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Abstract

The paper studies the interrelationships of the Preference Aggregation and Judgment
Aggregation problems from the point of view of logical semantics. The result of the
paper is twofold. On the one hand, the Preference Aggregation problem is viewed as
a special case of the Judgment Aggregation one. On the other hand, the Judgment
Aggregation problem is viewed as a special case of the Preference Aggregation one.
It is shown how to import an impossibility result from each framework to the other.

1 Introduction

Recent results [5, 9] have shown how Preference Aggregation theorems, such as Arrow’s
impossibility [1], can be obtained as corollaries of impossibility theorems concerning the
aggregation of judgments. The idea behind this reduction consists in viewing preferences
between issues as special kind of judgments, i.e., formulae to which a truth-value is attached.
In [5, 9] the formulae used for representing preferences are first-order formulae of the type
xPy (“x is strictly preferred to y”) where x, y are variables for the elements in the set of
issues of the Preference Aggregation problem. Then, in order for the judgments concerning
such formulae to behave like a strict preference relation the three axioms of asymmetry,
transitivity and connectedness1 are added to the Judgment Aggregation framework.

The present paper proposes a different approach to obtain the same kind of reduction.
More precisely, preferences will be studied as implicative statements y → x (“y is at most
as preferred as x”) in a many-value logic setting [6,7]. The insights gained by this reduction
of preferences to judgments are then also used to obtain an inverse reduction of judgments
to special kind of preferences, namely those preferences definable in the Boolean algebra on
the support {0, 1}. To the best of our knowledge, this is the first work advancing a proposal
on how to reduce Judgment Aggregation problems to Preference Aggregation ones.

The paper is structured as follows. In Section 2 the frameworks of Preference and
Judgement Aggregation are briefly exposed, some basic terminology is introduced and some
relevant results from the literature are summarized. In Section 3 a reduction of preferences
to judgments is proposed which makes use of the semantics of many-valued logics. An
impossibility result from Judgment Aggregation is thereby imported into Preference Aggre-
gation. Section 4 explains how the framework of Preference Aggregation could be extended
in order to incorporate preferences between complex issues representable as logical formu-
lae. In Section 5 such idea is related to propositional logic and a reduction of judgments to
preferences is proposed. Also in this case, an impossibility result of Preference Aggregation
is imported into Judgment Aggregation. Section 6 briefly concludes.

2 Preliminaries

The present section is devoted to the introduction of the two frameworks of preference and
judgment aggregation, and of some results which will be of use later in the paper.

1Asymmetry: ∀x, y(xPy → ¬yPx); Transitivity: ∀x, y, z((xPy∧yPz)→ xPz); Connectedness: ∀x, y(x 6=
y → (xPy ∨ yPx))
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2.1 Preference Aggregation

Preference Aggregation (PA) concerns the aggregation of the preferences of several agents
into one collective preference. A preference relation � on a set of issues IssP is a total
preorder, i.e., a binary relation which is reflexive, transitive, and total. T(IssP ) denotes
the set of all total preorders of a set IssP . As usual, on the ground of � we can define
its asymmetric and symmetric parts: x ≺ y iff (x, y) ∈� & (y, x) 6∈�; x ≈ y iff (x, y) ∈�
& (y, x) ∈�. We also define from � the following non-transitive relation: x ≶ y iff (x, y) ∈�
or (y, x) ∈� but not both. The notion of PA structure can now be defined.

Definition 1. (Preference aggregation structure) A PA structure is a quadruple SP =
〈AgnP , IssP , PrfP , AggP 〉 where: AgnP is a finite set of agents such that 1 ≤ |AgnP |; IssP

is a finite set of issues such that 3 ≤ |IssP |; PrfP is the set of all preference profiles, i.e.,
|AgnP |-tuples p = (�i)i∈AgnP where each �i is a total preorder over Iss; AggP is a function
taking each p ∈ PrfP to a total preorder over Iss, i.e., AggP : PrfP −→ T(IssP ). The
value of AggP is denoted by �.

The aggregation function AggP is then studied under the assumption that it satisfies
some of the following typical conditions:

Unanimity (U): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP if ∀i ∈ AgnP , y ≺i x then y ≺ x.

Independence (I): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnP y �i x
iff y �′i x, then y � x iff y �′ x.

Systematicity (Sys) ∀x, y, x′, y′ ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈
AgnP y �i x iff y′ �′i x′, then y � x iff y′ �′ x′.

Non-dictatorship (NoDict): @i ∈ AgnP such that ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , if
y ≺i x then y ≺ x.

Notice that Definition 1 incorporates also the aggregation conditions usually referred to as
universal domain and collective rationality.

