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Abstract

In this paper, we study the computational complexity of theveighted coalitional manipu-
lation (UCM) problem under some common voting rules. We stioat the UCM problem

under maximin is NP-complete. We also show that the UCM moblinder ranked pairs is
NP-complete, even if there is only one manipulator. Finallg present a polynomial-time
algorithm for the UCM problem under Bucklin.

1 Introduction

Voting is a methodology for a group of agents (or voters) tdkena joint choice from a set of
alternatives. Each agent reports his or her preferencestlwalternatives; then, eoting ruleis
applied to aggregate the preferences of the agents—thatsslect a winning alternative. However,
sometimes a subset of the agents can report their prefergrsiecerely to make the outcome more
favorable to them. This phenomenon is knownnagnipulation A rule for which no group of
agents can ever beneficially manipulate is said tgroep strategy-progfif no single agent can ever
beneficially manipulate, the rule is said to$teategy-proofa weaker requirement).

Unfortunately, any strategy-proof voting rule will fail satisfy some natural property. The cele-
brated Gibbard-Satterthwaite theorem [10, 16] statesthan there are three or more alternatives,
there is no strategy-proof voting rule that satisfies nopdaition (for every alternative, there exist
votes that would make that alternative win) and non-dictdtip (the rule does not simply always
choose the most-preferred alternative of a single fixedryoktowever, the mere existence of ben-
eficial manipulations does not imply that voters will usenthén order to do so, voters must also
be able tadiscoverthe manipulation, and this may be computationally hard.eR#y, the approach
of using computational complexity to prevent manipulati@as attracted more and more attention.
In early work [2, 1], it was shown that when the number of @édives is not bounded, the second-
order Copeland and STV rules are hard to manipulate, eversimgée voter. More recent research
has studied how to modify other existing rules to make therd tmmanipulate [3, 7].

Some attention has been given to a problem knowmeaghted coalitional manipulatiofyvVCM)
in elections. In this setting, there is a coalition of marépire voters trying to coordinate their ac-
tions in a way that makes a specific alternative win the edactin addition, the voters are weighted;
a voter with weight: counts as: voters voting identically. Previous work has establishet this
problem is computationally hard under a variety of promingmniing rules, even when the number
of candidates is constant [6, 11].

However, and quite surprisingly, the current literaturateins few results regarding tha-
weightedversion of the coalitional manipulation problem (UCM), whiis in fact more natural in
most settings. Recently, it has been shown that UCM is NPpbete under a family of voting
rules derived from the Copeland rule, even with only two matdtors [8]. Zuckerman et al. [20]
have established, as corollaries of their main theorenas utweighted coalitional manipulation is
tractable under the Veto and Plurality with Runoff votin¢psu

In this paper, we study the computational complexity of timveighted coalitional manipu-
lation problem under the maximin, ranked pairs, and Bucklies. After briefly recalling basic
notations and definitions, we show that the UCM problem umaiximin is NP-complete for any
fixed number of manipulators (at least two). We then show ti@tUCM problem under ranked
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pairs is NP-complete, even when there is only one manipu(atst as this is hard for second-order
Copeland and STV). Finally, we present a polynomial-tingmethm for the UCM problem under
Bucklin.

2 Preliminaries

Let C be the set oflternatives(or candidates. A linear order orC is a transitive, antisymmetric,
and total relation oG. The set of all linear orders ahis denoted by..(C). An n-voter profileP on
C consists ofn linear orders oi€. Thatis,P = (Ry, ..., R,), where for every < n, R; € L(C).
The set of all profiles of is denoted by”(C). In the remainder of the paper, we tetdenote the
number of alternatives (that if}|).

A voting ruler is a function from the set of all profiles @hto C, thatis,r : P(C) — C. The
following are some common voting rules studied in this paper

1. (Positional) scoring rulesGiven ascoring vectord = (v(1),...,v(m)), for any voteV €
L(C) and anyc € C, let s(V,c) = v(j), wherej is the rank ofc in V. For any profile
P =(W,...,V), lets(P,e) = > s(Vi,c). The rule will selecte € C so thats(P,c)
=1
is maximized. Two examples of scoring rules &erda for which the scoring vector is
(m—1,m —2,...,0), andplurality, for which the scoring vector i, 0, ..., 0).

