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Abstract

In many traditional social choice problems, analyz-
ing the voting power of the voters in a given profile
is an important part. Usually the voting power of an
agent is measured by whether the agent is pivotal.
In this paper, we introduce two extensions of the set
of pivotal agents to measure agents’ voting power
in a given profile. The first, which is called hier-
archical pivotal sets, captures the voting power for
an agent to make other agents pivotal. The second,
which is called coalitional pivotal sets, is based on
the fact that each agent is given a weight that is com-
puted similarly to the Shapley-Shubik power index.
We also introduce random dictatorships induced by
the two types of pivotal sets to approximate full ran-
dom dictatorships. We show that the random dic-
tatorships induced by the hierarchical pivotal sets
are strategic-pivot-proof, that is, no agent can make
herself become one of the possible dictators by vot-
ing differently.

We then focus on the hierarchical pivotal sets when
the hierarchical level goes to infinity. We prove that
for any voting rule that satisfies anonymity and una-
nimity, and for any given profile, the union of the
hierarchical pivotal sets are a sound and complete
characterization of the non-redundant agents. We
also show that if the voting rule does not satisfy
anonymity, then this characterization might not be
complete. Finally, we investigate algorithmic as-
pects of computing the hierarchical pivotal sets.

1 Introduction

Voting has been used in multiagent systems as a popular way
to aggregate agents’ preferences over a set of alternatives. Re-
cently, a burgeoning field computational social choice was
formed to study the computational aspects of voting. In com-
putational social choice, one central problem is to investi-
gate the possibility of using computational complexity as a
barrier against manipulation. Researchers have been inter-
ested in the computational complexity of computing whether
a single agent or a coalition of agents have enough power to
replace the winner with their favorite alternative by casting

votes strategically in collaboration. See [6] and [8] for nice
recent surveys.

Looking back in the literature, the study of voting power
has been favored in Political Science and Economics for a
long time. It has been playing a central role in at least two
other main research directions in addition to the study of ma-
nipulation. The first direction is the study of rational choice
of voters, motivated by the “paradox of not voting”, which
dates back to Downs’ seminal work [5]. The paradox states
that when the number of voters is large, the voting power for
a single voter to influence the outcome is negligible. There-
fore, nobody should bother to vote, which sharply contradicts
the much higher turnout in real-life elections. The paradox
of not voting has influenced the study of voting in Politi-
cal Science for more than half a century, and is still popu-
lar nowadays. Many research papers have been devoted to
explaining the paradox from both theoretical and empirical
sides, yet none of them has been successful so far. See [9;
10] for recent surveys.

The second research direction is the study of a class
of coalitional games called weighted voting games. In a
weighted voting game, each voter has a weight, and a coalition
of voters is winning if the sum of their weights is higher than
a quota (which is usually set to be half of the total weight).
It is important to study the power of the voters for many pur-
poses, e.g., for dividing the profit. One of the most impor-
tant measurements is the Shapley-Shubik power index [13],
where a voter’s power is measured by (informally speaking)
her marginal contribution in making coalitions of voters win.

In all the above research directions, a voter’s voting power
is determined by whether or not she is pivotal. That is, in a
given profile, a voter is pivotal if and only if she can change
the winner by casting a different vote, assuming that the other
voters do not change their votes1. However, the mere “pivotal
or not” measurement is often not discriminative enough. As
the paradox of not voting says, the set of pivotal voters is al-
ways too small or even empty when the number of voters is
large. This argument is supported by some recent work on the
probability that a coalition of voters have power to change the
outcome [12; 14].

Our conceptual contributions. In this paper, we introduce
two new ways to measure a voter’s power in a given profile for

1In the study of voting power, we do not consider the voter’s
incentive to cast a different vote.



a given voting rule. Both ways are extensions of the set of piv-
otal agents, and are much more discriminative. Therefore, we
believe that these extensions provides new angles of the vot-
ers’ strategic behavior in the three traditional research direc-
tions mentioned above. The first extension, which is called hi-
erarchical pivotal sets, captures the power for a voter to make
other voters pivotal. Given a profile, the level-1 hierarchical
set is composed of all pivotal voters; for any k ≥ 2, the level-
k hierarchical set is composed of all voters who can change
the level-(k − 1) hierarchical set by voting differently. The
second extension is called coalitional pivotal sets. Such sets
are subsets of voters who can change the winner by voting
differently in collaboration. Based on the coalitional pivotal
sets, we define power indices for the voters similarly to the
Shapley-Shubik power index2.

