Approximability of Manipulating Elections'

Eric Brelsford, Piotr Faliszewski, Edith Hemaspaandra,
Henning Schnoor and Ilka Schnoor

Abstract

In this paper, we set up a framework to study approximation of manipulation, con-
trol, and bribery in elections. We show existence of approximation algorithms (even
fully polynomial-time approximation schemes) as well as obtain inapproximability
results. In particular, we show that a large subclass of scoring protocols admits fully
polynomial-time approximation schemes for the coalitional weighted manipulation
problem and that if certain families of scoring protocols (e.g., veto) admitted such
approximation schemes then P = NP. We also show that bribery for Borda count
is NP-complete and that there is no approximation algorithm that achieves even a
polynomial approximation ratio for bribery in Borda count for the case where voters
have prices.

1 Introduction

Elections are an essential mechanism that each democratic society uses to make joint deci-
sions. They are also important tools within computer science. For example, [DKNSO01] show
how to build a meta search-engine via conducting elections between other search engines;
Ephrati and Rosenschein [ER97] use voting to solve certain planning problems; and in the
context of multiagent systems, elections and voting are naturally used to obtain the joint
decisions of agent societies.

Unfortunately, a famous result of Gibbard [Gib73] and Satterthwaite [Sat75] states that
(see also the work of Duggan and Schwartz [DS00]) for any reasonable election system (with
at least 3 candidates) there exist scenarios where at least some voters have an incentive to
vote strategically, i.e., to vote not according to their true preferences but in a way that yields
a result more desirable for them. Similarly, the result of an election can be skewed by an
external agent who bribes some of the voters to change their votes or even by the authority
organizing the election, via, e.g., encouraging or discouraging particular candidates from
participating, or via arranging voting districts in a certain way.

The possibility that the result of the election can be skewed via strategic voting, bribery,
or procedural control is very disconcerting. In the early 90s, Bartholdi, Orlin, Tovey, and
Trick [BTT89, BO91, BTT92] suggested a brilliant way to circumvent this issue. They
observed that since all voters are computationally-bounded entities, even if various forms of
manipulating elections are possible in principle,? they constitute a real threat only if it is
computationally easy, for a given election system, to determine the appropriate actions that
affect the result in the desired way (i.e., for the case of strategic voting to determine how the
manipulators should vote; for the case of bribery determine who to bribe and how, etc.). To
measure the computational difficulty of manipulation and control, Bartholdi, Orlin, Tovey,
and Trick used the complexity-theoretic notion of NP-hardness.

The ideas of Bartholdi, Orlin, Tovey and Trick did not receive that much attention
until a few years ago, when it became apparent that elections and voting are important
tools in the context of multiagent systems, and that software agents are capable of much
more systematic attempts at manipulating elections than, say, humans. Thus, in recent

IThis is an extended version of the AAAI-08 paper with the same title.
2In the literature the technical term manipulation means strategic voting. In this section by manipulating
we mean the general notion of affecting the result of an election.

133



years many papers focused on the computational analysis of voting rules with respect to
manipulation, e.g., [CSL0O7, EL05, PR07, PRZ07, HHO7], bribery [FHH06, FHHRO07, Fal08],
and control [HHRO07, FHHRO7, PRZ07]. Most of these papers focus on obtaining polynomial-
time algorithms and NP-hardness results for various forms of affecting the result of elections.
However, NP-hardness gives only worst-case complexity guarantees, and it might very well
be the case that even though, say, manipulation in a given election system is NP-hard,
finding effective manipulations is often easy. Recently, Conitzer and Sandholm [CS06], and
Procaccia and Rosenschein [PRO7] looked into these issues and they provide examples of
voting rules and distributions of votes for which this is the case. We will refer to the approach
presented, among others, in these two papers as frequency of hardness approach.

In this paper we refine the study of the complexity of manipulating elections via analysis
of approximability of NP-hard election-manipulation problems. An important contribution
of this paper is a natural, uniform objective function that can be used to measure the effec-
tiveness of a particular manipulation, bribery, or control attempt. Thus we set up a general
framework for studying approximation for these problems.? Our function is particularly
interesting for the case of manipulation, where defining a natural objective function is not
straightforward.

We show existence of approximation algorithms (even fully polynomial-time approxima-
tion schemes) for manipulation for a large subclass of voting rules known as scoring protocols
(for bounded numbers of candidates) as well as obtain inapproximability results regarding
several prominent families of scoring protocols (e.g., veto and k-approval for unbounded
number of candidates). We prove NP-hardness of bribery for Borda count and inapprox-
imability of bribery for Borda count for the case where each voter has a price for changing
its vote. Hardness results for control (i.e., changing the outcome of the election by adding
voters) of unweighted Borda elections have been obtained by Russell [Rus07]. We use a
similar technique to prove that the bribery problem for unweighted Borda is NP-complete.
To the best of our knowledge, our NP-hardness result for Borda is the first hardness result
for a problem of affecting the result of unweighted Borda count elections via modifying the
voters.

