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Cooperative game theory

General idea of power indices:

“If a player contributes more to the values of the coalitions, it
should get more payoff.”

This talk concentrates more on stability aspect of payoff distribution.

Stable and fair resource allocation is an important issue in networks,
distributed systems, operations research and multiagent systems.
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TU Cooperative games
TU cooperative game:

A cooperative game with transferable utility is a pair (N, v)

N = {1, . . . , n} is a set of players

v : 2N → R+ is a valuation function that associates with each coalition
S ⊆ N a value v(S) where v(∅) = 0.

A game (N, v) is monotone if v(S) ≤ v(T) whenever S ⊆ T .

Simple game:

A simple game is a monotone cooperative game (N, v) with v : 2N → {0, 1}
such that v(∅) = 0 and v(N) = 1.

A coalition S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0.

Threshold versions: For each monotone cooperative game (N, v) and each
threshold t ∈ R+, the corresponding threshold game is defined as the
cooperative game (N, v t ), where

v t (S) =

1 if v(S) ≥ t ,
0 otherwise.

3 / 26



TU Cooperative games
TU cooperative game:

A cooperative game with transferable utility is a pair (N, v)

N = {1, . . . , n} is a set of players

v : 2N → R+ is a valuation function that associates with each coalition
S ⊆ N a value v(S) where v(∅) = 0.

A game (N, v) is monotone if v(S) ≤ v(T) whenever S ⊆ T .

Simple game:

A simple game is a monotone cooperative game (N, v) with v : 2N → {0, 1}
such that v(∅) = 0 and v(N) = 1.

A coalition S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0.

Threshold versions: For each monotone cooperative game (N, v) and each
threshold t ∈ R+, the corresponding threshold game is defined as the
cooperative game (N, v t ), where

v t (S) =

1 if v(S) ≥ t ,
0 otherwise.

3 / 26



TU Cooperative games
TU cooperative game:

A cooperative game with transferable utility is a pair (N, v)

N = {1, . . . , n} is a set of players

v : 2N → R+ is a valuation function that associates with each coalition
S ⊆ N a value v(S) where v(∅) = 0.

A game (N, v) is monotone if v(S) ≤ v(T) whenever S ⊆ T .

Simple game:

A simple game is a monotone cooperative game (N, v) with v : 2N → {0, 1}
such that v(∅) = 0 and v(N) = 1.

A coalition S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0.

Threshold versions: For each monotone cooperative game (N, v) and each
threshold t ∈ R+, the corresponding threshold game is defined as the
cooperative game (N, v t ), where

v t (S) =

1 if v(S) ≥ t ,
0 otherwise.

3 / 26



Goal

Examine classes of monotone cooperative games and their threshold
versions.

Complexity of core related solutions of monotone cooperative games.

Complexity of computing the smallest winning coalition for simple games.
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Monotone cooperative game classes

A weighted voting game (WVG)[q; w1, . . . ,wn] is a simple game (N, v) for which
there is a quota q ∈ R+ and a weight wi for each player i such that

v(S) = 1 if and only if
∑
i∈S

wi ≥ q.

A multiple weighted voting game (MWVG) is the simple game (N, v) for which
there are WVGs (N, v1), . . . , (N, vm) such that S is winning if and only if S is
winning in each of the constituent WVGs.
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Monotone cooperative games classes

Spanning connectivity game (SCG): For each connected undirected graph
(V ,E), the spanning connectivity game (SCG) is the simple game (N, v)
where

N = E

S is winning if and only if S is a connected spanning subgraph.

Simple coalitional skill game (SCSG):

Let N = {1, . . . , n} is the set of player and Σ = {σ1, . . . , σk } be the set of
skills, s.t. each player has a set of skills Σi ⊆ Σ.

The simple coalitional skill game (SCSG) is a simple game in which a
coalition S is winning if and only if for each skill in Σ, at least one player in S
has that skill.
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Monotone cooperative games classes

Matching game: Let G = (V ,E,w) be a weighted undirected graph. The
matching game corresponding to G is the cooperative game (N, v) with

N = V

for each S ⊆ N, the value v(S) equals the weight of the maximum weighted
matching of the subgraph induced by S.

Graph game (GG): The graph game (GG) has a similar setting as matching
games but here, for S ⊆ N, v(S) is the sum of the weight of edges in the
subgraph induced by S.

Network flow game (NFG): For a flow network (V ,E, c, s, t), the associated
network flow game (NFG) is the cooperative game (N, v),

N = E

for each S ⊆ E the value v(S) is the value of the maximum flow f restricted
to edges in S

7 / 26



Monotone cooperative games classes

Matching game: Let G = (V ,E,w) be a weighted undirected graph. The
matching game corresponding to G is the cooperative game (N, v) with

N = V

for each S ⊆ N, the value v(S) equals the weight of the maximum weighted
matching of the subgraph induced by S.