2. Maximint Let Np(c;, ¢;) denote the number of votes that rankahead of;. The winner is
the alternative: that maximizesnin{Np(c,c’) : ¢’ € C,c’ # c}.

3. Bucklin An alternativer’s Bucklin score is the smallest numbesuch that more than half of
the votes rank among the toj alternatives. The winner is the alternative that has thdlesta
Bucklin score. (Sometimes, ties are broken by the numbeptesvthat rank an alternative
among the tog, but for simplicity we will not consider this tie-breakingle here.)

4. Ranked pairg17]: This rule first creates an entire ranking of all the ladtgives. Np(c;, c;)
is defined as for the maximin rule. In each step, we consideireop alternatives:;, ¢; that
we have not previously considered (as a pair): specificatychoose the remaining pair with
the highestVp(c;, ¢;). We then fix the ordet; > ¢;, unless this contradicts previous orders
that we fixed (that is, it violates transitivity). We conteuntil we have considered all pairs
of alternatives (hence, in the end, we have a full rankind)e @lternative at the top of the
ranking wins.

All of these rules allow for the possibility that multiplet@inatives end up tied for the win. Techni-
cally, therefore, they are reallyoting correspondencga correspondence can select more than one
winner. In the remainder of this paper, we will sometimes ewatmat inaccurately refer to the above
correspondences as rules. We will consider two variantsefrtanipulation problem: one in which
the goal is to make the preferred alternative the unique &irand one in which the goal is to make
sure that the preferred alternative is among the winners.stdy theconstructivemanipulation
problem, in which the goal is to make a given alternative win.

Definition 1 An unweighted coalitional manipulation (UCNmstance is a tuplér, PN ¢, M),
wherer is a voting rule,PNYM s the non-manipulators’ profile; is the alternative preferred by the
manipulators, andV/ is the set of manipulators.

Definition 2 The UCM unique winner (UCMU) problem is: Given a UCM instance
(r, PNM ¢ M), we are asked whether there exists a profi& for the manipulators such that
r(PNM y pMy = {c}.

Definition 3 The UCM co-winner (UCMC)problem is: Given a UCM instancg, PN ¢, M),
we are asked whether there exists a praftf¢ for the manipulators such thate »rPNM y PM,
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3 Maximin

In this section, we show that the UCMU and UCMC problems umadgximin are NP-complete, by
giving a reduction from théwo vertex disjoint paths in directed gragpinoblem, which is known to
be NP-complete [12].

Definition 4 Thetwo vertex disjoint paths in directed grapioblem is: We are given a directed
graphG and two disjoint pairs of vertice@:, u') and (v, v"), whereu, v’, v, v’ are all different from
each other. We are asked whether there exist two directdtspat> w3 — ... — ug, — «' and
v— v — ... — U, — v suchthat, v’ uy, ..., ug,, v, v1,..., v, are all different from each
other.

For any profileP and any pair of alternatives, co, let Dp(c1, ¢c2) denote the number of times
thatc; is ranked higher than, in P minus the number of times that is ranked higher than; in
P. Thatis,

DP(Cl,CQ) = ‘{R €P:ci >R CQ}| — |{R eP:cy>pr 01}‘

The next lemma has previously been used by others [13, 4].
Lemma 1 Given a profileP and F' : C x C — Z such that
1. forall C1,Co € C,c1 75 Co, F(Cl, 02) = —F(CQ, 01), and

2. either for all pairs of alternatives; , co € C (with ¢c; # c2), F'(c1, c2) is even, or for all pairs
of alternatives:y, co € C (with ¢1 # ¢2), F(c1, ¢2) is odd,

there exists a profilé® such that for allcy,co € C, ¢1 # c2, Dp(c1,¢2) = F(c1,c2) and|P| <
1
5 ch,cz:cl;écz ‘F(Cl7c2) - F(C2>Cl)|'

Theorem 1 The UCMU and UCMC problems under maximin are NP-completamyrfixed num-
ber of manipulators (as long as it is at least 2).