Related work Several previous papers studied approximation of various manipulation
and bribery problems but each of them used objective functions specifically tailored to their
tasks. In particular, Faliszewski [Fal08] studied approximability of the total cost of a bribery
for plurality and approval voting. Zuckerman, Procaccia and Rosenschein [ZPR08], among
other things, studied approximability of the minimum number of unweighted manipulators
needed to change the result of an election for several voting systems, including Borda count.

We contrast our approach and results with the frequency of hardness approach. The
existence of an approximation algorithm (in particular, the existence of a fully polynomial-
time approximation scheme) for a given election problem is much stronger evidence that this
problem is practically easy than a frequency of hardness result stating that the problem is
easy often, according to some distribution. The reason for this is that a polynomial-time ap-
proximation algorithm guarantees to find a near-optimal answer for every input instance. If
our problem is frequently easy it might still be the case that the instances that we encounter
in practice happen to be the “rare” difficult ones. On the other hand, inapproximability is a
worst case notion. If a problem is in general inapproximable, it might still be the case that
most of its instances are easy (are easily approximable). Nonetheless, inapproximability of
a given NP-hard election problem is stronger evidence of its computational hardness than
NP-hardness alone.

We focus on manipulation and bribery rather than on control, but we mention that
Brelsford [Bre07] studied several control problems from the point of view of approximation.

3To be technically correct, our approach is limited to voting rules that assign numerical scores to the
candidates. This is the case for most standard voting rules.

134



2 Preliminaries

Elections An election E is a pair (C,V'), where C is a finite set of candidates and V a
finite multiset of strict linear orders on C'. An order v € V is called a vote and represents
the preference of a voter over the candidates. The winner of an election F depends on
the underlying election system. In this paper we consider only election systems that are
represented by scoring protocols and families of scoring protocols. A scoring protocol is a
vector (aq, ..., Q) of natural numbers with a3 > -+ > «,,,. Using this protocol the winner
of an election F with m candidates can be determined as follows: Every candidate c gets «;
points for every vote that ranks ¢ in the ith place and scoreg(c) is the sum of all points ¢
gets in this way. In the end c is a winner if no other candidate has a higher score. We also
allow the votes in E to have weights, in this case each vote with weight w € N is counted
as w identical votes.

Let (S;)i>1 be a family of scoring protocols such that S; is a scoring protocol of length
i. We represent by (5;);>1 the election system that uses S,, to determine the winner of an
election with m candidates. Borda count is the election system using ((i—1,i—2,...,0))i>1,
and veto is the election system using ((1,1,...,1,0));>1.

Approximating Elections In this paper we study approximation algorithms for manip-
ulation and bribery. In both problems our goal is to ensure that a specified candidate is a
winner but in manipulation we attempt to reach this goal via, in essence, adding a certain
number of votes, whereas in bribery we do so via changing up to a given number of votes.
(Note that sometimes manipulation is defined as allowing to change a specified set of voters.
Our version allows to state our results in an easier notation—it is easy to see that these
notions describe the exact same issue. One may view adding the manipulators’ votes as
a process where the manipulators make up their minds as to how to vote, and then cast
their votes. Note that unlike for e.g., bribery, the original votes of the manipulators are
completely irrelevant for the problem to determine if a designated candidate can be made
a winner.) We also study the manipulation problem where the voters additionally have
weights, and the bribery problem where the votes have prices which the briber has to pay
in order to change the vote.

We require our approximation algorithms to produce “solutions” to their respective
instances. A solution is a strategy specifying which actions to perform, i.e., what votes to
add for the case of manipulation and which votes to change (and how to change them) for
the case of bribery.

In our model we assume that we know all the votes that are supposed to be cast in the
election. In reality, however, we are often limited to only having a guess regarding these
votes. Thus we are interested in finding a strategy that benefits the specified candidate as
much as possible so that this candidate has a good change of becoming a winner even if the
guess is a little off.

In the setting of scoring protocols (or any other score-based election system), a natural
way to measure the performance of a candidate p in an election E (written as perf? (p)) is
scoreg (p) — max {scoreg(c) | ¢ € C'\ {p}}, the difference between the score of p and that of
p’s strongest competitor. perf? (p) tells us “how much” p wins the election or “how close”
p is to winning it. Obviously, p wins the election E if and only if perf” (p) is nonnegative.

A natural measure of the effectiveness of a manipulating action s within election E is
the increase of performance of the favorite candidate p obtained by applying this action.

Definition 1 8(E, s) = perf*®) (p) — perf?(p), where s(E) denotes the election resulting
from applying action s to E.

Note that the 8 function allows us to deal with uncertainty in a natural way: If we only
have knowledge about a part of the election, then it is a natural goal to give our candidate as

135



much of a headstart in the part of the election that we do know as possible. This is exactly
what is expressed in the (-function. Also, 8 can be applied not only to manpulation and
bribery as studied in this paper, but to just about every possible way to interfere with the
result of an election. We therefore believe it to be a uniform way to describe the “success”
of the action of a dishonest party in an election scheme.

