misreports.
 - Type $\theta'_i = (a'_i, d'_i, r'_i)$ reported by i always satisfies $a_i \le a'_i \le d'_i \le d_i$.

Online Auction Mechanism

Definition [Hajiaghayi, Kleinberg, and Parkes. 2004]

Let n be a number of agents and α be the arrival time of |n/e| -th agent.

- At period α , sort bids observed so far in descending order r_1 , r_2 ,....
- 2. If an agent who bids r₁ (the highest value) is still present at α , sell to that agent at price r_2 .
- Sell to the next agent who bids at least r_1 at price r_1 .
- An application of the optimal stopping rule for the classical secretary problem

Ex. HKP Mechanism

- There are 6 agents.
 - Mechanism waits for the second (|6/e|=2) agent.
 - Agent wins the item at period 4 and pays 6.
- If there's no false-name manipulations, HKP is strategy-proof.

False-name Manipulation in HKP

- If agent adds another false identifier , he can win the item.
 - reports (1, 1, ε) from identifier .
 - Mechanism waits for the second (|7/e|=2) agent.

Outline

- Preliminaries
- Characterizing False-name-proof Online Mechanisms
- New False-name-proof Online Mechanism
- Conclusions / Future Work

Characterizing FNP Online Mechanisms

Definition

(value, time, identifier)-monotonicity

An allocation rule is *(value, time, identifier)-monotonic* if for any winner, if he bids higher, stays longer, or his rivals drop out from the auction, then he still wins.

Theorem

[Todo, Mouri, Iwasaki, and Yokoo, 2010]

An online auction mechanism is false-name-proof if and only if the allocation rule is (value, time, identifier)-monotonic.

(value, time, identifier)-monotonic Allocation Rule

- rival of i: an identifier j whose report $\theta_j = (a_j, d_j, r_j)$ satisfies $a_i \le a_i \le d_i \le d_i$.
 - Identifier is a rival of identifier
- Assume that identifier \mathcal{E} is winning with bid $\theta_i = (a_i, d_i, r_i)$.
- In a (value, time, identifier)-monotonic allocation rule, identifier still wins if bids higher, stays longer, or drops out from the auction.

Ex. HKP allocation rule violates (value, time, identifier)-monotonicity

 Identifier is a winner in this 7 agents case. : (1,3 Identifier is a rival 6) (5, 9 of identifier If drops out from 8) this auction, (4, 5,then 🏅 loses.

Outline

- Preliminaries
- Characterizing False-name-proof Online Mechanisms
- New False-name-proof Online Mechanism
- Conclusions / Future Work

New FNP Online Auction Mechanism

Definition

[Todo, Mouri, Iwasaki, and Yokoo. 2010]

Let τ be a predefined time period.

- 1. At period τ , sort bids observed so far in descending order.
- 2. If an agent who bids r_1 (the highest value) is still present at τ , sell to that agent at price r_2 .
- 3. Sell to the next agent who bids at least r_1 at price r_1 .

Theorem

[Todo, Mouri, Iwasaki, and Yokoo, 2010]

TMIY is false-name-proof.

Ex. TMIY Mechanism

- Assume that $\tau = 4$.
- Even if agent adds false identifiers, the item isn't sold to any agent until period 4.
- Winner cannot decrease his payment by using falseidentifiers.

Outline

- Preliminaries
- Characterizing False-name-proof Online Mechanisms
- New False-name-proof Online Mechanism
- Conclusions / Future Work

Conclusions

- We identified a simple condition called (value, time, identifier)-monotonicity, which fully characterizes FNP online mechanisms.
- Based on the characterization, we developed a new FNP online auction mechanism.
 - An application of Bruss's optimal stopping strategy to online auctions

Future Work

- Analyze the performance of TMIY
- Obtain a lower bound of the competitive ratio for the efficiency and revenue in a single-item, limited-supply environment
- Generalize our FNP mechanism to k-items environments
- Extend our results beyond single-valued settings
 - e.g., FNP CAs in dynamic environments

(Incomplete) References

False-name-proofness

 M.Yokoo, Y.Sakurai, and S.Matusbara. The Effect of False-name Bids in Combinatorial Auctions: New Fraud in Internet Auctions. *Games and Economic Behavior*, 46(1):174-188, 2004.

Online Mechanisms

 D.C.Parkes. Online Mechanisms. In Nisan, Roughgarden, Tardos, and Vazirani eds, Algorithmic Game Theory, chapter 16. Cambridge University Press, 2007.

Secretary Problem

 F.Bruss. A Unified Approach to a Class of Best Choice Problems with an Unknown Number of Options. *The* Annals of Probability, 12(3):882-889, 1984.

Thank you.

todo@agent.is.kyushu-u.ac.jp

改良メカニズム

• 勝者は 額2.

, 支払

: (1,7

late

- このメカニズムは戦 略的操作不可能
 - 先に参加したエー ジェントを無視せず 最高額を入札してい れば優先的に販売

4)

(4, 8,

6

Average-case Analysis