Proof of Theorem 1: It is easy to verify that the UCMU and UCMC problems under mari
are in NP. We first show that UCMU is NP-hard, by giving a reghurcfrom the two vertex disjoint
paths in directed graph problem. Let the instance of the w®rtex disjoint paths in directed graph
problem be denoted b = (V, E), (u,u’) and (v,v") whereV = {u,u/,v,v',¢c1,...,¢m—5}.
Without loss of generality, we assume that every vertexashable fromu or v (otherwise, we can
remove the vertex from the instance). We also assumédthat) ¢ F and(v,u’) ¢ E (since such
edges cannot be used in a solution). &t= (V,E U {(v',u), (v/,v)}), that is,G" is the graph
obtained fromG by adding(v’, ) and(v’, v). We construct a UCMU instance as follows.

Set of alternatives:C = {c,u, v/, v,v',c1,...,Cm—5}.

Alternative preferred by the manipulators: c.

Number of unweighted manipulators: | M| (for some|M | > 2).

Non-manipulators’ profile: PN¥M satisfying the following conditions:

1. Foranyd # ¢, Dpnu(e,c) = —4|M].
2. DPNM (u,v') = DPNM (v,u’) = —4‘M|

3. Forany(s,t) € E suchthatDp~w (t, s) is not defined above, we I8 prw (t, s) = —2|M | —
2.

4. Foranys,t € C such thatD pnra (2, s) is not defined above, we [€D pva (¢, s)| = 0.
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The existence of suchB"*, whose size is polynomial im, is guaranteed by Lemma 1.

We can assume without loss of generality that each manguianksc first. Therefore, for any
c 7& C, DPNMUpM (C, C/) = —3‘M|

We are now ready to show that azimin(PVM u PM) = {c} if and only if there exist two
vertex disjoint paths from to «” and fromw to v’ in G. First, we prove that if there exist such paths
in G, then there exists a profile for the manipulators such thaf azimin(PN" U PM) = {c}.
Letu — uy — ... > up, — v, v — vy — ... — v, — v’ be two vertex disjoint paths.
Let V' = {u,v,v,v',u1,...,ug,,v1,...,Vk . Then, because any vertex is reachable fioor
v in G, there exists a connected subgradghof G’ (which still includes all the vertices) in which
U— U — ... > Uy —u —v—v —...— v — v — wuisthe only cycle. Therefore, there
exists a linear orde® overV \ V' such that for any € V' \ V”, either 1. there exists € V' \ V'
such that ¢ t and(s,t) € F, or 2. there exists € V'’ such tha(s, t) € E. We let

PY ={(IM|=1)(cmum=uy = ... =up, =t =0 =01 = ...=vp, =0 = 0)}
Ufc=v=v1 = ... vg, =0 =u=uy = ... = ug, =u = O}

Then, we have the following calculation
in = Ming 2. Dpyapu(c, d) = —4|M| + | M| = —3|M].
Dpyvugpu(u,v') = —4|M|+ (|[M]| —1) — 1 = =3|M| — 2 < =3|M| = dyin.
Dpvuypu(v,u') = —4|M|+1— (|[M] +1) = =5|M|+ 2 < =3|M| = dmnin.

Foranyt € C\{c, u, v}, there exists € C\{c} suchthats,t) € EandDpum(t,s) = —| M|,
which means thaD pyupu (t,s) = =2|M| —2 — |M| = =3|M| — 2 < =3|M| = dpmin-

HenceM aximin(PNM u PM) = {c}.

Next, we prove that if there exists a profil®" for the manipulators such that
Mazimin(PYM u PM) = {c}, then there exist two vertex disjoint paths framto ' and
from v to v’. We define a functiory : V' — V such thatDp~mpum (¢, f(t)) < —3|M|. We
note that sinceMaximin(PN™ U PM) = {c}, for anyt # c, there must exist such that
Dpyvuypu(t,s) < —3|M]|, ands must be a parent of in G’. If there exists more than one
suchs, definef(t) to be any one of them. It follows that {t, f(¢)) is neither(u,v") or (v, u’),
then(f(t),t) € E andDpwn(t, f(t)) = —|M]|, which means thaf(t) >~ t in each vote ofP;
otherwise, if(t, f(t)) is (u,v") or (v,u’), thenDpum (¢, f(t)) < |M|— 2, which means thaf(¢) = ¢
in at least one vote oP*. There must exist; < ls < m such thatf(u) = f'2(u). Thatis,
Fi(u), fiti(u),. .., fl2=Y(u), f2(u) is a cycle inG’. We assume that for arly < I} < I}, < I,
fY(u) # f2(u). Now we claim thatv’, ) and(«’, v) must be both in the cycle, because