2.2 Judgment Aggregation

Judgment aggregation (JA) concerns the aggregation of sets of interrelated formulae into one
collective set of formulae. This section introduces the framework for judgment aggregation
based on the language of propositional logic [9].

A central notion in Judgment Aggregation is the notion of agenda. Intuitively, an agenda
consists of all the possible positions that agents can assume about the truth and falsity of
some issue.

Definition 2. (JA agenda) The language of propositional logic is denoted by L. Given a
finite set of formulae IssJ ⊆ L, the set ag(IssJ) = {|= φ |φ ∈ IssJ} ∪ {6|= φ |φ ∈ IssJ}
denotes the agenda of IssJ .

A JA agenda consists therefore of a set of pairs (|= φ, 6|= φ), each member in the pairs
meaning that φ is assigned value 1 and, respectively, a different value from 1, which is in
the propositional case 0. It might be worth noticing that we assume a slightly different
perspective on agendas than the literature on JA. Normally, an agenda is viewed as a
set of position/negation pairs (φ,¬φ). In this view, the judgment themselves can be seen
as formulae of the language from which the issues are drawn. Instead, we prefer to see
judgments as meta-formulae stating whether a given issue is accepted (true) or rejected
(not true). In propositional logic, however, the two perspectives are equivalent.
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A judgment set picks one element out of each such pairs keeping propositional consis-
tency. More formally, a judgment set for the agenda ag(IssJ) is a set J ⊆ ag(IssJ) which
is consistent and complete (∀φ ∈ IssJ : either |= φ ∈ J or 6|= φ ∈ J but not both) and
closed under propositional logic consequence (∀φ, ψ ∈ IssJ : if φ |= ψ and |= φ ∈ J then
|= ψ ∈ J). The set of all judgment sets for the agenda built on IssJ is denoted by J(IssJ).
The set IssJ

0 denotes the set of propositional atoms in IssJ .

Definition 3. (Judgment aggregation structure) A judgment aggregation structure is a
quadruple SJ = 〈AgnJ , IssJ , PrfJ , AggJ〉 where: AgnJ is a finite set of agents such that
1 ≤ |AgnJ |; IssJ is a finite set of issues consisting of propositional formulae and con-
taining at least two atoms: IssJ ⊆ L s.t. 2 ≤ |IssJ

0 |; PrfJ is the set of all judgment
profiles, i.e., |AgnJ |-tuples j = {Ji}i∈AgnJ where each Ji is a judgment set for the agenda
ja(IssJ); AggJ is a function taking each j ∈ PrfJ to a judgment set for ag(IssJ), i.e.,
AggJ : PrfJ −→ J(IssJ). The value of AggJ is denoted by J .

Like in PA, in JA aggregation functions are studied under specific conditions. The
following conditions reformulate the ones proper of PA:

Unanimity (U): ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ if ∀i ∈ AgnJ , |= x ∈ Ji then |= x ∈ J and if
6|= x ∈ Ji then 6|= x ∈ J .

Independence (I): ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ , j′ = (J ′i)i∈AgnJ , if ∀i ∈ AgnJ |= x ∈ Ji iff
|= x ∈ J ′i then |= x ∈ J iff |= x ∈ J ′.

Systematicity (Sys): ∀x, y ∈ IssJ and ∀j = (Ji)i∈AgnJ , j′ = (J ′i)i∈AgnJ , if ∀i ∈ AgnJ |= x ∈
Ji iff |= y ∈ J ′i , then |= x ∈ J iff |= y ∈ J ′, and if |= x ∈ Ji iff 6|= y ∈ J ′i then |= x ∈ J
iff 6|= y ∈ J ′.

Non-dictatorship (NoDict): @i ∈ AgnJ such that ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ , if
|= x ∈ Ji then |= x ∈ J and if 6|= x ∈ Ji then 6|= x ∈ J .

Notice that Definition 3 incorporates the aggregation conditions usually referred to as uni-
versal domain and collective rationality. In the remainder of the paper we will refer to the
conditions of unanimity, independence, systematicity and non-dictatorship as U, I, Sys, re-
spectively, NoDict. It will be clear from the context whether the condition at issue should
be interpreted in its PA or in its JA formulation.

2.3 Some relevant results on JA and PA

We now briefly sketch two results which are of importance for the development of the work
presented in this paper: Propositions 1 and 2.

JA agendas can be studied from the point of view of their structural properties, that
is, how strictly connected are the issues with which the agenda is concerned. In [5] the
following structural property —among others— is studied.

Definition 4. (Minimal connectedness of the agenda) An agenda ag(IssJ) is minimally
connected if: i) it has a minimal inconsistent subset S ⊆ ag(IssJ) such that 3 ≤ |S|; ii) it
has a minimal inconsistent subset S ⊆ ag(IssJ) such that (S\Z) ∪ {6|= x | |= x ∈ Z} is
consistent for some Z ⊆ ag(IssJ) of even size.