Finally observe that for given strategies (added voters, bribes, etc.), the value of 5 can be
negative. However, for scoring protocols (and most other natural election rules) it is easy to
come up with strategies that have a nonnegative value of 3 (strategies that do nothing at all
suffice). Hence we require our approximation algorithms to only output “reasonable” strate-
gies, i.e., strategies for which the value of 3 is nonnegative. We now define our optimization
problems (which we will prefix with the election system under consideration):

$-bribery-max The input I consists of an election E, for each existing vote a natural number
defining its price, a preferred candidate p, and a natural number k representing the
budget available to the briber. Solutions consist of a set of votes in the election E such
that the sum of their prices does not exceed the budget k, and new votes to replace
them with. The goal is to find a solution s maximizing 3(E, s).

weighted-manipulation-max Here, the input I consists of an election E where each vote is
accompanied by its weight, the preferred candidate p, and a list of weights (of the
manipulators). A solution consists of a vote for each manipulator. Again, the goal is
to find a solution s such that G(F, s) is maximal.

Note that if we could compute the maximum value of 3 for a given optimization problem
then, naturally, we could solve the corresponding decision problem. This means that if
the corresponding decision problem is NP-hard (as is often the case for manipulation and
bribery) then we cannot hope to compute the optimal value of 3 exactly. However, since (
is defined as an increase in p’s performance and thus its maximum value is positive in most
settings, we can attempt to use natural techniques to compute it approximately.

Approximation Algorithms and Elections The quality of an approximation algorithm
is usually measured by comparing the solutions it computes to the optimal ones. For our
optimization problems, an instance I contains the election itself, the preferred candidate,
and additional parameters limiting the possible strategies for affecting the result of the
election (i.e., the available budget in $-bribery and the weights of the manipulators in
manipulation). For such an instance I containing the election E, we define an optimal
solution to be a solution s that achieves the maximal possible value of 3(FE,s) among all
legal solutions. We define OPT(I) as 8(F, s) for such an optimal solution s.

Given an instance I, an approximation algorithm A is required to produce a legal solu-
tion A(I), that is, a solution that respects the constraints specified in I. For a positive real
constant ¢, we say that A is a factor ¢ approximation algorithm, if for each instance I con-
taining the election E, we have that 3(E,.A(I)) > LOPT(I). Such an algorithm guarantees
that the effectiveness of the solution obtained from applying A to the instance is at least %
of the effectiveness that the optimal solution achieves.

We say that an algorithm A is a polynomial-time approzimation scheme if for each input
(I,€), where ¢ is a rational value between 0 and 1 and where I contains an election F, it holds
that: (a) A produces a solution s = A(I, €) such that 8(E,s) > (1—¢)-OPT([), and (b) for
each fixed value of €, A runs in time polynomial in |I|. If, in fact, .4 runs in time polynomial
in both |I| and % then A is a fully polynomial-time approzimation scheme (FPTAS). In the
current paper we only consider maximization problems, analogous definitions can be given
for minimization problems as well.

136



3 Manipulation in Scoring Protocols

Hemaspaandra and Hemaspaandra [HHO7] showed that for each scoring protocol o =
(a1,..., ) such that it is not the case that ag = -+ = a,, the problem a-weighted-
manipulation is NP-complete (see also [CSL07, PRO7]). In this section we show that,
nonetheless, weighted manipulation is easy for a large class of scoring protocols in prac-
tice. We do so via showing FPTASes for the scoring protocols in this class.

Let a be a scoring protocol. An instance I of a-weighted-manipulation-max is a tuple
(E,w,p) where E = (C,V) is an election with candidate set C' and weighted nonmanipu-
lative voters V', w = (w1, ...,w,) is a sequence of weights of the manipulative voters, and
p € C is our preferred candidate. Our goal is to maximize the performance of p. That is,
our goal is to find a solution sol such that 3(E, sol) = OPT(I).

Theorem 2 Let a = («o,...,am) be a scoring protocol such that ag > «1. There is an
algorithm A that given a rational number €, 0 < € < 1, and an instance I = (E,w,p) of
a-weighted-manipulation-max computes, in polynomial time in |I| and %, a solution sol such

that B(E, sol) > (1 —e)OPT(I).

Note that Theorem 2 claims that for each separate scoring protocol (ayg, .. ., @), where
Qo > aq, there is a separate algorithm. In particular, each of the algorithms from Theorem 2
is tailored for a fixed number of candidates. Before we jump to the proof, we need to
introduce some notation.

Let @« = (v, - - -, ) be a scoring protocol where ag > o7 and let C' = {p,c1,...,cm} be
a set of candidates. p is our preferred candidate whose performance we want to maximize.
We implicitly assume that we have a set V of nonmanipulative voters, however in this
discussion the only incarnation of the nonmanipulative voters is through the sequence s
below.

