Computational challenges in fair division

Ioannis Caragiannis

University of Patras

The general problem

Input:

- A collection of items
- Users (or agents) that have utilities for bundles of items

Goal:

 Allocate the items to the agents so that the allocation is fair according to specific fairness criteria

Variations:

- Divisible vs indivisible items, restricted utility functions, different notions of fairness
- Many applications: e.g., ICT, multi-agent systems, negotiations, peace treaties, etc.

Example: Alice and Bob get divorced 😊

items

Utilities

Example: Alice and Bob get divorced 😊

An envy-free allocation

Example: Alice and Bob get divorced 😊

Fairness criteria

- Proportionality: each user feels she got a fair share
- Envy-freeness: no user envies the bundle of any other user
- Equitability: all users are equally happy
- Max-min fairness: the least happy user is as happy as possible

Other criteria

- Efficiency of allocations
 - Pareto efficiency
 - Social welfare
- Efficiency of computation
 - Fast computation (e.g., polynomial-time)
 - Preferably in a distributed way
- Resistance to manipulability
 - Strategy-proofness

Example: envy-free cake cutting

• Input:

- A divisible item (cake)
- Two agents, each having private utilities over parts of the cake

Goal:

 Allocate pieces of the cake to the agents so that nobody envies the part allocated to the other player

Good news:

 We know how to solve the problem for 2 and 3 agents

Many related issues

- What is the computational complexity of the problem?
 - Looks like searching for a needle in a haystack
- Provable lower bounds?
 - All we know is that envy-freeness is slightly more difficult to achieve than proportionality
- Restricted utilities
- More expressive models
 - E.g., restriction for contiguous pieces
 - E.g., no utility for trimmings
- What about other fairness criteria?
 - E.g., approximate equitability

Another example: the Santa Claus problem

• Input:

- Santa Claus has a bag full with toys
- Several kids, each having a utility for each toy

 Compute an allocation so that the utility of the least happy kid is maximized

Good news:

 We know how to compute O(logn)approximate allocations

Related challenges

- Improved approximation algorithms
- Inapproximability results
- Restricted utilities
- Other fairness objectives with indivisible items
- More expressive models

Many more issues

- Tradeoffs between fairness and efficiency
 - E.g., fairness and Pareto-efficiency
- What is the price of fairness?
 - How suboptimal can the social welfare be in a fair (proportional, envy-free, equitable, max-min fair) allocation?
- Strategy-proofness
 - Incompatible with fairness (in general)
 - Monetary incentives, transferable utilities