A typical JA impossibility result making use of this property is the following [5, 10]. In
Section 3 this result will then be imported, as an example, from JA to PA.

Proposition 1. (Impossibility for minimally connected agendas) For any JA structure SJ

there exists no aggregation function for a minimally connected agenda ag(IssJ) which sat-
isfies U, Sys and NoDict.
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{x, y} {y, z} {x, z}
y ≺ x z ≺ y z ≺ x
y ≺ x y ≺ z x ≺ z
x ≺ y z ≺ y x ≺ z
y ≺ x z ≺ y x ≺ z

{x, y} {y, z} {x, z}
u(y) < u(x) u(z) < u(y) u(z) < u(x)
u(y) < u(x) u(y) < u(z) u(x) < u(z)
u(x) < u(y) u(z) < u(y) u(x) < u(z)
u(y) < u(x) u(z) < u(y) u(x) < u(z)

Table 1: Condorcet’s paradox.

Proof. We refer the reader to [5].

A ranking function attributes a ranking (or value, or utility, or payoff) to all the issues
of a preference aggregation problem. In this paper we will make use of ranking functions
with the real interval [0, 1] as codomain. For such functions the following result holds which
is the special case of a theorem first proven in [4]. This result will play a central role in the
next section.

Proposition 2. (Representation of �) Let � be a total preorder on a finite set X. There
exists a ranking function u : X −→ [0, 1] such that ∀x, y ∈ X: x � y iff u(x) ≤ u(y). Such
a function is unique up to ordinal transformations2.

Proof. The reader is referred to [4].

3 Preferences as judgments

This section is devoted to show how the aggregation of preferences can be studied in terms
of the aggregation of judgments. As anticipated in Section 1 we get to the very same
conclusions presented in [5]. Nevertheless, to obtain such result we will follow a different
approach based on logical semantics rather than logical axiomatics. Such approach will
offer, in Section 5, also a method for viewing judgments as forms of preferences.

3.1 Condorcet’s paradox as a judgment aggregation paradox

In Condorcet’s paradox, pairwise majority voting on issues generates a collective preference
which is not transitive. From Proposition 2 we know that any preference relation which is
a total preorder can be represented by an appropriate ranking function u with codomain
[0, 1]. Table 1 depicts the standard version of the paradox in relational notation, and the
version using ranking functions u. To obtain the paradox strict preferences are not necessary.
The paradox arises also in weaker forms like the one depicted in Table 2. Again, both the
relational and the ranking function-based versions are provided.

The basic intuition underlying this section consists in reading the right-hand sides of
Tables 1 and 2 as if u was an interpretation function of propositions x, y, z on the real
interval [0, 1]. In many-valued logic [6, 7], a semantic clause such as u(y) ≤ u(x) typically
defines the satisfaction by u of the implication y → x:

u |= y → x iff u(y) ≤ u(x). (1)

Intuitively, implication y → x is true (or accepted, or satisfied) iff the rank of y is at most
as high as the rank of x. Since we know by Proposition 2 that any total preorder � can

2We recall that an ordinal transformation t is a function such that for all utilities m and n, t(m) ≤ t(n)
iff m ≤ n.
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{x, y} {y, z} {x, z}
y � x z � y z � x
y � x y ≺ z x ≺ z
x ≺ y z � y x ≺ z
y � x z � y x ≺ z

{x, y} {y, z} {x, z}
u(y) ≤ u(x) u(z) ≤ u(y) u(z) ≤ u(x)
u(y) ≤ u(x) u(y) < u(z) u(x) < u(z)
u(x) < u(y) u(z) ≤ u(y) u(x) < u(z)
u(y) ≤ u(x) u(z) ≤ u(y) u(x) < u(z)

Table 2: Weak Condorcet’s paradox.

be represented by a ranking function, the bridge between the notion of preference and an
equivalent notion of judgment is thereby readily available: given a total preorder �, there
always exists a ranking function u, unique up to order-preserving transformations such that:
y � x iff u(y) ≤ u(x). We thus obtain a direct bridge between preferences and judgments.
In fact, by exploiting Formula 1 the right-hand side of Table 2 can be rewritten as in Table
3. Notice that x is substituted by p, y by q and z by r. The same could obviously be done
for Table 1.

In other words, by first reading the weak Condorcet’s paradox in terms of ranking func-
tion (Proposition 2), and then interpreting such functions from the point of view of logical
semantics (Formula 1), we can show the equivalence between a preference aggregation prob-
lem and a judgment aggregation one. The following result generalizes this observation.