Our technical contributions.To illustrate the applications
of these extensions, we define random dictatorships based on
them to approximate the fully random dictatorship (which
first chooses a voter uniformly at random, then select the
winner to be the top-ranked alternative of the chosen voter).
Fully random dictatorship is the only randomized voting
rule that satisfies anonymity, Pareto-optimality, and strategy-
proofness [11]. We prove that the random dictatorships based
on hierarchical pivotal sets are strategic-pivot-proof, that is,
no agent can make herself one of the possible dictators by
voting differently.

Our main technical contribution is the following character-
ization of the hierarchical pivotal sets. We prove that for any
voting rule that satisfies anonymity and unanimity and any
profile, the voters in the hierarchical pivotal sets are not re-
dundant (a voter is redundant if he/she is never pivotal in any
profile). And conversely, any non-redundant voter must be in
the level-k pivotal set for some k ≤ n + 1, where n is the
number of voters. Therefore, in terms of hierarchical pivotal
sets, for any anonymous voting rule, in any profile, any voter
has some voting power to (directly or indirectly) change the
winner. This provides a new perspective towards understand-
ing the paradox of not voting. However, we also show that
there exists a voting rule that does not satisfy anonymity, such
that for any given profile, not all non-redundant voters are in
the union of all hierarchical pivotal sets.

Finally, we investigate algorithmic aspects of computing
the hierarchical pivotal sets.

2 Preliminaries
Let C be a finite set of alternatives (or candidates). A vote V
is a linear order over C, i.e., a transitive, antisymmetric, and
total relation over C. The set of all linear orders over C is
denoted by L(C). An n-voter profile P over C is a collection
of n linear orders over C, that is, P = (V1, . . . , Vn), where for
every j ≤ n, Vj ∈ L(C). In this paper, we let m denote the
number of alternatives and let n denote the number of voters
(agents) in a profile. Let N = {1, . . . , n}. For any subset
S ⊆ N , we let PS denote the sub-profile of P that consists of
the votes of the voters in S; let P−S = PN\S . When S = {i},

2The concept of coalitional pivotal sets is not new, for example,
it is implicitly considered in the coalitional manipulation problems.
However, as far as we know, this is the first time it is used to define
voting power.

we write P−i instead of P−{i}. The set of all n-profiles over

L(C) is denoted by Fn(C). In this paper, a (voting) rule r
maps any n-profile to a single winning alternative, called the
winner. Some commonly used voting rules are listed below.

• Positional scoring rules. Given a scoring vector ~v =
(v1, . . . , vm) of m integers, for any vote V ∈ L(C) and any
c ∈ C, let s~v(V, c) = vi, where i is the rank of c in V . For any
profile P = (V1, . . . , Vn), let s~v(P, c) =

∑n
j=1 s~v(Vj , c).

The rule will select an alternative c ∈ C so that s~v(P, c) is
maximized. Some examples of positional scoring rules are
plurality, for which the scoring vector is (1, 0, . . . , 0), and
veto, for which the scoring vector is (1, . . . , 1, 0). Plurality
is also called majority when there are only two alternatives.

• Single transferable vote (STV). The election has m
rounds. In each round, the alternative that gets the minimal
plurality score drops out, and is removed from all of the votes.
The last-remaining alternative is the winner.

• Ranked pairs. This rule first creates an entire ranking of
all the alternatives. Let DP (ci, cj) denote the number of votes
where ci ≻ cj minus the number of votes where cj ≻ ci in the
profile P . In each step, we consider a pair of alternatives ci, cj

that we have not previously considered, which has the highest
DP (ci, cj) among the remaining pairs. We then fix the order
ci ≻ cj , unless it violates transitivity. We continue until all
pairs of alternatives have been considered. The alternative at
the top of the ranking wins.