We let w = (w1, ..., wy,) be the sequence of weights of the manipulators. Naturally, to
maximize p’s performance, each manipulator ranks p first. The complexity of a-weighted-
manipulation-max comes from the difficulty in arranging the remainder of the manipulators’
votes in such a way as to minimize the score of p’s most dangerous competitor.

By £(C,w) we mean the set of all elections over the candidate set C' with voter set con-
taining exactly voters with weights wy, ..., w,. Let s = (s1,..., $m) be a sequence of nonneg-
ative integers. Intuitively, the sequence s gives the scores that candidates ¢; through c¢,, re-
ceive from the nonmanipulative voters. By S, (F, s) we mean max;eyy,... m}{scoreg(c;) +s;}
and by T, (w,s) we mean mingeg(c,w) Sa(F, s). Function T, (w, s) measures the smallest
possible top score of a candidate from {ci,..., ¢y} after the manipulators cast their votes.
We now prove that for each scoring protocol a there is an FPTAS for T,.

Lemma 3 Let a = (ag,...,am) be a scoring protocol and let C = {p,c1,...,cm}. There
is an algorithm T that given a rational number e, 0 < e < 1, a sequence s = (S1,...,Sm) of
nonnegative integers and a sequence of manipulators weights w = (w1, ..., w,) computes an

election E € E(C,w) such that So(E,s) < (1+¢e)Ty(w,s). Algorithm T runs in polynomial
time in n, m, and %

Proof. Set wmax = max{wi,...,w,} and set K = Sfmax. Set w' = (K[Z],..., K[]).
It is possible to compute in polynomial time in n, m, and % an election F’ € £(C,w') such
that So(F’,s) = T,(w',s). (One can do so via a routine dynamic programming approach;
we enforce that in our solution each voter ranks p first.) Let E be an election identical to E’
only that appropriate voters have weights wy, ..., w, instead of wf,...,w),. Our algorithm
outputs F.

137



It is easy to see that our algorithm can be made to work in polynomial time as required.
Let us now show that the solution it produces satisfies the requirements regarding quality.

It is easy to see that T, (w,s) > a1Wmax and that S, (E’,s) < Ty (w,s) + aanK. The
former is true because some candidate needs to get a; points from the manipulator with
weight wimax and the second follows from the fact that for each 7 in {1,...,n} we have
w; < w} < w; + K. For the same reason S, (E,s) < So(E', s).

Thus, So(E,s) < To(w,s) + arnK = To(w, 8) + Wmax. Since Ty (w, ) > Q1 Wpax, this
yields that S, (F,s) < (1+¢)Ta(w,s). (Note that, technically, this argument is only correct
if a3 > 1 but, naturally, if a; = 0 then the theorem is trivially satisfied.) This completes
the proof. O

With Lemma 3 at hand we can prove Theorem 2.

Proof. Our input is I = (E,w,p), where E = (C,V) is an election with candidate set
C={p,c1...,cm} and set V of nonmanipulative voters, w = (wy,...,w,) is a sequence of
manipulators’ weights, and p is our preferred candidate. Our goal is to find a solution sol
(a collection of votes for the manipulators to cast) that maximizes 3(E, sol).

Let W = > ", w; and let wpmax = max{wi,...,wy}. For each ¢ in {1,...,m} let
s; = scoreg(c;). We assume that the candidates ¢y, ..., ¢, are listed in such an order that
8§1 > 83 > +++ > §py. Since ap > a1, in every optimal solution each manipulator ranks p

first and so OPT(I) = Wag — (T (w, s) —s1). It would seem that computing approximately
To(w,s) should be enough to get a good approximation of OPT(I), but unfortunately
T, (w, s) can be much bigger than OPT(I). We have to, in some sense, reduce its value first.

Note that we can disregard all candidates ¢; such that s; —s; > a;W. If there are k
such candidates then the manipulators may simply rank them on the first k positions after
p. For the sake of simplicity, we assume that there are no such candidates.

Let 8" = (81— Smy -« -5 Sm—Sm). It is easy to see that OPT(I) = Wag— (To(w, s) —s1) =
Wag — (To(w,s") — s1). Additionally, via the above paragraph, we have that for each s
it holds that s; < a;W. However, this means that T, (w,s’) < 2a;W. This is so because
at worst the candidate whose score is the value of T, (w, s’) gets a3 W points from s’ and
another a; W points from the manipulators.

Using algorithm 7 from Lemma 3, we fill-in the manipulators’ votes to form an election
E' € £(C,w) such that all voters in E’ rank p first and T,(w,s’) < S,(s',E') < (1 +
eNTo(w,s"), where ¢’ = ﬁiﬁ. (Recall that in our setting oy is a constant.) Votes obtained
in this way are the solution sol that our algorithm produces and we have G(FE,sol) =
Wag — (Sa(s', E') — s}). Note that

OPT(I) = Wag— (Ta(w,s") —s})
> Wag— (Sa(s’,E') — s})
> Wao— (1+&")To(w,s") —s7)
Wag — (Ta(w,s") — s) — e'To(w, s")

= OPT() —&'Ty(w,s).