Proposition 3. (From preferences to judgments) The set of all PA structures can be mapped
into the set of all JA structures in such a way that each of them corresponds exactly to one
JA structure whose set of issues IssJ consists of only implications.

Proof. We show how to construct a structure SJ from any structure SP . Let SP =
〈AgnP , IssP , PrfP , AggP 〉. The set of agents AgnJ of SJ is the same: AgnP = AgnJ . The
set of issues IssJ is such that: IssJ

0 = IssP , that is, IssP provides the propositional
atoms of IssJ ; and it contains all implications built from IssJ

0 . The set PrfJ is the set
of all judgment profiles obtained by translating any total order �i into a judgment set Ji

as follows: |= x → y ∈ Ji iff (x, y) ∈�i. Notice that, as a consequence, we can define a
bijection bi between PrfP and PrfJ . Finally, the aggregation function AggJ can be defined
as follows: AggJ(bi(p)) = bi(AggP (p)). This completes the construction.

The JA structures SJ resulting from the construction in the proof are such that their
set of issues IssJ consist of all implications obtained from a set of atoms IssJ

0 such that
3 ≤ |IssJ

0 |. We call an agenda ag(IssJ) built on such a set IssJ an implicative agenda.

{p, q} {q, r} {p, r}
|= q → p |= r → q |= r → p
|= q → p 6|= r → q 6|= r → p
6|= q → p |= r → q 6|= r → p
|= q → p |= r → q |= r → p

q → p r → q r → p

|= |= |=
|= 6|= 6|=
6|= |= 6|=
|= |= 6|=

Table 3: Weak Condorcet’s paradox as a judgment aggregation paradox.
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3.2 Doing PA in JA

We know how to translate a PA structure into a JA one with implicative agendas. As an
example of how to import impossibility results of JA to PA we apply Proposition 1 to JA
structures with implicative agendas. In order to do so, we first need to show that implicative
agendas enjoy the property of minimal connectedness.

Proposition 4. Implicative agendas are minimally connected.

Proof. Suppose {p, q, r} ⊆ IssJ
0 . We prove that the implicative agenda built on IssJ

0 is
minimally connected. The desired minimal inconsistent subset of the agenda with size
higher than or equal to 3, and such that by negating two of its judgments consistency is
restored, is: {|= q → p, |= r → q, 6|= r → p}.

Everything is in place now to prove an impossibility result concerning the set of JA
structures in which PA can be mapped, i.e., those with implicative agendas.

Theorem 1. (A JA theorem for PA) For any PA structure SP , there exists no aggregation
function which satisfies U, Sys and NoDict.

Proof. The theorem follows from Propositions 1, 3 and 4.

The theorem itself is, of course, not surprising. It is just an illustration of the embedding
advanced in this section. More interesting results can be obtained along the very same lines
by studying different structural properties of the agenda, e.g., strong connectedness [5].

Before closing the present section it is worth spending a few words on the relation between
the approach presented here and the one presented in [5] where Arrow’s theorem is proven
as a corollary of a JA theorem analogous to Proposition 1 and a “bridging” proposition
analogous to Proposition 4. Both approaches somehow reduce PA to JA, but while [5]
does it axiomatically by imposing further constraints on a first-order logic agenda (i.e., the
axioms of strict total orders), we do it semantically, by ranking the issues in IssP on the
[0, 1] interval and interpreting preferences as implications. A more in-depth comparison
of the two approaches deserves further investigation. However, the semantic view has the
advantage of hinting also a “way back” from judgments to preferences. Such “way back” is
the topic of the next two sections.

4 Intermezzo: Rankings as Truth Values

The essential difference between JA and PA is that, in JA, issues display logical form. Is
there a consistent way to talk about compound issues in PA obtained by performing logical
operations on atomic ones? In other words, is there a way to define preferences which display
the logical complexity of judgments? Aim of the present section is to shows how to answer
these questions by generalizing Formula 1 to any logical connective.

Once we consider the set of issues IssP of a preference aggregation problem SP to be
the finite set of propositional atoms L0 of a propositional language L, any ranking function
u can be viewed as an interpretation function of the atoms in L0 on the real interval [0, 1].
The natural question follows: how to inductively extend a function u in order to interpret
issues in IssP which consist of propositional formulae, and not just atoms? This question
takes us into the realm of many-valued logics, and many possibilities are available. However,
given Formula 1, we are looking for something in particular. We want an implication to be
satisfied exactly when the antecedent is ranked at most as high as the consequent. More
precisely, let us denote with ŭ the inductive extension of the ranking function u. What we
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are looking for is a multi-valued logic such that the following holds for any ranking function
u and formulae φ, ψ:

u |= φ→ ψ iff ŭ(φ) ≤ ŭ(ψ) iff ŭ(φ→ ψ) = 1. (2)

That is to say, the desired logic should be able to encode in the language the total order
≤ of rankings, so that ŭ assigns the maximum ranking 1 to φ → ψ (i.e., φ → ψ is satisfied
by u) iff the value assigned by ŭ to φ is at most the same value assigned by ŭ to ψ. The
intuition behind Formula 2 consists in viewing the maximum ranking as the designated value
for expressing the truth of compound formulae, and in particular of those formulae which
express preferences between other formulae.