• Dictatorship. For every n ∈ N there exists a voter j ≤ n
such that the winner is always the alternative that is ranked in
the top position in Vj . Voter j is called a dictator.

A voting rule r satisfies anonymity, if the winner under r
does not depend on the name of the voters. That is, for any
permutation M over N and any profile P = (V1, . . . , Vn), we
have r(P ) = r(M(P )) = r(VM(1), . . . , VM(n)). r satisfies
unanimity, if for any profile P in which all voters rank the
same alternative c in their top positions, r(P ) = c.

In this paper, we let a random dictatorship denote a map-
ping Dr : Fn(C) → 2N , where r is a “default” voting rule
that is used to select the winner in case Dr(P ) = ∅. That is,
Dr selects a set of “possible dictators” to be randomized over.
Dr naturally induces a mapping that assigns each profile to
a probability distribution over C as follows. For any profile
P , if Dr(P ) = ∅, then it selects r(P ) with probability 1; if
Dr(P ) 6= ∅, then it first selects a voter j from Dr(P ) uni-
formly at random, then let the winner be the top-ranked alter-
native in Vj . A fully random dictatorship is a random dictator-
ship that always outputs N . A weighted random dictatorship
Dw

r maps a profile to a probability distribution over N , or ∅.
Similarly to random dictatorships, a weighted random dicta-
torship naturally induces a mapping that assigns each profile
to a probability distribution over C: if Dw

r (P ) = π 6= ∅, then
it selects a voter j from Dw

r (P ) according to the distribution
π and let the winner to be the top-ranked alternative in Vj ; and
if Dw

r (P ) = ∅, then it selects r(P ) with probability 1.

3 Pivotal sets and random dictatorships

In this section, we introduce two extensions of pivotal sets
and their induced (weighted) random dictatorships, and dis-
cuss their relationships.



3.1 Hierarchical pivotal sets
Given a voting rule r and a profile P , we define the level-1
pivotal set PS1

r(P ) ⊆ N to be the set of all pivotal voters.

That is, j ∈ PS1
r(P ) if and only if there exists a vote V ′

j such

that r(P−j , V
′
j ) 6= r(P ). Let the level-1 random dictatorship

D1
r(P ) be a mapping such that D1

r(P ) = PS1
r(P ).

We argue that D1
r prevents voters’ strategic behavior to

some extent, by showing that any voter j who is not in D1
r(P )

cannot make herself become a member in D1
r(P−j , V

′
j )

by casting a different vote V ′
j . By definition, voter j

is not pivotal. Therefore, for any pair of votes V ′
j and

V ∗
j , r(P−j , V

′
j ) = r(P−j , V

∗
j ), which means that j 6∈

D1
r(P−j , V

′
j ). Formally, we have the following definition for

random dictatorships.

Definition 1 A random dictatorship Dr is strategic-pivot-
proof, if for any profile P , any voter j, and any vote V ′

j , we

have j ∈ Dr(P−j , V
′
j ) =⇒ j ∈ Dr(P ).

That is, Dr is strategic-pivot-proof if for any profile, any
voter who is not selected by Dr cannot cast a different vote
to make himself/herself one of the possible dictators. Of
course for a strategic-pivot-proof random dictatorship, the
voter might still have power and incentive to cast a different
vote to change the set of possible dictators, even though she
is not in it anyway. Therefore, it seems that strategic-pivot-
proofness is weaker than the usual strategy-proofness. We
note that they are actually not comparable. Exploring their
relationship is an interesting direction for future research.

The level-1 pivotal set and its induced random dictatorship
are not the end of the story. To capture the voting power for
a voter to change the level-1 pivotal set, we can define level-
2 pivotal sets to be composed of all voters who can change
the level-1 pivotal set by voting differently. More generally,
for any natural number k, we define the level-k pivotal set

PSk
r (P ) ⊆ N recursively as follows.