1. if neither of them is in the cycle, then in each voteBf , we must have !z (u) = f271(u) =
i (u) = f'2(u), which contradicts the assumption that each vote is a lioegar;

2. ifexactly one of them s in the cycle—without loss of gealiy, £ (u) = v, fL+1 (u) = u'—
then in at least one of the votes BfY, we must havef'2 (u) = f271(u) = ... = fli(u) =
f'2(u), which contradicts the assumption that each vote is a lioester.

Now, without loss of generality, let us assume tifét(u) = u, fiH1(u) = o/, fB3(u) =
v, fl3*1(u) = o/, wherelz < I, —2. We immediately obtain two vertex disjoint pathis= ' (u)
fe(u) — f27Mu) — o — f (u) = o' andv = fB(u) =[BT (u) — o= 1 (u)
v’. Therefore, UCMU under maximin is NP-complete.

For UCMC, we use almost the same reduction, except we madify/follows:

2. LetDprum (U,UI) = Dpnum (v,u’) = —4‘M| + 2.

3. Forany(s,t) € E suchthatDp~u (¢, ) is not defined above, we @ pr (¢, s) = —2|M]|.
]
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4 Ranked pairs

In this section, we prove that the UCMU and UCMC problems undeked pairs are NP-complete
(even for a single manipulator) by giving a reduction fronA3S

Definition 5 The 3SAT problem is: Given a set of variable¥ = {z1,...,z,} and a formula
Q= Q1 A...AQy such that

1. foralll <i<t,Q; = li71 V li72 V li73, and

2. foralll <4 <tandl < j < 3,1;; is either a variablery, or the negation of a variable
T

we are asked whether the variables can be set to true or falglead ) is true.

Theorem 2 The UCMU and UCMC problems under ranked pairs are NP-corepleten when
there is only one manipulator.

Proof of Theorem 2: It is easy to verify that the UCMU and UCMC problems under ehpairs
are in NP. We first prove that UCMU is NP-complete. Given ananse of 3SAT, we construct a
UCMU instance as follows. Without loss of generality, wewass that for any variable, x and—x
appears in at least one clause, and none of the clausesrcbaothir and—z.

Set of alternatives:C = {c, Q1,...,Q:, Q1. ..., Qi U{z1,. .., zq, 21, ..., 24}

U{Qll,l ) Qll,z ) Qll,37 ) Qlt:l ) Qlt,Q ) Qlt,S} U{Q_‘ll,l ) Q—‘ll,Q ) Q_‘ll,37 ) Q_‘lt,l ) Q_‘lt,2 ) Q_‘lt,S}'
Alternative preferred by the manipulator : c.

Number of unweighted manipulators: | M| = 1.

Non-manipulators’ profile: PV satisfying the following conditions.

1. Foranyi <t, Dpnu(c,Q;) = 30,Dpnm(Q), c) = 20; foranyz € C\{Q;,Q} : 1 <i < t},
DPNM (C, .CE) = 10.

2. Foranyj < q, Dp~vum(xj, ~z;) = 20.

3. Foranyi < t,j < 3, if lij = Tk, thenDpNM(Qi, ;k) = 30, DPNM( ;k,xk) = 30,
Dprum (—er, ka) =30,Dprm (Q:Ik,Qg) = 30, if li,j = Tk, thenDPNM (Qu :wk) =

30, DpNM(Ql xk) = 30, DPNM(—\Ik, ¢ ) = 30, DPNJVI(Q;]C7Q;;) = 30,

Tk g

DPNM (Ql_‘mk, Qék) = 20.
4. Foranyz,y € C, if Dpnu (2, y) is not defined in the above steps, thep~y v (z,y) = 0.

For example, whe®, = x1 V —x2 V 23, Dpn~u is illustrated in Figure 1.

The existence of suchRYM is guaranteed by Lemma 1, and the sizé?0f" is in polynomial
in ¢t andg.