Since OPT(I) > W (this is a consequence of the fact that ag > ay), T (w, s’) < 204 W, and
el = ﬁa, via the above calculations, OPT(I) > Wag — (Sa(s’, E') — s1) > (1 —)OPT(I)

and thus OPT(I) > B(E, sol) > (1 — €)OPT(I). This completes the proof. O

Interestingly, we can use Theorem 2 to obtain results similar to those of Zuckerman,
Procaccia, and Rosenschein [ZPR08], but for the case of scoring protocols @ = (ay, . .., ayy)
such that ag > a;. Note that Theorem 4 below says that there is a separate algorithm
for each scoring protocol of the given form. (Also, keep in mind that each single scoring
protocol only works with a fixed number of candidates.)

138



Theorem 4 Let € be a rational number, 0 < ¢ < 1, and let a« = (ag,...,qm) be
a scoring protocol such that oy > 1. There is an algorithm that given an instance
I = (E,w,p) of a-weighted-manipulation, where w = (w1,...,w,) is the sequence of
manipulators’ weights, has the property that if there is a successful manipulation for in-
stance I, it finds, in polynomial time in |I| and %, a successful manipulation for instance
I' =(E,(w1,...,Wn, Wnt1),D), where wyy1 = [ max{wy,...,wy}].

We omit the easy proof. (The idea is to simply find a good enough approximation and
then add a single voter, with appropriate weight, that ranks p first.)

Theorem 2 notwithstanding, we now show that for the case of an unbounded number of
candidates there are no FPTASes for veto-weighted-manipulation-max and for k-approval-
weighted-manipulation-max, unless P # NP.

Theorem 5 If P # NP, there is no FPTAS for veto-weighted-manipulation-maz.

To prove Theorem 5 it suffices to show that the unary version of weighted manipulation
in veto, i.e., one where each weight is encoded in unary, is NP-complete. In unary-encoded
variant of weighted manipulation (in veto and in each fixed scoring protocol) it holds that
the maximum value of 3 function is polynomially bounded. Thus, if there was an FPTAS for
veto-weighted-manipulation-max, then one could, via a good enough approximation, solve
veto-weighted-manipulation exactly in polynomial time. This is a contradiction if P # NP.

Theorem 6 unary-veto-weighted-manipulation is NP-complete.

Proof. We will reduce from the NP-complete problem Unary-3-Partition [GJ79]: Given a
multiset A of 3m positive integers in unary and an integer bound B in unary such that for
each a € A, B/4 < a < B/2 and such that ) ., a = mB, does there exist a partition of A
into m subsets Ay, ..., Ay, such that >, ., a = B for all i? (Note that ||4;[| = 3 for all 4;
hence the problem’s name.)

Our reduction works as follows. The election consists of one voter of weight B with
preference ¢; > co > -+ > ¢, > p and the manipulators have weights aq, ..., azm.

We claim that there is a successful partition of A if and only if p can be made a winner
in our constructed election. First suppose that there exists a partition of A into m subsets
Ay, ..., Ap such that ) o 4, @ = B. Let the manipulators corresponding to A; veto candi-
date ¢;. Note that every candidate c¢; receives exactly B vetoes. In the resulting election,
score(p) = mB (p is never vetoed), and score(¢;) = B+ mB — B = mB, and so p is a
winner of the election. For the converse, suppose the manipulators vote in such a way that
p is a winner of the election. Without loss of generality, we may assume that p is never
vetoed, and so score(p) = mB. In order for p to be a winner, score(c¢;) can be at most mB.
>, score(c;) = m?B, and so this can only happen if score(c;) = mB for all ¢;. It follows
that each ¢; receives exactly B vetoes. Let A; consist of the multi-set of the weights of the
voters that veto ¢;. Then Aq,..., A,, is a partition such that ZaeAi a = B for all 3. O

The same approach can be used to show NP-hardness (and thus non-existence of FPTAS
unless P = NP) for unary manipulation for many other families of scoring protocols.

Theorem 7 If P # NP, there is no FPTAS for k-veto-weighted-manipulation-maz,
k-weighted-approval-manipulation-maz, and generalized versions of k-weighted-approval-
manipulation-mazx where, as in k-approval, voters give only points to the first k candidates,
but any ay > ag > -+ > oy, > 0 4s allowed.

139



4 The Bribery Problem for Borda Count

In this section, we prove hardness results for the Borda count election system.

NP-hardness of the decision version We start by showing that Borda-bribery is NP-
complete. In Borda-bribery we are given an election F, a distinguished candidate p, and
a nonnegative integer k, and we ask if it is possible to ensure that p is a winner of E via
modifying at most k votes. Note that our result regards the simplest variant of bribery
where each voter has unit weight and unit price. Hardness of more involved variants (i.e.,
ones including prices or weights or both) follows naturally.

