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Axiomatic Method Collective Rationality

Independence, ⇒ Transitivity,
Neutrality, Completeness,
... ⇐ Consistency of judgments...

There is a correlation between the two colums:

Depending on the shape of the requirement (shape? use a logical language)
different axioms are necessary to preserve this property in the aggregation.



Binary Aggregation

The setting:

� I = {1, . . . , m} a set of issues;

� A set N of individuals.

� Boolean combinatorial domain: D = D1 × · · · ×Dm with |Di| = 2;

Definition

An aggregation procedure is a function F : DN → D mapping each profile of
ballots B = (B1, . . . , Bn) to an element of the domain D.

Many frameworks can be expressed as binary aggregation problems:

� Pairwise preference aggregation: issues are ′a > b′ for all alternatives a, b;

� Judgment aggregation: the agenda is the set of issues;

� Voting for referenda;

� etcetc...
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Languages for Integrity Constraints

We define a language to express properties of ballots (elements of D):

� One propositional symbol for every issue: PS = {p1, . . . , pm}
� LPS is the propositional language (closing under connectives ∧, ∨ ,¬, →)

generated from the propositional symbols PS.

An element of the domain D is a model for LPS: D = {0, 1}m.

Example: voting for a referendum.

Two bills between b1, b2 and b3 have to be approved/disproved
Budget constraint: IC = ¬(p1 ∧ p2 ∧ p3), there is budget only for two of them

Individual 1 submit B1 = (1, 1, 0): it satisfies IC X
Individual 2 submit B2 = (0, 1, 1): B2 |= IC X
Individual 3 submit B3 = (1, 0, 1): B3 |= IC X

Majority approves all three bills: IC not satisfied!
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Collective Rationality

Definition

A language for integrity constraints over a domain D is a subset L ⊂ LPS.

IC of previous examples in the language L3-cubes: disjunction of lenght 3.

We suppose every individual satisfies the same rationality assumption,
i.e., submits ballots B satisfying the same integrity constraint IC.

Definition

Call an aggregation procedure F collectively rational for IC ∈ LPS if for all
profiles B such that Bi |= IC for all i ∈ N we have that F (B) |= IC.

F is collectively rational if it lifts the rationality assumption given by IC from
the individual to the collective level.
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Axioms

Aggregation procedures have been studied using the axiomatic method, listing
axioms as desirable properties of the functions.

Classical axioms from social choice theory can be translated in this framework:

Unanimity (U): For any profile B ∈ XN and any x ∈ {0, 1}, if Bi,j = x for
all i ∈ N , then F (B)j = x.

Independence (I): For any issue j ∈ I and any two profiles B, B′ ∈ XN , if
Bi,j = B′i,j for all i ∈ N , then F (B)j = F (B′)j .

New axioms are also defined, like the following generalisation of May (1952)
neutrality axiom:

Domain-Neutrality (ND): For any two issues j, j′ ∈ I and any profile
B ∈ XN , if Bi,j = 1−Bi,j′ for all i ∈ N , then F (B)j = 1− F (B)j′ .
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Results (template)

Different lists of axioms AX define classes of functions:

F[AX] = {F :DN→ D | F satisfies AX}

Axioms are domain dependent, domains of interest are defines via IC:

FL[AX] = {F :DN→ D | F�Mod(IC)N sat. AX for all IC∈L}

The class of procedures that lift integrity constraint in a given language is:

CR[L] = {F : DN → D | F is CR for all IC ∈ L}

What we seek are results of this form:

CR[L] = FL[AX]
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Results (examples)

Proposition

CR[cubes] = Fcubes[U].

Proof sketch: Cubes are conjunctions of literals: they induce unanimous profiles. If a
function lifts all cubes then it is unanimous and viceversa. �

Since Fcubes[U] = F[U] this result can be interpreted as a characterisation of
unanimity in terms of collective rationality with respect to cubes.

Call L6↔ the language of negative bi-implications (i.e. of the form pi ↔ ¬pj):

Proposition

CR[L 6↔] = FL6↔ [ND].

For the axiom of independence a negative result holds:

Proposition

There is no language L ⊆ LPS such that CR[L] = FL[I].
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Conclusion and Future Work

In this work we have presented:

� a language to express rationality assumptions as integrity constraints IC
over domains in binary aggregation;

� the concept of collective rationality of an aggregator wrt. a constraint IC;

� characterisation results for different propositional languages L:
Which properties of the aggregator guarantee that a certain IC is lifted.

This work can be extended in a number of ways:

� using logic not only as a language but also as a tool to derive
(im)possibility theorems for different set of axioms;

� extend the language for full combinatorial domains;

� characterise classical axioms in terms of collective rationality;

� study aggregation of more complex logical structures.
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