First, we prove that if there exists an assignmeuf truth values toX so that@) is satisfied,
then there exists a vot@,, for the manipulator such th&P (PN U{R)s}) = {c}. We construct
Ry as follows.

e Letcbe onthe top oRRy,.

e Foranyk < q, if v(zy) = T (thatis,zy is true), thency, >~g,, —xx, and foranyi <t¢,j <3
suchthat, ; = —xy, letQ%, ~r,, Q...

e Foranyk < q, if v(zy) = L (thatis,zy, is false), themzy, =g,, zx, andforanyi <t,j <3
such that; ; = —xy, letQ., -g,, Q-

7
TE"

e The remaining pairs of alternatives are ranked arbitrarily
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Figure 1: For any vertices, , vo, if there is a solid edge fromy to vs, thenD pna (v, v2) = 30; if
there is a dashed edge framto vo, thenD pyu (v1, v2) = 20; if there is no edge between and
vy andvy # ¢, va # ¢, thenDpnu (v1,v2) = 0; for anyz such that there is no edge betweesnd
2, Dpnu (e, x) = 10.

If 2z, = T, thenDPNMU{RAI}(:ck,ﬁxk) = 21, and for anyi < t,j < 3 such that; ; = -y,
Dpnuypy (QLy,,Qy,) = 19. It follows that no matter how ties are broken when applying
ranked pairs taPVM U {Ry/}, if 2, = T, thenz;, = —ay, in the final ranking. This is because for
anyl;; = —xg, Dpyamygp, 1 (QL,,, QL) = 19 < 21 = Dpnuygg,,y(@r, ~2x), which means
that before trying to fix:; = —xy, there is no directed path from;, to xy.

Similarly if 2, = L, thenDp~ayr,, ) (T, —2x) = 19, and for anyi < ¢,j < 3 such that
li j = —xg, DPNMU{RM}(Q:WQ;]Q) =211t follows that if z,, = L, then—x; = xy, _and for any
i <t,j <3suchthat; ; = ~zx, Q% > Q, inthe final ranking. This is becaug¥ ,, >~ Q;,
will be fixed beforer;, = —xy.

Because) is satisfied under, for each clausé€);, at least one of its three literals is true under
Without loss of generality, we assum@; 1) = T. If [, 1 = x4, then before trying to ad@;, > ¢, the
directed pathe — Q; — Q., — xr — —xr — Q-,,, — Q has already been fixed. Therefore;
Q! in the final ranking, which means that for any alternativés C \ {¢, @Q1,...,Q¢, Q}, ..., Q}:},

c = xz in the final ranking becausB p~ g,y (c,z) > 0. Hence,c is the unique winner of
PNM IRy} under ranked pairs.

Next, we prove that if there exists a vdtg, for the manipulator such th&@P (PN U{Ry,}) =
{c}, then there exists an assignmenof truth values toX such that() is satisfied. We construct
the assignment so thatv(xy) = T if and only if x;, >~r,, —2k, andv(zy) = L if and only
if =z, =g, xp. We claim thatv(Q) = T. If, on the contraryp(Q) = L, then there exists a
clause @1, without loss of generality) such that@,) = L. We now construct a way to fix the
pairwise rankings such thatis not the winner under ranked pairs, as follows. For gn¥. 3,
if there existsk < ¢ such that; ; = -y, thenzy, >g,, —z, because(—z;) = L. Therefore,
Dpnuyg,, (zr, —zr) = 21. Then, after trying to add all pairs- 2’ such thaD prar g, (@, ) >
21 (that is, all solid directed edges in Figure 1), it followsth; - —z; can be added to the final
ranking. We choose to add, - —z; first, which means tha@ik - Qlﬂk in the final ranking
(otherwise, we hav@!, = QL -z = -2 > QL , whichis a contradiction).

For anyj < 3, if there existd: < ¢ such that; ; = i, then—z;, >g,, x; because(xy) = L.
Therefore,Dpn g, (21, 7xr) = 19. We note that after trying to add all pairs>- =’ such that
Dpnuyg,, (z,2") > 19, Qik b QLW We recall that for any < 3, if there existst < ¢ such that
l;j = —xg, thenQl, # Qik. Hence, it follows tha®)} > c is consistent with all pairwise rankings

T
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added so far. Then, sind@p~uyr,, (Q1,c) > 19, if Q] > ¢ has not been added, we choose to add
it first of all pairwise rankings of alternatives> z’ such thatD p~ s, (z, ") = 19, which means
that@) > c in the final ranking—in other words,is not at the top in the final ranking. Therefore,
c is not the unique winner, which contradicts the assumptiaa®P(PVM U {Ry}) = {c}.