Our proof works via a reduction from a specifically crafted restriction of the set cover
problem.

Problem:  34-XC

Input: Set S, ||S]| = n, sets Tl,...,T%n,
each s € S is in exactly 3 sets T;.

Question: Is there a set I C {1,...,3n} such that for i,j € I,i # j, T;NT; = 0 and

Uier Ti = 57
It easily follows from the definition that each correct solution I has exactly %n elements.

This problem was shown to be NP-complete in [FHS08] (there phrased as a version of
1-in-3-satisfiability which is easily seen to be the same problem).

where ||T;|| = 4 for each T; and where

Theorem 8 Borda-bribery is NP-complete.

Proof. For a set A of candidates, writing A in a vote means A in some arbitrary, but fixed,
order. Z denotes the candidates of A in reverse order.

Let S = {s1,...,8n}, Tl,...,T%n be an instance of 34-XC. Let k; = n* and ky =
n* — 8n® — 4n? (without loss of generality, assume that n is large enough for ks to be
positive). Our candidate set C' is {p} US U P; U Py, where P; and P are sets of padding
candidates such that ||Pi|| = k1 and ||P2|| = ko. We set P = P; U P,. The voter set is
defined as follows. For each set T;, we introduce a voter who votes as follows:

’Ui:Ti>P1>S\Ti>P2>p.

We also introduce m votes of the form p > S > P and m votes of the form 5 >p > P.
By increasing m we increase the point differences between pairs of candidates where one
candidate comes from S U {p} and the other from P, without at the same time affecting
the point differences between pairs of candidates where both candidates come from S U {p}
or both come from P. In particular, we can choose m large enough such that with bribing
at most in voters, the padding candidates cannot be made to win the election. We choose
such a value for m, and hence the briber only has to ensure that the candidate p has at least
as many points as each candidate in S in order for p to win the election. This allows us to
establish a direct correspondence between bribery attempts bribing at most in voters and
the 34-XC instance, by showing that a bribery is successful if and only if the bribed votes
of the form v; correspond to a set cover (and the new votes are set in a reasonable way, i.e.,
they rank p first, then the padding candidates, and then the candidates in S).

In the %n votes v; introduced earlier, p does not gain any points. For each candidate s;
in S, there are exactly 3 “good votes” (votes corresponding to a set T; where s; € Tj), and
%n — 3 “bad votes” (corresponding to sets T; not containing s;). In a good vote, s; gains at
least good-min := (||C|| — 4) points (since the worst position that s; can be voted in here is
the fourth position). On the other hand, the most points that s; can make in a good vote
is good-max := (||C|| — 1) points, this occurs if s; is in the first position of the vote. For the
bad votes, the minimum number of points that s; can make is bad-min := (||C|| — k1 — n)

140



points (the worst position that s; can be in for these votes is the (k1 + n)th spot), and the
maximum gained in a bad vote is bad-max := (||C|| — k1 — 5) points (the best position to
be voted here is the (k; + 5)th position, since each set T; contains exactly 4 elements).

Since the briber only has to ensure that p beats the candidates in S, we only need to
consider briberies of the form where the “deleted voters” are those corresponding to some
set T;, (deleting votes of this form is obviously better for increasing the performance of p
than deleting one of the votes where S and p share the n+1 top spots) and the added voters
vote p first, then the padding candidates, and then the candidates in S (if the briber wants
to make p win, then obviously the bribed voters will vote p first, and since we constructed
the election in such a way that the padding candidates cannot win, we can without loss of
generality assume that the candidates in S are voted last). We fix such a bribery attempt,
and for each element s; € S, let ¢; be the number of good votes for s; that are deleted by
the briber. We show that the bribery is successful if and only if ¢; > 1 for all of the s;, due
to the cardinality restrictions, this then implies that the deleted voters correspond to an
exact cover in the sense of 34-XC (since we allow exactly %n voters to be bribed).

In order to prove this, we need to show the following: If for an element s;, the number
t; is at least 1, then the maximal number of points that s; can have in the bribed election is
less than the number of points for the preferred candidate p. On the other hand, if ¢; = 0,
then the minimum number of points that s; has in the bribed election exceeds the score of
the candidate p. We now prove this claim by computing these numbers.

The maximal number of points that s; can have if ¢; > 1 (obviously, it suffices to
consider the case t; = 1) occurs when s; has the maximum number of possible points in
its 2 remaining good votes, and the maximal number of points in its %n — 2 remaining bad
votes. Additionally, the candidate s; has the above-mentioned M points gained from the
votes where all the padding candidates are voted behind all of the candidates in S and the
candidate p, and it gains at most in(n — 1) points from the additional bribed votes (if the
candidate is voted in the first spot of the S-block in each of these votes). Therefore, the
maximal number of points in the bribed election for ¢; = 1 is bribed-max := 2 - good-max +
(3n —2) - bad-max + M + tn(n — 1), which is the same as 2n? + inky — §n + 2k; + 8 + M.