Graph game (GG): The graph game (GG) has a similar setting as matching
games but here, for S ⊆ N, v(S) is the sum of the weight of edges in the
subgraph induced by S.

Network flow game (NFG): For a flow network (V ,E, c, s, t), the associated
network flow game (NFG) is the cooperative game (N, v),

N = E

for each S ⊆ E the value v(S) is the value of the maximum flow f restricted
to edges in S

7 / 26



Monotone cooperative games classes

Matching game: Let G = (V ,E,w) be a weighted undirected graph. The
matching game corresponding to G is the cooperative game (N, v) with

N = V

for each S ⊆ N, the value v(S) equals the weight of the maximum weighted
matching of the subgraph induced by S.

Graph game (GG): The graph game (GG) has a similar setting as matching
games but here, for S ⊆ N, v(S) is the sum of the weight of edges in the
subgraph induced by S.

Network flow game (NFG): For a flow network (V ,E, c, s, t), the associated
network flow game (NFG) is the cooperative game (N, v),

N = E

for each S ⊆ E the value v(S) is the value of the maximum flow f restricted
to edges in S

7 / 26



Solution concepts: core

A solution concept associates with each cooperative game (N, v) a set of payoff
vectors (x1, . . . , xn) ∈ RN such that

∑
i∈N xi = v(N), where xi denotes player i’s

share of v(N).
Notation: x(S) =

∑
i∈S xi

v(N) is the amount which the players can earn if they work together.
The aim is to divide v(N) among the players in a stable manner.

Core: A payoff vector x = (x1, . . . , xn) is in the core of a cooperative
game (N, v) if for all S ⊂ N, x(S) ≥ v(S), i.e., e(x,S) ≥ 0.

Given a cooperative game (N, v) and payoff vector x = (x1, ..., xn), the excess of
a coalition S under x is defined by

e(x,S) = x(S) − v(S),

.
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Solution concepts: least core
For ε > 0, a payoff vector vector x is in the ε-core if for all S ⊂ N,
e(x,S) ≥ −ε.
The least core is the refinement of the ε-core and is the solution of the
following LP:

min ε

s.t. x(S) ≥ v(S) − ε for all S ⊂ N,
xi ≥ 0 for all i ∈ N,∑

i=1,...,n xi = v(N) .

(1)

Introduced in [Shapley and Shubik, Econometrica, 1966]
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Solution concepts: nucleolus

The nucleolus is a lexicographical refinement of the least core.

Introduced in [Schmeidler, SIAM J of App. Math., 1969]
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Solution concepts: CoS

Definition
For a given coalitional game G = (N, v) and a payment 4 ∈ R+, the
adjusted coalitional game G(4) = (N, v ′) is exactly like (N, v) except that
v ′(N) = v(N) + 4.

The cost of stability (CoS) of a game is the minimum supplemental
payment CoS(G) such that G(CoS(G)) has a nonempty core. CoS(G) is
the solution of the following LP:

min 4

s.t. x(S) ≥ v(S) for all S ⊂ N ,

xi ≥ 0 for all i ∈ N,∑
i=1,...,n xi = v(N) + 4 .

(2)

[Bachrach, Meir, Zuckerman, Rothe and Rosenschein. The cost of stability in
weighted voting games. In AAMAS 2009]
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Computational Problems

For any solution concept X ∈ { least core, nucleolus, ε-core} , we consider the
following standard computational problems:

IN-X : given a cooperative game (N, v) and payoff vector p, check whether p
is in solution X of (N, v).

CONSTRUCT-X : given a cooperative game (N, v), compute a payoff vector
p, which is in solution X of (N, v).

CoS: given a cooperative game (N, v), compute CoS((N, v)).
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Computing the smallest winning coalition

The length of a simple game is the size of the smallest winning coalition.

LENGTH: For a simple game (N, v), compute the smallest winning coalition.

“What is the minimum number of players needed to get the job done?”

Game class Complexity of LENGTH

WVG P
T-Matching P
T-NFG NP-hard
MWVG NP-hard
SCSG NP-hard
T-GG+ NP-hard

Table: Complexity of LENGTH
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Computing the smallest winning coalition

Proposition
There exists a polynomial-time algorithm to compute the smallest winning
coalition of the threshold matching game.

Proof idea
Main idea: Reduction of the problem to computing maximum weighted
matchings of at most b|V |/2c different transformed graphs.

Suppose we want to compute the maximum matching of size s of
G = (V ,E,w). Then transform graph G into G′ by creating j = |V | − 2s new
nodes V ′ = {v ′1, . . . , v

′
j } and joining each node in V ′ to each node in V with

an edge of weight W =
∑|E |

i=1 w(ei).