Definition 2 For any voting rule r, any k ∈ N, and any pro-

file P , we define the level-k pivotal set PSk
r(P ) ⊆ N recur-

sively as follows.
• j ∈ PS1

r(P ) if and only if there exists a vote V ′
j such that

r(P ) 6= r(P−j , V
′
j ).

• j ∈ PSk
r (P ) if and only if there exists a vote V ′

j such that

PSk−1
r (P ) 6= PSk−1

r (P−j , V
′
j ). That is, voter j can change

the level-(k − 1) pivotal set by voting differently.

Here k is called the hierarchical level. Level-k pivotal sets
capture voters’ indirect power in the current profile P . The
higher the hierarchical level is, the more indirectly the voters
in it can influence the outcome for P . We note that the level-k
pivotal sets for different profiles can be different.

Let Dk
r denote the random dictatorship such that Dk

r (P ) =⋃k
i=1 PSi

r(P ). In Section 4 we will show that for any vot-

ing rule r that satisfies anonymity and unanimity, Dk
r is an

approximation to the fully random dictatorship after all re-
dundant voters are removed. We note that the fully random
dictatorship is strategy-proof.

Example 1 There are two alternatives {a, b}, 5 voters, and
we use the majority rule. Table 1 shows the level-k pivotal sets

# of a ≻ b
Pivotal sets

1 2 3 4 . . .
0 ∅ ∅ all ∅ . . .
1 ∅ b all b . . .
2 b all a all . . .
3 a all b all . . .
4 ∅ a all a . . .
5 ∅ ∅ all ∅ . . .

Table 1: The pivotal sets under majority.

for all profiles, for k = 1, 2, 3, 4. Because the majority rule is
anonymous, as we will show later in the paper (Lemma 1), the
level-k pivotal set can be represented by a set of votes instead
of a set of voters. A pivotal set is denoted by “b” if it is exactly
the set of all voters whose votes are b ≻ a; similarly for “a”;
“all” denotes the set of all voters. For example, if two voters
vote for a ≻ b and three voters vote for b ≻ a, then the level-3
pivotal set consists of exactly the two voters whose votes are
a ≻ b.

Proposition 1 For any k ∈ N, Dk
r is strategic-pivot-proof.

Proof: For any j 6∈
⋃k

i=1 PSi
r(P ) and any vote V ′

j , we

prove that for any i ≤ k, j 6∈ PSi
r(P−j , V

′
j ). For the

sake of contradiction, let i ≤ k and V ′
j be such that j ∈

PSi
r(P−j , V

′
j ). By the definition of PSi

r, there exists a vote

V ∗
j such that PSi−1

r (P−j , V
′
j ) 6= PSi−1

r (P−j , V
∗
j ). Therefore,

either PSi−1
r (P−j , V

′
j ) 6= PSi−1

r (P ) or PSi−1
r (P−j , V

∗
j ) 6=

PSi−1
r (P ). In both cases j ∈ PSi

r(P ), which contradicts the
assumption. �

3.2 Coalitional pivotal sets and Shapley-Shubik
power index

When defining hierarchical pivotal sets, we are concerned
with the voting power for a single voter to (indirectly) change
the winner. It is natural to consider the voting power for a
coalition of voters to change the winner by voting collabora-
tively. We first define the set of pivotal coalitions.

Given a profile P , a subset S ⊂ N is a pivotal coalition, if
there exists a profile P ′

S for the voters in S such that r(P ) 6=
r(P−S , P ′

S). We define the indicator function vP
r as follows.

For any coalition S ⊆ N , if S is a pivotal coalition, then
vP

r (S) = 1; otherwise vP
r (S) = 0. For any voting rule r

and any profile P , let CPSr(P ) denote the set of all pivotal

coalitions, that is, CPSr(P ) = {S ⊆ N : vP
r (S) = 1}.

Obviously, if a set of voters S can change the winner, then
any superset of S can also change the winner. Therefore, for
any r and any profile P , CPSr(P ) is upward-closed, that is,
for any S ∈ CPSr(P ) and any S′ such that S ⊆ S′, we have
S′ ∈ CPSr(P ).