For UCMC, we modify the reduction as follows: we IB"YM be such that for any < ¢,
Dpryu (Q;, C) = 22, and for anyj < gq, Dpryu (Ij, —L’Ej) = 22. O

Similarly, we can prove that wheéd/| is a constant greater than one, UCMU and UCMC under
ranked pairs remain NP-complete.

Theorem 3 The UCMU and UCMC problems under ranked pairs are NP-corepiten when the
number of manipulators is fixed to some constarfit > 1.

Proof of Theorem 3: We prove UCMU is NP-complete. The proof is similar to that bdrem 2.
We let PV M satisfy the following conditions.

1. Forany: <t, DPNM(C, Qz) = 30|M‘,DPN1\/I( g,c) = 22‘M| —2; for anyx € C\{Ql,Q; :
1< < t}, DPNM(C,S(}) = 10‘M|

2. Foranyj < q, Dp~vu(xj, ~x;) = 22|M| — 2.

3. Foranyi < t,j < 3, if l@j = Tk, thenDpNM(Qi, ;k) = 30|M‘, DPNM(Q;k,xk) =
30|M‘, DPNA‘I(_L’E]“ :ik) = 30‘M|, DPNIVI(ink,Q;) = 30|M, if li,j = Tk, then

DPNAI(Qi, E ) = 30|M‘, DPNM( i Ik) = 30|M‘, DPNM(—L’E;C,Qixk) = 30‘M|,

Tk T

Dpnu(Qy,, Q7) = 30|M|, Dpnu (QL,,, Q%) = 20| M|.

4. Foranyz,y € C, if Dp~u(x,y) is not defined in the above steps, thBp~ v (z,y) = 0.

First, if there exists an assignmenf truth values toX so thatQ is satisfied, then we leR,,
be defined as in the proof for Theorem 2. It follows t#® (PN U {|M|Ry}) = {c} (all the
manipulators can vot&,,).

Next, if there exists a profil&?! for the manipulators such th&P (PN u PM) = {c}, then
we construct the assignmenso thatv(z) = T if 2 =y —ay, forall vV € PM, andv(x,) = L if
-z, =y x forall vV € PM; the values of all the other variables are assigned arlytraihen by
similar reasoning as in the proof for Theorem 2, we know €& satisfied undew.

For UCMC, the proof is similar (by slightly modifying th® p~x» as we did in the proof of
Theorem 2). |

5 Bucklin

In this section, we present a polynomial-time algorithmtfoe UCMU problem under Bucklin (a
polynomial-time algorithm for the UCMC problem under Buoktan be obtained similarly). For
any alternative;, any natural numbet, and any profile?, let B(z, d, P) denote the number of times
thatx is ranked among the tapalternatives inP. The idea behind the algorithm is as follows. Let
dmin be the minimal depth so thatis ranked among the taf,.;,, alternatives in more than half of
the votes (when all of the manipulators ranfirst). Then, we check if there is a way to assign the
manipulators’ votes so that none of the other alternativeariked among the taf,,;,, alternatives

in more than half of the votes.

Algorithm 1
Input: A UCM instancg Bucklin, PNM ¢, M), C = {c,c1,...,Cm—1}.

1. Calculate the minimal depiy,,;, such thatB(c, dpin, PNYM) + M| > S(|NM| + |M]).
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2. Ifthere exists’ € C, ¢ # ¢ such thatB(c/, dpin, PN™) > 2(|NM| + |M]), then output
that there is no successful manipulation. Otherwise, foy dne C, ¢ # ¢, letd. =

1 o / . NM _ ‘M| if dC’ > |]\/[‘
LQ(‘NM| + ‘MDJ B(C 7dm7,nap )! kc’ — { dc’ otherwise

3. 1Y 0 se ke < (dmin — 1)| M|, then output that there is no successful manipulation.
4. Letj =1,t =1, and foranyl < |M|, let R; rankc at the top. Repeat Step 4a— 1 times:

da. If k., > 0, then ¢ is ranked in the next position (lower than
the candidates that have already been ranked in previouspsktein

R mod G—1 M) +1: B mod (G415 -+ B mod (j+ke, —2M[)+1,  TESPECtively,  where
for any natural number, b, mod (a,b) is the common residue af mod b). Letj «

mod (j + ke, = 1,|M[) + 1, ¢t —t+1.
5. Foranys < | M|, completeR, arbitrarily. Output PM = (Ry,..., Rjy).