The property expressed in Formula 2 turns out to be a typical property of the family
of t-norm multi-valued logics, or logics based on triangular norms [7]. In such logics the
connective → denotes the algebraic residuum operation on truth degrees (i.e., rankings).
Residua come always in pairs with t-norm operations, so what is going to characterize the
logic we are looking for is the t-norm we choose to be paired with the residuum denoted by
→. The most straightforward candidate is the algebraic infimum, denoted by the standard
logic conjunction ∧. To sum up, we want that the following holds for any ranking function
u and formulae φ, ψ, ξ:

ŭ(φ ∧ ξ) ≤ ŭ(ψ) iff ŭ(ξ) ≤ ŭ(φ→ ψ). (3)

If we then take the rest of the connectives ¬ and ∨ to denote, as usual, the algebraic com-
plementation and, respectively, the algebraic supremum, the many-valued logic satisfying
Formulae 2 and 3 is the logic known as Gödel-Dummett logic (GD in short).

By using the semantics of GD (i.e., Gödel algebra) it is possible to extend the PA
framework in order to incorporate preferences between compound issues represented as
logical formulae. What kind of new insights this extension provides in the study of the
aggregation of preferences deserves further research, but it falls outside the scope of the
present study. In fact, what we are interested in now is to show that the insights provided
by GD on the representation of preferences between logical formulae can be used, after a
slight modification, in order to view judgments as preferences, thereby providing a reduction
of the JA problem to the PA problem. To this aim is devoted the next section.

5 Judgments as Preferences

In its original form, JA is based on propositional logic. The considerations of the last section
about how to interpret compound issues in a PA structure can be directly used for repre-
senting judgments as preferences. The key step consists in considering that propositional
logic is the extension of GD with the bivalence principle. Like an interpretation function
of GD (i.e., a ranking function u) determines a total preorder on the set of issues of a
PA structure, so does a propositional interpretation function on the set of issues of a JA
structure. Obviously, the type of total preorder yielded by a propositional interpretation
function is of a specific kind.

5.1 Boolean preference profiles

Like GD is sound and complete w.r.t. Gödel algebra [7], propositional logic is sound and
complete w.r.t. 2 = 〈{0, 1},u,t,−, 0, 1〉, i.e., the Boolean algebra on the support {1, 0},
where u and t are the min, respectively, max operations, − is the involution defined as
−x = 1 − x, and 0 and 1 are the designated elements. The total preorders generated by a
propositional interpretation function are called Boolean preferences.
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Definition 5. (Boolean preferences) A Boolean preference is a total preorder on a set of
formulae Φ closed under atoms which can be mapped to 〈{1, 0},≤〉 by a function v̆ : Φ −→
{1, 0} such that: ∀φ, ψ ∈ IssJ , φ � ψ iff v̆(φ) ≤ v̆(ψ); and v̆ preserves the meaning of
propositional connectives, that is:

v̆(>) = 1, v̆(¬φ) = 1− v̆(φ), v̆(φ ∧ ψ) = min(v̆(φ), v̆(ψ)), v̆(φ ∨ ψ) = max(v̆(φ), v̆(ψ)).

A few considerations are in order. Notice that, within a Boolean preference, ≺-paths
have maximum length 1. In fact, stating that y ≺ x is equivalent to assign value 1 to x
and value 0 to y. Notice also that a total preorder containing x ≺ y, y ≺ x ∧ y cannot
be a Boolean preference since there exists no function assigning 1 and 0 to x and y, which
preserves � on ≤ and, at the same time, ∧ on min. Notice also that Boolean preferences gen-
eralize dichotomous preferences3 allowing issues to be compounded following the standard
algebraic semantics of logical connectives, and allowing issues to be all ranked as maximal or
minimal. In fact, dichotomous preferences are nothing but Boolean preferences over atoms,
i.e., logically unrelated issues, s.t. the sets of maximal and minimal elements always contain
at least one atom (i.e., the preferences are never “unconcerned” [3]). In addition, Boolean
preferences feature the constants > and ⊥. These denote trivial issues which every voter
places in the sets of �-maximal and, respectively, �-minimal elements. The following holds.

Proposition 5. (From judgment sets to Boolean preferences) Every judgment set J on the
set of issues IssJ can be translated to a Boolean preference � over IssJ such that |= φ ∈ J
iff φ ≈ >.