Example 2 There are three alternatives {a, b, c}. Let
P=(a ≻ b ≻ c, a ≻ c ≻ b, c ≻ a ≻ b). We have
CPSPlu(P ) = {{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and
CPSVeto(P ) = {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Now, a voter’s voting power can be defined similarly to the
Shapley-Shubik power index [13]. We now define a power in-
dex wr that measures a voter’s marginal contribution in mak-
ing coalitions pivotal. Let wr : Fn(C) × N → R≥0 be a



mapping such that for any profile P ∈ Fn(C) and any j ≤ n,
we have:

wr(P, j) =
∑

S⊆N\{j}

|S|!(n − |S| − 1)!

n!
(vP

r (S∪{j})−vP
r (S))

Proposition 2 For any rule r that does not always select the
same alternative and any profile P ,

∑n
j=1 wr(P, j) = 1.

To the best of our knowledge, this is the first time that
Shapley-Shubik power index is considered in the context of
preference aggregation by voting rules.

Based on the power index wr, we define a weighted random
dictatorship Dw

r as follows. If CPSr(P ) = ∅ (or equivalently,
r always selects the same alternative), then Dw

r (P ) = ∅. Oth-
erwise, for any profile P , Dw

r (P ) is the distribution over N
that chooses j with probability wr(P, j).

Example 3 Let P be the same profile as defined in Exam-
ple 2. Dw

Plu(P ) chooses 1 and 2 with the same probability
1/2; Dw

Veto(P ) chooses 1 with probability 2/3, and chooses
2 and 3 with the same probability 1/6.

3.3 Relationships between the two pivotal sets

The next theorem states that the smallest k such that the level-
k pivotal set is non-empty equals to the size of the smallest
coalitional pivotal set for P .

Theorem 1 For any voting rule r and any profile P ,

min{k : PSk
r(P ) 6= ∅} = minS∈CPSr(P ){|S|}

Proof: Let k∗ = arg mink{PSk
r(P )} and k′ =

minS∈CPSr(P ){|S|}. We first prove that k∗ ≤ k′. Suppose

for the sake of contradiction that k∗ > k′. Without loss of
generality, S = {1, . . . , k′}, and let P ′

S = (V ′
1 , . . . , V ′

k′ ) be
the votes such that r(P ) 6= r(P−S , P ′

S). For any k ≤ k′,
let Pk = (V ′

1 , . . . , V ′
k, Vk+1, . . . , Vn), that is, Pk is obtained

from P by replacing the first k votes by V ′
1 , . . . , V ′

k , respec-

tively. Because k′ < k∗, for any k ≤ k′, PSk
r (P ) = ∅.

Therefore, for any k ≤ k′ − 1, changing the vote of voter 1
from V1 to V ′

1 does not change the level-k pivotal set. That

is, for any k ≤ k′ − 1, PSk
r (P1) = ∅. Similarly, it is

easy to see that for any i ≤ k′ − 1, for any k ≤ k′ − i,
PSk

r (Pi) = ∅. Specifically, PS1
r(Pk′−1) = ∅. It follows from

PS1
r(P ) = ∅ and for any i ≤ k′ − 1, PS1

r(Pi) = ∅, that
r(P ) = r(P1) = r(P2) = . . . = r(Pk′ ). This contradicts the
assumption that r(P ) 6= r(Pk′ ). Consequently, k∗ ≤ k′.

Next, we prove that k′ ≤ k∗. It suffices to prove that for

any k ≤ k′ − 1, PSk
r (P ) = ∅. We have following stronger

claim, whose proof is omitted due to the space constraint.

Claim 1 For any 2 ≤ q ≤ k′, any P ′ that differs from P on

no more than k′ − q votes, and any k ≤ q − 1, PSk
r (P ′) = ∅.

Let q = k′ in Claim 1, we have that PSk′−1
r (P ) = ∅, which

means that k∗ ≥ k′. Therefore, k∗ = k′. �

4 Hierarchical pivotal sets for anonymous

voting rules

In the remainder of the paper, we focus on hierarchical pivotal
sets. It is easy to see that if a voter is not pivotal in any profile,
then for any k and any profile P , she is not in the level-k
pivotal set. Such a voter is said to be redundant.