Claim 1 Algorithm 1 correctly solves the UCMU problem. It runs inéit(m|N M |+|N M || M |+
| M|m).

Proof of Claim 1: Let us first consider the case where Algorithm 1 outputs thexetis no success-
ful manipulation. There are two cases.

1. There existe’ € C, ¢’ # ¢ such thatB(c’, dun, PNM) > S(|NM| + |M]).

2. Yz ker < (dmin — 1)|M]. In this case, for any?, there exists’ # ¢ such thaf M| >
B(c, din, PM) > ke, which means thaB(c/, dyin, PN U PM) > L(INM| + |M]).

In both cases, more than half of the voters rahmong the topi,,;,, alternatives. Therefore,
cannot be the unique winner.
Now let us consider the case where Algorithm 1 outputs sétife In this case, for any <
m — 1, B(ct, dmin, PM) < k.,. Therefore, for any < m — 1, B(ct, dpin, PN U PM) <
B(ct, dimin, PNM) + ke, < 2(INM| + |M]), which means thaBucklin(PYM U PM) = {c}.
Step 1 runsin tim®(m|NM]|), Step 2 runs in tim&(|M||NM|), Step 3 runs in tim&©(|M|),
and Step 4 and Step 5 run in tindgm|M|). Therefore, Algorithm 1 runs in tim&®(m|N M| +

INM||M| + | M|m). O

6 Discussion

| Number of manipulators | 1 | constant |
Copeland (specific tie-breaking) P [2] NP-hard [8]
STV NP-hard [1] | NP-hard [1]
Veto P [20] P [20]
Plurality with Runoff P [20] P [20]
Cup P [6] P [6]
Maximin P[2] NP-hard
Ranked pairs NP-hard NP-hard
Bucklin P P
Borda P[2] ?

Table 1: Complexity of UCM under prominent voting rules. &@lce results appear in this paper.
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In this paper, we studied the computational complexity offeighted coalitional manipulation
under the maximin, ranked pairs, and Bucklin rules. The UGbbfem is NP-complete under the
maximin rule for any fixed number (at least two) of maniputatoThe UCM problem is also NP-
complete under the ranked pairs rule; in this case, the leaedmolds even if there is only a single
manipulator, similarly to the second-order Copeland an®f &iles. We gave a polynomial-time
algorithm for the UCM problem under the Bucklin rule. Tablsdmmarizes our results, and puts
them in the context of previous results on the UCM problem.

It should be noted that all of these hardness results, aawélle ones mentioned in the introduc-
tion, areworst-caseesults. Hence, there may still be an efficient algorithn ¢laa find a beneficial
manipulation formostinstances. Indeed, several recent results suggest thatdinthnipulations
is usually easy. Procaccia and Rosenschein have showmian, the number of alternatives is a
constant, manipulation of positional scoring rules is easn with respect to “junta” distributions,
which arguably focus on hard instances [15]. Conitzer anttiBalm have given some sufficient
conditions under which manipulation is easy and argue ttestet conditions are usually satisfied in
practice [5]. Zuckerman et al. have given manipulation atgms with the property that if they
fail to find a manipulation when one exists, then, if the matapors are given some additional vote
weights, the algorithm will succeed [20]. The asymptotiatgability of manipulability has also been
characterized (except for knife-edge cases) for a veryrgénkass of voting rules [18] (building on
earlier work [14]). In a similar spirit, several quantitaiversions of the Gibbard-Satterthwaite the-
orem have recently been proved [9, 19]. One weakness of #tleske results (except [20]) is that
they make assumptions about the distribution of instanbreshis paper, we have focused on the
worst-case framework, which does not suffer from this weakn This does mean that when we
show that manipulation is hard, it may still be the case thiatusually easy.

There are many interesting problems left for future rededfor example, settling the complex-
ity of UCM under positional scoring rules such as Borda is allelnging open problem.
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