Proof. Since each judgment set J is closed under atoms, it univocally determines a proposi-
tional evaluation v̆ : IssJ −→ {1, 0}. The evaluation is an homomorphism from the formula
algebra built on the set of atoms in IssJ and 2. In 2 the partial order ≤ can be defined
in the usual way: x ≤ y := min(x, y) = x. It is easy to see that ≤ is then a total preorder.
Function v̆ of J can therefore be used to univocally define a total preorder � on IssJ as
follows: ∀φ, ψ ∈ IssJ , φ � ψ iff v̆(φ) ≤ v̆(ψ). It follows that � is a Boolean preference
by construction. From left to right. If |= φ ∈ J then v̆(φ) = 1, therefore, by construction
φ ≈ >. From right to left. If φ ≈ > then v̆(φ) = v̆(>), hence v̆(φ) = 1

Intuitively, Proposition 5 guarantees the analogue of Proposition 3 to hold. In other
words, every JA structure SJ can be translated to an equivalent PA structure4 by just
stating IssP = IssJ and letting PrfP be the set of Boolean preference profiles on IssP .
We thus obtain a way to view judgments as preferences. As an example, in the next section,
we will consider the Discursive paradox from a PA point of view.

5.2 The Discursive paradox as a PA paradox

In the Discursive paradox propositionwise majority voting leads to the definition of an
impossible evaluation of the propositions at issue, as showed in the left-hand side of Table
4. The middle of Table 4 depicts the Discursive paradox by means of the two truth-values.
Finally, if we consider these truth values as rankings of the propositions at issue, we get to
the right-hand side of the table. There a PA version of the paradox is depicted. Recall that
x ≈ y iff (x, y) ∈� & (y, x) ∈�, and x ≶ y iff (x, y) ∈� or (y, x) ∈� but not both. In this
case the aggregated preference violates the transitivity of ≈.

As such, the Discursive paradox can fruitfully be viewed as yet another variant of Con-
dorcet’s paradox.5 In fact, in Condorcet’s paradox the collective preference violates the

3Dichotomous preferences are such that ∀x, y, z ∈ IssP , either x ≈ y or y ≈ z or x ≈ z but not all [8].
4Notice that the same does not hold for dichotomous preferences where we cannot distinguish between

preferences ranking all issues equal to > or all equal to ⊥ (see also Proposition 7).
5Other representations are possible by making use of the constants > or ⊥, and indifference ≈.
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p p→ q q

|= |= |=
|= 6|= 6|=
6|= |= 6|=
|= |= 6|=

p p→ q q

1 1 1
1 0 0
0 1 0
1 1 0

{p, p→ q} {p, q} {q, p→ q}
p ≈ p→ q p ≈ q q ≈ p→ q
p ≶ p→ q q ≶ p q ≈ p→ q
p ≶ p→ q p ≈ q q ≶ p→ q
p ≶ p→ q p ≈ q q ≈ p→ q

Table 4: Discursive paradox as a PA paradox.

transitivity of ≺, in the weak Condorcet analyzed in Section 3 what is violated is instead
the transitivity of �, here it is the transitivity of ≈.

5.3 Arrow’s conditions and Boolean preferences

We can now represent judgments as special kinds of preferences. Can we also import PA
impossibility results to JA? A first natural step in this direction is to study how Boolean
preferences behave under the standard Arrow’s conditions: U, I and NoDict. Under these
conditions, and assuming the domain and codomain of the aggregation function to be drawn
from the set of Boolean preferences, yields an impossibility. However, the source of the
impossibility does not rest upon the logical connectives, as is typically the case in JA.

Proposition 6. (Arrow’s theorem holds for dichotomous domains and codomains) Let SP

contain a set of issues IssP s.t. 3 ≤ |IssP |, and PrfP is the set of dichotomous preference
profiles on IssP . There exists no aggregation function which satisfies U, I and NoDict.

Proof. See Appendix.

Limiting the domain and codomain of the aggregation function to dichotomous pref-
erences does not resolve the impossibility. Since dichotomous preferences are a subset of
Boolean preferences the result carries over. Conditions U, I and NoDict seem therefore
to be too strong to yield JA-like impossibilities. This is not surprising because, unlike in
the translation from PA to JA (Section 3), the JA formulation of the conditions cannot be
directly obtained from their PA formulation. The translation of the standard JA conditions
in a Boolean preferences format look instead like this:

(U>): ∀x ∈ IssP and ∀p = (�i)i∈AgnP if ∀i ∈ AgnP , x ≈i > then x ≈ > and if x ≈i ⊥ then
x ≈ ⊥.

(I>): ∀x ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnPx ≈i > iff x ≈′i > then
x ≈ > iff x ≈′ >.