Definition 3 Given a voting rule r, a voter j is redundant, if
for any profile P and any vote V ′

j , r(P ) = r(P−j , V
′
j ).

If a voter is redundant, then effectively her vote can be com-
pletely ignored. Therefore, for any profile, none of the voters
in the union of its hierarchical pivotal sets (as k → ∞) is re-
dundant. That is, the union of the hierarchical pivotal sets for
any profile is a sound characterization of the non-redundant
voters. We ask the following two natural questions. The first
question asks whether or not the union of the hierarchical piv-
otal sets for a given profile P is a complete characterization
of the non-redundant voters.

Question 1 Given a voting rule r, is it true that for any non-
redundant voter j and any profile P , there exists k ∈ N such
that j is in the level-k pivotal set for P?

The second question concerns the asymptotic property of
level-k pivotal sets when k goes to infinity. Given a profile
P , we are asked whether the level-k pivotal sets for P will
converge (to the empty set), when k goes to infinity.

Question 2 Given a voting rule r, does there exist K ∈ N

such that for any k ≥ K , the level k-pivotal set is ∅?

In this section, we give an affirmative answer to Question 1
for any voting rule that satisfies anonymity and unanimity, and
a negative answer to Question 2 for the majority rule. We first
prove a lemma, which states that for any anonymous voting
rule r, if a voter j is in the level-k pivotal set for a profile P ,
then other voters who cast the same vote as j’s vote are also
in the level-k pivotal set for P . This lemma will be frequently
used in this paper. Due to the space constraint, some proofs
are omitted.

Lemma 1 For any anonymous voting rule r, any profile P ,
any k ∈ N, and any pair of voters i, j with Vi = Vj , i ∈

PSk
r (P ) if and only if j ∈ PSk

r (P ).

Lemma 1 states that for any anonymous voting rule r and
any profile P , a voter’s membership in the level-k pivotal set
can be characterized by her vote. Therefore, for any anony-
mous voting rule r and any profile, the level-k pivotal set can
be represented by the set of all votes that are cast by some
level-k pivotal voters. We will use this observation later in
the paper, especially in Section 6. The next theorem gives
an affirmative answer to Question 1 for any voting rule that
satisfies anonymity and unanimity.

Theorem 2 Let r be a voting rule that satisfies anonymity and
unanimity. For any n-profile P and any voter j, there exists

k ≤ minS∈CPSr(P ){|S|} + 1 ≤ n + 1 such that j ∈ PSk
r (P ).

Proof: Let K = minS∈CPSr(P ){|S|}. For the sake of con-
tradiction, without loss of generality for any k ≤ K + 1,

1 6∈ PSk
r (P ). By Theorem 1, there exists k∗ ≤ K such that

PSk∗

r (P ) 6= ∅. Let j∗ ∈ PSk∗

r (P ) and W be the vote of voter
j∗. Let P ′ = (P−1, W ), that is, P ′ is the profile obtained

from P by letting voter 1 vote for W . Because 1 6∈ PSk∗

r (P )

and 1 6∈ PSk∗+1
r (P ), we have that 1 6∈ PSk∗

r (P ′). It follows
from Lemma 1 that for any voter j whose vote is W in P ′,

j 6∈ PSk∗

r (P ′). Specifically, j∗ 6∈ PSk∗

r (P ′), which means

that PSk∗

r (P ′) 6= PSk∗

r (P ). Therefore, 1 ∈ PSk∗+1
r (P ). This

contracts the assumption that 1 6∈ PSk∗+1
r (P ). �



Theorem 2 is quite positive. It implies that if we remove
all redundant voters, Dk

r can be used to approximate the fully
random dictatorship, which is strategy-proof. It is a very in-
teresting topic to study how good this approximation is, which
we left as an open problem.

For Question 2, suppose the level-k pivotal set converges
as k goes to infinity, we first prove that it must converge to ∅.