On the other hand, for ¢; = 0, the minimal number of points for a candidate s; is the
following (3 good votes remaining, plus %n — 3 bad votes, the M points from above, and
minimally 0 points from the additional bribed votes):

bribed-min := 3-good-min+ (%n —3)-bad-min+ M, and this is %nkg + %n+3k1 —12+M.

Finally, our preferred candidate has exactly p-score := 1n(||C|| — 1) + M points, which
is the same as 1n% + 1n(ky + ko) + M.

The required inequality bribed-max < p-score < bribed-min now simplifies to %nQ -
n+8 < in®+ (jn—2)k — %m@ < k1 + 3n — 12. Substituting the definitions of k; and
ko, this is equivalent to %nQ —an+8< n3 + %nz <n*+ %n — 12, which is clearly true for
large enough n. Since we can assume that the input instance has a sufficient size, the proof
is completed. O

Nonapproximability of Bribery We now show that there are no efficient approximation
algorithms for $-bribery-max. The following result does not only show that there is no
polynomial-time approximation algorithm for the problem that achieves an approximation
rate of a constant factor, it also excludes a polynomial relationship between results that can
be achieved efficiently and the optimal solution.

Theorem 9 For every polynomial q there is no polynomial-time approximation algorithm A
for Borda-$-bribery-mazx such that for all instances I containing the election E, A computes
a solution s such that q(B(E,s)) > OPT(I), unless P = NP.

141



This result is significantly stronger than just excluding constant-ratio approximation
algorithms: It also shows that for no constant ¢ there is a polynomial-time approximation
algorithm A that guarantees to produce a solution A(I) for every instance I containing the
election E such that B(F, A(I)) is at least (OPT(I))/¢. Also, the NP-hardness proven in
Theorem 8 refers to an even more restricted version of the problem (where no prices are
allowed), hence it does not directly follow from the non-approximability proof.

Proof. Let g be a polynomial and assume A is a polynomial time approximation algorithm
for $-bribery-max, such that for all instances I containing the election F: q(3(F, A(I))) >
OPT(I). We show that we can use A to decide 34-XC in polynomial time. Note that the
construction is similar but easier than the one in the proof of Theorem 8.

Choose d,ng € N such that g(k) < k9 for all k > ng. Let S = {s1,...,8n},T1,... T,
be an instance of 34-XC. Without loss of generality assume that n > nyg. Let m be a natural
number such that m > n?? 4 inQ 4 5n 411 and let C = SU {p,c1,...,cm} be a set of

candidates, where p is our preferred candidate. Let V = {vl, . ,v%n} be a set of votes
with
=p>T;>c1 > >c¢pm>S\T;

for every i € {1, e, %n}, and let W = {wy,w] ..., w;, w]} be a set of votes with

Ww; = P>81>:+>8,>C > > Cny,

W, = §p > >S>p>epm S>>0
for every i € {1,...,1l}. We set the price of each vote in V to 1 and the price of each vote in
W to in—l— 1. The effect of W is that it leaves the relative scores of p and the candidates in S
invariant, while increasing them relatively to the scores of the padding candidates c1, ..., ¢p,.-

We introduce enough of these votes such that for every possible bribery, the candidates in
S will always have more points than the padding candidates. Clearly a polynomial number
of these votes suffices. The algorithm 4 cannot change these votes, since their cost exceeds
the budget in.

Let E be the election with candidates C' and votes V U W. We apply A on the instance
I = (B, in,p) and show that ¢(8(E,A(I))) > n** if and only if S,T1,..., s, is a yes-
instance of 34-XC. This shows that we can use A to decide the problem 34- XC which can
only happen if P = NP.

First note that scoreg(p) = 3n(n +m) +1(2m + n) and for each s € S: 3(n+m —4) +
1(2m +n) < scoreg(s) < 3(n + m — 1)+ (3n—3)(n—5) +1(2m +n).
Now let S,T1,...,Ts, be a yes-instance of 34-XC and let J C {1,...,2n} specify an

exact cover of S. We bribe in the following way: For every i € J we replace v; by v =p >
> >cpm > S Let V= {uvf|ieJtU{v|ie{l,...,3n}\ J} be the set of votes
obtained from V with this bribe and E’ the election with candidates C' and votes V' U W.
Since J is an exact cover, for every candidate s € S we changed exactly one of the votes in V'
where s was in a position among the top five candidates, therefore there are two votes left in
V where s is in one of the first five positions and in all other votes in V' s is voted among the
last n candidates. Thus scoreg (s) < 2(n+m—1)+ (2n—2)(n—1) 4+ 1(2m+n). Note that
scoreg (p) = scoreg(p). It follows q(B(E, A(I))) > OPT(I) > m — 3n* 4+ L2n — 11 > n?.
Assume there is no exact cover for S,Th,...,Tz,. Note that A(I) changes exactly in
votes from V and no vote from W. Let E4 be the clection obtained from E by applying the
bribing strategy A(I). Since there is no exact cover, there is a candidate s € S such that for
all v; € V with s € T; it holds that v; is not changed by A(I) and thus v; is a vote in E 4.
That means there are at least three votes in F 4 that rank s among the first 5 candidates,
thus we get the lower bound scoreg,(s) > 3(n +m — 4) + [(2m + n). By assuming that