(Sys>): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnJx ≈i > iff y ≈′i >,
then x ≈ > iff y ≈′ >, and if x ≈i > iff y ≈′i ⊥, then x ≈ > iff y ≈′ ⊥.

(NoDict>): @i ∈ AgnP such that ∀x ∈ IssP and ∀p = (�i)i∈AgnP , if x ≈i > then x ≈ >
and if x ≈i ⊥ then x ≈ ⊥.

It is straightforward to see that these conditions exactly correspond to the standard JA
conditions exposed in Section 2. The following proposition compares the relative strength
of these JA-like formulations w.r.t. the standard PA-like ones.

Proposition 7. (JA vs. PA conditions) The following relations hold under Boolean pref-
erences: U> implies U; I> implies I; Sys> implies Sys; NoDict implies NoDict>. The
converses do not hold.
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Proof. The direction from left to right is trivial. The failure of the converses is due to the
fact that for profiles in which all agents are indifferent w.r.t. all issues, it cannot be inferred
whether they are all ranked equal to ⊥ or equal to >.

Notice that in the case of non-dictatorship the implication has a contrapositive form.
In fact, NoDict is stronger than NoDict>. That is, the non-existence of a dictator in
the standard Arrowian sense implies the non-existence of a dictator in the JA sense. This
observation suggests that results such as Proposition 6 set out to prove impossibilities on
the ground of a notion of non-dictatorship which is stronger than the one typically used in
JA. The next section fine-tunes Proposition 6 obtaining an appropriate JA impossibility in
the framework of Boolean preferences.

5.4 Doing JA in PA

In order to obtain an impossibility for Boolean preferences under NoDict>, the conditions
U> and I> do not suffice and, perhaps not surprisingly, I> needs to be substituted by Sys>.
We are thus in the position to prove a JA theorem within PA.

Theorem 2. (Impossibility for Boolean Preferences) Let SP contain a set of issues IssP

s.t. {p, q, p ∧ q} (where ∧ can be substituted by ∨ or →) and PrfP is the set of Boolean
preference profiles on IssP . There exists no aggregation function which satisfies U>, Sys>

and NoDict>.

Proof. See Appendix.

Now, Proposition 5 guarantees that each JA structure SJ can be translated to an equiva-
lent PA structure SP over Boolean preferences, and the standard JA aggregation conditions
can be directly translated to conditions conditions U>, Sys> and NoDict>. It follows that
Theorem 2 provides an impossibility result for the aggregation of judgments. Notice also
that such result is reminiscent of several JA theorems available in the literature (e.g. in [9]).
To conclude, the basic argument of the section runs as follows: judgment sets univocally de-
termine Boolean preferences, a peculiar form of Arrow’s impossibility holds also for Boolean
preference domains, hence it can be imported into JA.

6 Conclusions

By borrowing ideas from logical semantics, the paper has shown that, on the one hand, PA
can be viewed as a special case of JA [5, 9] and that, on the other hand, the converse also
holds. This suggests that PA and JA could be studied as the two faces of a same coin. It is
our claim that the study of such interrelationship can be fruitfully pushed further by cross
importing more (im)possibility results, which we plan to do in future researches.
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A Proofs of Proposition 6 and Theorem 2

A proof can be obtained along the same lines of Arrow’s original proof [2]. Let us first
introduce some terminology. A set V ⊆ AgnP is almost decisive for issue x over issue y (in
symbols, ADV (x, y)) iff: if ∀i ∈ V, y ≺i x and ∀i 6∈ V, x ≺i y then y ≺ x. A set V ⊆ AgnP

is decisive for issue x over issue y (in symbols, DV (x, y)) iff: if ∀i ∈ V, y ≺i x then y ≺ x.
Obviously, for any x, y ∈ IssP : DV (x, y) implies ADV (x, y). We first need two following
lemmata.

Lemma 1. Let SP be such that IssP is a set of issues s.t. 3 ≤ |IssP |, and PrfP is the
set of dichotomous preferences on IssP . If there exists an individual i ∈ AgnP such that
ADV (x, y) for some pair (x, y) then, under the conditions U and I, i is decisive for any
pair of issues, that is, i is a dictator.