Proposition 3 For any anonymous voting rule r, if there ex-

ists k such that for any n-profile P , PSk
r (P ) = PSk+1

r (P ),

then for any n-profile P , PSk
r (P ) = ∅.

However, Proposition 3 does not guarantee the existence of

k such that PSk
r (P ) = PSk+1

r (P ). In fact, the next proposi-
tion shows that such a k might not exist for the majority rule,
which satisfies anonymity and unanimity. Therefore, the an-
swer to Question 2 is negative.

Proposition 4 Let there be two alternatives {a, b}, 5 voters,
and we use the majority rule. There does not exist k ∈ N such
that for any profile P , the level-k pivotal set for P is ∅.
Proof: From Table 1 in Example 1, it is easy to see that for
any profile, its level-2 and level-4 pivotal sets are identical
and are different from level-3 pivotal sets. Therefore, for any
profile, none of the level-k pivotal sets converges as k goes to
infinity. �

5 Hierarchical pivotal sets for non-anonymous

voting rules

In this section, we focus on non-anonymous voting rules. Sur-
prisingly, for some voting rules that do not satisfy anonymity,
the answer to Question 1 is negative.

Proposition 5 Let m = 4 and n = 3. There exists a non-
anonymous voting rule r that satisfies the following condi-
tions.
• No voter is redundant.
• For any k ∈ N and any profile P such that |P | = 3, the

level-k pivotal set for P is non-empty.
• For any voter j, there exists a profile P such that |P | = 3

and for any k ∈ N, j is not in the level-k pivotal set for P .
Proof: Let the four alternatives be {a, b, c, d}. Let l =
[a ≻ b ≻ c ≻ d]. We define a voting rule r as follows.
r(l, l,¬) = r(¬, l,¬) = a, r(l,¬, l) = r(l,¬,¬) = b,
r(¬, l, l) = r(¬,¬, l) = c, r(l, l, l) = r(¬,¬,¬) = d.

Here “¬” means any linear order that is different from l.
For example, r(¬, l, l) = c means that for any 3-profile where
voter 1’s voter is not l, and the votes of voter 2 voter and 3
are both l, the winner is c. The voting rule is illustrated in
Figure 1(a), where each vertex represents a set of 3-profiles
and the alternative associated with it is the winner for these
profiles. An edge between two vertices A and B in the graph
means that for any profile P in A, there exists a profile P ′ in
B such that P ′ can be obtained from P by changing exactly
one vote. An edge is bold if the winners for its two endpoints
are the same. We have the following claim (whose proof is
omitted due to the space constraint.)

Claim 2 For any k ∈ N and any profile P , PSk
r(P ) =

PSk+1
r (P ), and is illustrated in Figure 1 (b).

It follows from Claim 2 that r satisfies all the properties in the
description of the proposition. �
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(a) The voting rule r. (b) The level-k pivotal set for any k.

Figure 1: The voting rule r and the hierarchical pivotal sets.

6 Computing hierarchical pivotal sets

In this section, we investigate the computational complexity
of computing level-k pivotal sets. We first relate the prob-
lem of computing level-1 pivotal sets to the unweighted coali-
tional manipulation (UCM) problems with a single manipu-
lator. An instance of UCM is a tuple (r, PNM , c, M), where

r is a voting rule, PNM is the non-manipulators’ profile, c
is the manipulators’ preferable alternative, and M is the set
of manipulators. We are asked whether there exists a profile
PM for the manipulators such that r(PNM ∪ PM ) = c. Let
UCM1 denote the UCM problems with a single manipulator,
that is, |M | = 1.

Proposition 6 For any voting rule r, if UCM1 is in P, then
computing PS1

r(P ) is also in P.

Following the results of computing UCM1 for common vot-
ing rules [3; 2; 4; 7; 16; 15], we immediately obtain the fol-
lowing corollary.