142



p is ranked first in all votes it follows scoreg, (p) < 2n(n +m — 1) 4+ [(2m + n). Hence
B(E, A(I)) < 3n? — Zln+24. W.lo.g. we can assume that n is large enough to ensure that
3n? — 2In + 24 < n?. Then q(E, B(A(I))) < q(n?) < n*?, concluding the proof. O

The above proof also works for a variant of the bribery problem where the voters have
boolean indicators whether they can be bribed or not (instead of prices).

5 Acknowledgments

Supported in part by NSF grants CCF-0426761 and IIS-0713061, a Friedrich Wilhelm Bessel
Research Award, the Alexander von Humboldt Foundation’s TransCoop program, and the
DAAD postdoc program. We thank the anonymous AAAI and COMSOC referees for their
very helpful comments.

References

[BO91] J. Bartholdi, III and J. Orlin. Single transferable vote resists strategic voting.
Social Choice and Welfare, 8(4):341-354, 1991.

[Bre07]  E. Brelsford. Approximation and elections. Master’s thesis, Rochester Institute
of Technology, Rochester, NY, May 2007.

[BTT89] J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty of ma-
nipulating an election. Social Choice and Welfare, 6(3):227-241, 1989.

[BTT92] J. Bartholdi, ITI, C. Tovey, and M. Trick. How hard is it to control an election?
Mathematical and Computer Modeling, 16(8/9):27-40, 1992.

[CS06] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually
hard to manipulate. In Proceedings of the 21st National Conference on Artificial
Intelligence, pages 627-634. AAAI Press, July 2006.

[CSLO7] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates
hard to manipulate? Journal of the ACM, 54(3):Article 14, 2007.

[DKNS01] C.Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the 10th International World Wide Web Conference,
pages 613-622. ACM Press, March 2001.

[DS00] J. Duggan and T. Schwartz. Strategic manipulability without resoluteness or
shared beliefs: Gibbard—Satterthwaite generalized. Social Choice and Welfare,
17(1):85-93, 2000.

[ELO05) E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation.
In The 16th Annual International Symposium on Algorithms and Computation,
ISAAC 2005, pages 206-215. Springer-Verlag Lecture Notes in Computer Science
#3872, December 2005.

[ERI7] E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent planning.
Annals of Mathematics and Artificial Intelligence, 20(1-4):13-67, 1997.

[FalO8] P. Faliszewski. Nonuniform bribery (short paper). In Proceedings of the 7th
International Conference on Autonomous Agents and Multiagent Systems, pages
1569-1572, May 2008.

143



[FHHO6]

[FHHRO7]

[FHS0S]

[Gib73]

[GJT79]

[HHO7]

[HHRO7]

[PRO7]

[PRZ07]

[Rus07]

[Sat75]

[ZPROS]

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of
bribery in elections. In Proceedings of the 21st National Conference on Artificial
Intelligence, pages 641-646. AAAI Press, July 2006.

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and
Copeland voting broadly resist bribery and control. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence, pages 724-730. AAAI Press, July
2007.

P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting: Ties matter.
In Proceedings of the 7th International Conference on Autonomous Agents and
Multiagent Systems, pages 983-990, May 2008.

A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587-601,
1973.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

E. Hemaspaandra and L. Hemaspaandra. Dichotomy for voting systems. Journal
of Computer and System Sciences, 73(1):73-83, 2007.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The
complexity of precluding an alternative. Artificial Intelligence, 171(5-6):255—
285, April 2007.

A. Procaccia and J. Rosenschein. Junta distributions and the average-case com-
plexity of manipulating elections. Journal of Artificial Intelligence Research,
28:157-181, February 2007.

A. Procaccia, J. Rosenschein, and A. Zohar. Multi-winner elections: Complexity
of manipulation, control, and winner-determination. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 1476-1481. AAAI
Press, January 2007.

Nathan F. Russell. Complexity of control of borda count elections. Master’s
thesis, Rochester Institute of Technology, July 2007.

M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory, 10(2):187-217, 1975.

M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms for the coalitional
manipulation problem. In Proceedings of the 19th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 277-286, January 2008.

Eric Brelsford, Edith Hemaspaandra, Henning Schnoor, Ilka Schnoor
Department of Computer Science
Rochester Institute of Technology

Rochester,

NY 14623 USA Email: eh@cs.rit.edu

Piotr Faliszewski
Department of Computer Science
University of Rochester

Rochester,

NY 14627 USA

144