Proof. There are 6 pairs of issues with respect to which i can be almost decisive for the
first element in the pair over the second one. For each of these pairs (x, y) we show that if
ADi(x, y) then i is decisive for at least one of the remaining pairs (x, z), (z, x), (y, z), (z, y)
where z is the third issue in IssP . Let I denote AgnP −{i}. [ADi(x, y)⇒ D(x, z)] Assume
ADi(x, y) and suppose the following holds: y ≺i x, z ≈i y, z ≺i x and x ≺I y. In the
collective preference, which is dichotomous, one of the following must hold: A) y ≺ x, y ≺ z;
or B) y ≺ x, z ≈ y However, A) violates U and I. To prove this latter claim, consider a
profile which is identical to the given one w.r.t. the preferences of i and I over y, z, but such
that x ≺i y in the preference profile we assumed. By U, in the collective preference for this
new profile x ≺ y holds. By I, y ≺ z should also hold, which is impossible since the collective
preference should be dichotomous. Therefore, B) is the only possible collective preference.
Since B) is dichotomous, it holds that z ≺ x, hence ADi(x, y) implies D(x, z). We can
argue symmetrically to prove that ADi(x, y) ⇒ D(z, y). Hence, ADi(x, y) implies D(x, z)
and D(z, y). It is then sufficient to argue via permutations of the possible alternatives,
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e.g., by interchanging y with z we obtain that ADi(x, z) implies D(x, y) and D(y, z). As a
consequence, if ADi(x, y) agent i results to be decisive for any pair of alternatives drawn
from the set {x, y, z}. This completes the proof of the lemma.

Lemma 2. Let SP be such that IssP is a set of issues s.t. 3 ≤ |IssP |, and PrfP is the
set of dichotomous preference profiles on IssP . There exists an agent i ∈ AgnP such that i
is almost decisive for some pair of issues.

Proof. Let us proceed per absurdum assuming that there is no almost decisive agent. For
condition U, there always exists for each pair of issues a set which is decisive for that pair,
that is, AgnP . As a consequence, there always exists an almost decisive set for that pair.
Let us take the smallest (possibly not unique) decisive set and call such set V . Given our
hypothesis, such set cannot be a singleton. Let us divide V in three parts: a singleton {i}, a
set J = V −{i}, and a set K = IssP−V . Suppose the following holds: y ≺i x, z ≈i y, z ≺i x;
y ≺J x, y ≺J z, z ≈J x; and x ≺K y, z ≈K y, z ≺K x. As to the collective preference, since
V is almost decisive one of the following must hold A) y ≺ x, y ≺ z; or B) y ≺ x, z ≈ y.
However, if A) holds then J would be almost decisive contradicting the assumption that
V was the smallest such set. It follows that B) is the only option. However, since B) is
dichotomous it would also hold that z ≺ x which would make i almost decisive for x over
z, against our assumption. We can argue symmetrically in the other cases.

Proposition 6 follows directly from Lemmata 1 and 2.
As to Theorem 2 we just sketch the proof for lack of space. The same technique of the

previous proof can be used by just redefining the notions of decisive and almost decisive
sets of agents w.r.t. to single issues. A set V ⊆ AgnP is almost decisive for formula φ (in
symbols, ADV (φ)) iff: if ∀i ∈ V, φ ≈i ⊥ (respectively, >) and ∀i 6∈ V, φ ≈i > (respectively,
⊥) then φ ≈ > (respectively, ⊥). A set V ⊆ AgnP is decisive for φ (in symbols, DV (φ))
iff: if ∀i ∈ V, φ ≈i > (respectively, ⊥) then φ ≈i > (respectively, ⊥). Obviously, for any
φ ∈ IssP : DV (φ) implies ADV (φ). We need again two lemmata.

Lemma 3. Let SP contain a set of issues IssP s.t. {p, q, p ∧ q}, and PrfP is the set of
Boolean preferences on IssP . If there exists an individual i ∈ AgnP such that ADV (φ) for
some pair φ then, under the conditions U> and Sys>, i is decisive for any formula, that
is, i is a dictator.

Proof. We show that if i is almost decisive for any of the propositions in {p, q, p∧ q} then it
is decisive for all of them. Let I denote AgnP − {i}. [ADi(p) ⇒ D(p ∧ q), D(q)] The proof
proceeds like for Lemma 1 but makes use of systematicity. Assume ADi(p) and suppose the
following holds: p ≈i >, q ≈i >, p ∧ q ≈i > and p ≈I ⊥. In the collective preference, which
must be Boolean, one of the following must hold: A) p ≈ >, q ≈ >; or B) p ≈ >, q ≈ ⊥.
However, B cannot be the case because of U> and Sys>. In fact, if q ≈ ⊥ then q ≈I ⊥
otherwise, for U>, we should have q ≈ >. Consider a profile identical w.r.t. to q and p ∧ q
but s.t. p ≈i ⊥. Then by U> it follows that p ≈ ⊥, and by Sys> it follows that q ≈ >
since the two profiles are such that p is ranked > in the first iff q is ranked > in the second,
which is impossible. Hence, A) is the only option, which proves the claim. We can then
argue symmetrically for the other cases.

The analogous of Lemma 2 can easily be proven, which completes the proof of the theorem.
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