Corollary 1 For any r ∈ {Copeland, Veto, Plurality with
runoff, Cup, Maximin, Bucklin, Borda} and any profile
P , there exists a polynomial-time algorithm that computes
PS1

r(P ).3

For STV and ranked pairs, UCM1 is NP-complete [2;
15]. The next two theorems show that computing the level-1
pivotal sets for them are NP-complete. It is not clear whether
there exists a general reduction that works for any voting rule.

Theorem 3 It is NP-complete to compute PS1
r(P ) for r=STV.

Proof: It is easy to check that computing PS1
r(P ) for STV

is in NP. We prove the NP-hardness by a reduction from a
special kind of UCM1 problems for STV, where c is ranked in
the top position in at least one vote in PNM . This problem has
been shown to be NP-complete [2]. For any UCM1 instance
(STV, PNM , c, {n}) where c is ranked in the top position in

at least one vote in PNM (|PNM | = n− 1), we construct the
following instance of computing the level-1 pivotal set. Let C
denote the set of alternatives in the UCM1 instance.

Alternatives: C ∪ {d}, where d is an auxiliary alternative.
Profile: Let P denote a profile of 2n − 1 votes as follows.

The first n−1 votes are obtained from PNM by putting d right
below c. The next n votes ranks d in the first position (other
alternatives are ranked arbitrarily). We are asked whether n ∈
PS1

STV(P ).

3The definition of these voting rules can be found in e.g. [15].



It is easy to check that STV(P ) = d. Suppose the UCM1

instance has a solution, denoted by V . Then, let V ′ denote
the linear order over C ∪ {d} obtained from V by ranking d
in the bottom position. Let P ′ denote the profile where voter
n changes her vote to V ′. We note that d is ranked in the top
position for n−1 time in P ′. Therefore, d is never eliminated
in the first |C| − 1 rounds. Moreover, for any j ≤ |C| − 1,
the alternative that is eliminated in the jth round for P ′ is
exactly the same as the alternative that is eliminated in the jth
round for P . In the lasts round, c is ranked in the top position
for n time, which means that STV(P ′) = c 6= d. Hence,

n ∈ PS1
STV(P ).

On the other hand, if n ∈ PS1
STV(P ), then there exist a

vote V ′ such that by changing her vote to V ′, voter n can
change the winner under STV. Let P ′ = (P−n, V ′). Again,
because d is ranked in the top position for at least n − 1 time
in P ′, it will only be eliminated in the last round. We recall
that c is ranked in the first position in at least one vote in
PNM , and d is ranked right below c in the corresponding vote
in P ′. Therefore, d beats all alternatives in C \ {c} in their
pairwise elections, which means that in the last round the only
remaining alternatives must be c and d. Let V be a linear
order obtained from V ′ by removing d. It follows that V is a
solution to the UCM1 instance.

Therefore, computing the level-1 pivotal set for STV is NP-
complete. �

Theorem 4 (proof omitted due to the space constraint) It
is NP-complete to compute PS1

r(P ) for r=RP (ranked pairs).

For any anonymous voting rule, when m is bounded above
by a constant, we can find a dynamic-programming algorithm
that computes the level-k pivotal set. The algorithm is based
on the following two key observations. First, when the num-
ber of alternatives is bounded above by a constant, the num-
ber of essentially different profiles is polynomial. Second, by
Lemma 1, a level-k pivotal set can be represented succinctly
by a set of votes (instead of voters). The details of the algo-
rithm is omitted due to the space constraint.

7 Future research

There are many interesting directions for future research. For
example, in this paper we have three open problems. How
can we compare the strategic-pivot-proofness and strategy-
proofness? How good/bad it is to use Dk

r to approximate the
fully random dictatorship? What is the computational com-
plexity of computing level-k (k ≥ 2) pivotal sets for common
voting rules? Moreover, we believe that defining and comput-
ing voting power in the traditional voting setting (in contrast
to the weighted voting games) is an important topic. It would
be worthwhile studying applications of the two types of voting
powers proposed in this paper (especially the Shapley-Shubik
power index), for example, in defining other (weighted) ran-
dom dictatorships or in the coalition formation of the ma-
nipulators. Besides these topics, we can definitely examine
other ways of defining voting power, for example by using
the Banzhaf power index [1].
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