Let M′ be the maximum (perfect) matching of G′. Then M = M′ ∩ E is the
maximum matching of G with size s.
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Core related solutions of cooperative games

least core CoS nucleolus

GG+

SCG
SCSG
NFG
Matching
WVG
T-Matching
T-NFG
T-GG+

MWVG

Table: Complexity of monotone cooperative games
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Core related solutions of cooperative games

least core CoS nucleolus

GG+ P[2] P[2] P[2]
SCG P P P [1]
SCSG

P P P
(fixed #skills)
NFG P [4] P[4] ?
Matching P [5] P ?
WVG NP-hard [3] NP-hard [3] NP-hard [3]
T-Matching NP-hard NP-hard NP-hard
T-NFG NP-hard [6] NP-hard [6] NP-hard
T-GG+ NP-hard NP-hard NP-hard

Table: Complexity of monotone cooperative games
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CoS of Matching games

Proposition
For matching games, there exists a polynomial-time algorithm to compute CoS.

Proof idea
Idea: use ellipsoid method and construct a polynomial time separation
oracle.

If one can decide feasibility of LPs in polynomial time then one
can compute optimal solutions in polynomial time.

For payoff, x = (x1, . . . , xn) and ε > 0, returns “yes” if the minimum excess
of G with respect to x is more than −ε and otherwise returns the violated
constraint.

For a payoff vector x and G = (N,E,w), the graph G
′

x is (N,E,w ′), where
for each edge (i, j), w ′((i, j)) = w((i, j)) − xi − xj .

For any coalition S, −e(x,S) is equal to the weight of a maximum matching
of G

′

x restricted to nodes in S.

19 / 26



CoS of SCSGs

Proposition
For a SCSG with a constant number of skills, the CoS can be computed in
polynomial time.

Proof idea
Reduce the SCSG with n players and k skills into a MWVG with n players
and k constituent WVGs, each with quota one and weights zero or one.

Consider SCSG (N, v) with n players and k skills. Then for j = 1, . . . , k and
for each skill σj , construct a corresponding WVG (N, vj) = [qj ; w j

1, . . . ,w
j
n]

where qj = 1 and for i = 1, . . . , n, w j
i = 1 if i has skill sj and zero otherwise.

In [Elkind and Pasechnik, SODA 2009], an algorithm was presented which
computes the nucleolus of a MWVG which is polynomial in n and the sum of
the weights of the WVGs.

Reduce our separation oracle to a subroutine in [Elkind and Pasechnik,
SODA 2009]
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Cooperative games

Proposition
If computing the length of a simple game (N, v) is NP-hard, then IN-ε-CORE for
(N, v) is NP-hard.

(Applies for e.g. to T-NFG and T-GG+)

Observation
If IN-ε-CORE is NP-hard and unless P = NP, then there is no polynomial time
separation oracle to solve the least core LP or the CoS LP.

(Means that we need some efficient combinatorial algorithm to compute the least
core payoff vectors)
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Computing the least core minimum excess

Deng and Fang [Algorithmic cooperative game theory. In Pareto Optimality,
Game Theory And Equilibria, 2008] note that

“the most natural problem is how to efficiently compute the value ε1 for
a given cooperative game. The catch is that the computation of ε1

requires one to solve a linear program with [an] exponential number of
constraints.”

It is not clear whether the least core minimum excess can be computed efficiently
even if a least core payoff vector is given.

Proposition
An oracle to compute a least core payoff vector for a simple game in any
passer-consistent representation can be used to compute the minimum excess of
a least core payoff vector.

Passer-consistent representation: The representation can easily extend a
game to one with one more player which is a passer. (WVGs, MWVGs, SCSGs
etc.)
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Structure of least core payoffs

Proposition
For any monotone cooperative game (N, v), suppose that x = (x1, . . . , xn) is an
element in the least core, where the minimum excess is −ε. Then for any player
i ∈ N there exists a coalition T such that i ∈ T and e(x,T) = −ε.

Proposition
Let (N, v) be a simple game with no vetoers and let x = (x1, . . . , xn) be a member
of the least core of (N, v). Then, there is no player which is present in every
coalition which gives the minimum excess for imputation x.
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Summary

least core CoS nucleolus
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Table: Complexity of monotone cooperative games
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Conclusions

Summary:

Complexity of finding the smallest winning coalition of many simple games.

Complexity of core related questions for many games.

Threshold versions are not only less expressive but also seem to be harder
to handle computationally.

Structure of least core payoffs.

New or open questions:

Is the complexity of CoS and the least core same? Can one problem reduce
to another?

Find the CoS bounds for classes of games.

The complexity of nucleolus of matching games and network flow games
are longstanding open problems.
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